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SECOND-ORDER BOUNDARY ESTIMATE FOR THE SOLUTION
TO INFINITY LAPLACE EQUATIONS
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Abstract. In this article, we establish a second-order estimate for the solu-

tions to the infinity Laplace equation

−∆∞u = b(x)g(u), u > 0, x ∈ Ω, u|∂Ω = 0,

where Ω is a bounded domain in RN , g ∈ C1((0,∞), (0,∞)), g is decreasing
on (0,∞) with lims→0+ g(s) = ∞ and g is normalized regularly varying at

zero with index −γ (γ > 1), b ∈ C(Ω̄) is positive in Ω, may be vanishing on

the boundary. Our analysis is based on Karamata regular variation theory.

1. Introduction and statement of main results

The operator ∆∞ is the so-called ∞-Laplacian

∆∞u := 〈D2uDu,Du〉 =
N∑

i,j=1

DiuDijuDju.

The infinity Laplacian equation ∆∞u = 0 is the properly interpreted Euler-Lagrange
equation associated with minimizing the functional (u,X) 7→ ‖∇u‖L∞(X) for X ⊂
RN . It was introduced and first studied by Aronsson [3] in 1967. Notice that
the infinity Laplacian is a quasilinear and highly degenerate elliptic operator, and
this degeneracy accounts for the non-existence, in general, of smooth solutions to
Dirichlet problems. Several approaches were developed to overcome this problem,
including the notion of viscosity solutions (see [13]) and the method of comparison
with cones, developed by Crandall, Evans and Gariepy [14]. It was only in 1993
that Jensen [20] showed a continuous function u is a viscosity solution to ∆∞u = 0
if and only if it is a so-called absolutely minimizing Lipschitz extension. Jensen
also proved uniqueness in this setting. Peres, Schramm, Sheffield and Wilson [31]
introduced a new perspective by applying game theory to these problems. Using
the game random-tug-of-war, they proved the most general existence and unique-
ness results to date for solving equations involving the operator ∆∞. Recently,
the infinity Laplacian equation has been discussed extensively by many authors in
previous literature, see [4, 7] and the references therein.
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The main concern of the present paper is the second-order estimate for the
solution near the boundary to the singular boundary-value problem

−∆∞u = b(x)g(u), u > 0, x ∈ Ω, u|∂Ω = 0, (1.1)

where where the operator ∆∞ is the ∞-Laplacian, a highly degenerate elliptic
operator given by

∆∞u := 〈D2uDu,Du〉 =
N∑

i,j=1

DiuDijuDju,

where Ω is a bounded domain with smooth boundary in RN , the functions b g
satisfy

(H1) b ∈ C(Ω̄) and is positive in Ω,
(H2) there exist k ∈ Λ and B0 ∈ R such that

b(x) = k4(d(x))(1 +B0d(x) + o(d(x))) near ∂Ω,

where d(x) = dist(x, ∂Ω), Λ denotes the set of all positive non-decreasing
functions in C1(0, δ0) which satisfy

lim
t→0+

d

dt

(K(t)
k(t)

)
:= Ck ∈ (0, 1], K(t) =

∫ t

0

k(s)ds;

(H3) g ∈ C1((0,∞), (0,∞)), lims→0+ g(s) =∞ and g is decreasing on (0,∞);
(H4) there exist γ > 1 and a function f ∈ C1(0, a1] ∩ C[0, a1] for a1 > 0 small

enough such that
−g′(s)s
g(s)

:= γ + f(s) with lim
s→0+

f(s) = 0, s ∈ (0, a1],

i.e.,

g(s) = c0s
−γ exp

(∫ a1

s

f(ν)
ν

dν
)
, s ∈ (0, a1], c0 > 0;

(H5) there exists η ≥ 0 such that

lim
s→0+

f ′(s)s
f(s)

= η.

Lu and Wang [22, 23] first investigated the inhomogeneous Dirichlet problem

∆∞u = f(x, u), u > 0, x ∈ Ω, u|∂Ω = m, (1.2)

where f : Ω × R → R is continuous and m ∈ C(∂Ω). When the right hand side
f(x, u) is independent of u, they show that the Dirichlet problem (1.2) admits a
unique solution u ∈ C(Ω̄), in the viscosity sense. Bhattacharya and Mohammed [6]
is the first paper that addresses problem (1.2) in which the inhomogeneous term
f depends on both the variables x and u. The paper considers the existence or
nonexistence of solutions to problem (1.2) for the f with the sign and the mono-
tonicity restrictions. Later, [7] removes the sign and the monotonicity restrictions,
and presents fairly general sufficient conditions on f to ensure the existence of
viscosity solutions to problem (1.2). In particular, [6] discusses the bounds and
boundary behavior of solutions to problem (1.1) when b is a positive constant in Ω
and f(u) = u−γ , γ > 0. The author [26] further investigate the boundary asymp-
totic behavior of solutions to problem (1.1) for a wide range of functions b(x) and
f(u).
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Boundary asymptotic behavior of solutions to singular elliptic boundary value
problem has been studied extensively in the context of the classical Laplace oper-
ator, i.e.

−∆u = b(x)g(u), u > 0, x ∈ Ω, u|∂Ω = 0, (1.3)
It is well known that problem (1.3) has been discussed and extended by many

authors in many contexts, for instance, the existence, uniqueness, regularity and
boundary behavior of solutions, see, [1, 27] and the references therein.

For b ≡ 1 in Ω and g satisfying (H3), Crandall, Rabinowitz and Tartar [15], Fulks
and Maybee [16] derived that problem (1.1) has a unique solution u ∈ C2+α(Ω) ∩
C(Ω̄). Moreover, in [15], the following result was established: If φ1 ∈ C[0, δ0] ∩
C2(0, δ0] is the local solution to problem

− φ′′1(t) = g(φ1(t)), φ1(t) > 0, 0 < t < δ0, φ1(0) = 0, (1.4)

then there exist positive constants c1 and c2 such that

c1φ1(d(x)) ≤ u(x) ≤ c2φ1(d(x)) near ∂Ω.

In particular, when g(u) = u−γ , γ > 1, u has the property

c1(d(x))2/(1+γ) ≤ u(x) ≤ c2(d(x))2/(1+γ) near ∂Ω. (1.5)

Later, for b ≡ 1 on Ω, g(u) = u−γ with γ > 0, Berhanu, Cuccu and Porru [5]
obtained the following results on a sufficiently small neighborhood of ∂Ω;

(i) for γ = 1,

u(x) = φ1(d(x))
(
1 +A(x)(− ln(d(x)))−β

)
near ∂Ω,

where φ1 is the solution of problem (1.3) with γ = 1, φ1(t) ≈ t
√
−2 ln t

near t = 0, β ∈ (0, 1/2) and A is bounded;
(ii) for γ ∈ (1, 3),

u(x) =
( (1 + γ)2

2(γ − 1)

)1/(1+γ)

(d(x))2/(1+γ)
(

1 +A(x)(d(x))2(γ−1)/(1+γ)
)

near ∂Ω;

(iii) for γ = 3,

u(x) =
√

2d(x)
(
1−A(x)d(x) ln(d(x))

)
near ∂Ω.

For γ > 3, McKenna and Reichel [25] proved that∣∣∣ u(x)
(d(x))2/(1+γ)

−
( (1 + γ)2

2(γ − 1)

)1/(1+γ)∣∣∣ < c4(d(x))(γ+3)/(1+γ) near ∂Ω.

On the other hand, Ĉırstea and Rǎdulescu [9, 10, 11] introduced a new unified
approach via the Karamata regular variation theory, to study the boundary behav-
ior and uniqueness of solutions for elliptic problems. Later, using this approach,
Zhang [35] and the author [27] continued to prove the second-order asymptotic be-
havior of solutions to problem (1.3). However, the investigation of the second order
expansion of viscosity solutions to problem (1.1) is just getting started.

With motivation from the above works, in this article we want to consider the
two-term asymptotic expansion of the viscosity solution u of problem (1.1) near ∂Ω
for suitable conditions on b(x) and f(u).

Let β > 0, we define

Λ1,β =
{
k ∈ Λ, lim

t→0+
(− ln t)β

( d
dt

(K(t)
k(t)

)
− Ck

)
= D1k ∈ R

}
;
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Λ2 =
{
k ∈ Λ, lim

t→0+
t−1
( d
dt

(K(t)
k(t)

)
− Ck

)
= D2k ∈ R

}
.

The key to our estimates in this paper is the solution of the problem∫ φ(t)

0

ds(
g(s)

)1/3 = t, t > 0. (1.6)

Our main results are summarized as follows.

Theorem 1.1. Let (H1)–(H5) be satisfied. Suppose that k ∈ Λ1,β, η > 0 in (H5)
and Ck(γ + 3) > 4, then for the viscosity solution u of problem (1.1) and all x in a
neighborhood of ∂Ω, it holds that

u(x) = ξ0φ(K4/3(d(x)))
(
1 +A0(− ln(d(x)))−β + o((− ln(d(x)))−β)

)
, (1.7)

where φ is uniquely determined by (1.6) and

ξ0 =
(

(
3
4

)3 γ + 3
Ck(γ + 3)− 4

)1/(3+γ)

, A0 = −(
3
4

)2 D1k

Ck(γ + 3)− 4
. (1.8)

Theorem 1.2. Let (H1)–(H5) be satisfied. Suppose that η = 0 in (H5) and Ck(γ+
3) > 4.

(i) If k ∈ Λ1,β and
(H6) there exist σ ∈ R such that

lim
s→0+

(− ln s)βf(s) = σ,

where β is the parameter used in the definition of Λ1,β.
then for the viscosity solution u of problem (1.1) and all x in a neighborhood
of ∂Ω, it holds that

u(x) = ξ0φ(K4/3(d(x)))
(
1 +A1(− ln(d(x)))−β + o((− ln(d(x)))−β)

)
, (1.9)

where φ is uniquely determined by (1.6), ξ0 is in (1.8) and

A1 = −
( 4

3 )3D1k −A2

Ck(γ + 3)− 4
with A2 = −A3σ

(
(
4
3

)4(γ + 1)−2 + ξ
−(γ+3)
0 ln ξ0

)
,

A3 = 4−β(Ck(γ + 3))β .

(ii) Suppose that k ∈ Λ2, then (i) still holds, where

A1 = (
3
4

)3 A2

Ck(γ + 3)− 4
.

Remark 1.3 ((Existence and uniqueness [6, Cor. 6.3]). Let g : (0,∞) → (0,∞)
be non-increasing and b ∈ C(Ω) be a positive function such that supx∈Ω b(x) <∞.
The singular boundary value problem (1.1) admits a unique solution.

The outline of this paper is as follows. In section 2 we give some preparation.
The proofs of Theorems 1.1 and 1.2 will be given in section 3.
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2. Preliminaries

Our approach relies on Karamata regular variation theory established by Kara-
mata in 1930 which is a basic tool in the theory of stochastic process (see [32, ?]
and the references therein.). The theory of regular variation has been applied in
Tauberian theorems, Abelian theorems, analytic theorems, and analytic number
theorems etc.. The regular variation theory enables us to obtain significant infor-
mation about the qualitative behavior of large solutions in a general framework.
In this section, we give a brief account of the definition and properties of regularly
varying functions involved in our paper (see [32, 33]).

Definition 2.1. A positive measurable function g defined on (0, a), for some a > 0,
is called regularly varying at zero with index ρ, written as g ∈ RV Zρ, if for each
ξ > 0 and some ρ ∈ R,

lim
t→0+

g(ξt)
g(t)

= ξρ. (2.1)

In particular, when ρ = 0, g is called slowly varying at zero.

From the above definition we easily deduce that if L is slowly varying at zero,
then tρL(t) ∈ RV Zρ. Some basic examples of slowly varying functions at zero are

(i) every measurable function on (0, a) which has a positive limit at zero;
(ii) (− ln t)p and

(
ln(− ln t)

)p, p ∈ R;
(iii) e(− ln t)p , 0 < p < 1.

Definition 2.2. A positive measurable function f defined on [a,∞), for some
a > 0, is called regularly varying at infinity with index ρ, written as f ∈ RVρ, if for
each ξ > 0 and some ρ ∈ R,

lim
s→∞

f(ξs)
f(s)

= ξρ. (2.2)

In particular, when ρ = 0, f is called slowly varying at infinity.

Proposition 2.3 (Uniform convergence theorem). If g ∈ RV Zρ, then (2.1) holds
uniformly for ξ ∈ [c1, c2] with 0 < c1 < c2 < a.

Proposition 2.4 (Representation theorem). A function L is slowly varying at zero
if and only if it can be written in the form

L(t) = y(t) exp
(∫ a1

t

f(ν)
ν

dν
)
, t ∈ (0, a1), (2.3)

for some a1 ∈ (0, a), where the functions f and y are measurable and for t → 0+,
f(t)→ 0 and y(t)→ c0, with c0 > 0.

We say that

L̂(t) = c0 exp
(∫ a1

t

f(ν)
ν

dν
)
, t ∈ (0, a1), (2.4)

is normalized slowly varying at zero and

g(t) = c0t
ρL̂(t), t ∈ (0, a1), (2.5)

is normalized regularly varying at zero with index ρ (and written g ∈ NRV Zρ).
A function g ∈ RV Zρ belongs to NRV Zρ if and only if

g ∈ C1(0, a1) for some a1 > 0 and lim
t→0+

tg′(t)
g(t)

= ρ. (2.6)
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Proposition 2.5. If the functions L,L1 are slowly varying at zero, then
(i) Lρ (for every ρ ∈ R), c1L+ c2L1 (c1 ≥ 0, c2 ≥ 0 with c1 + c2 > 0), L ◦ L1

(if L1(t)→ 0 as t→ 0+) are also slowly varying at zero.
(ii) For every ρ > 0 and t→ 0+,

tρL(t)→ 0, t−ρL(t)→∞.

(iii) For ρ ∈ R and t→ 0+, ln(L(t))/ln t→ 0 and ln(tρL(t))/ln t→ ρ.

Proposition 2.6. If g1 ∈ RV Zρ1 , g2 ∈ RV Zρ2 with limt→0+ g2(t) = 0, then
g1 ◦ g2 ∈ RV Zρ1ρ2 .

Proposition 2.7 (Asymptotic behavior). If a function L is slowly varying at zero,
then for a > 0 and t→ 0+,

(i)
∫ t

0
sρL(s)ds ∼= (ρ+ 1)−1t1+ρ L(t), for ρ > −1;

(ii)
∫ a
t
sρL(s)ds ∼= (−ρ− 1)−1t1+ρ L(t), for ρ < −1.

Next, we recall the precise definition of viscosity solutions for problem (1.1).

Definition 2.8. A function u ∈ C(Ω) is a viscosity subsolution of the PDE ∆∞u =
−b(x)g(u) in Ω if for every ϕ ∈ C2(Ω), with the property that u − ϕ has a local
maximum at some x0 ∈ Ω, then

∆∞ϕ(x0) ≥ −b(x0)g(u(x0)).

Definition 2.9. A function u ∈ C(Ω) is a viscosity supsolution of the PDE ∆∞u =
−b(x)g(u) in Ω if for every ϕ ∈ C2(Ω), with the property that u − ϕ has a local
minimum at some x0 ∈ Ω, then

∆∞ϕ(x0) ≤ −b(x0)g(u(x0)).

Definition 2.10. A function u ∈ C(Ω) is a viscosity solution of the PDE ∆∞u =
−b(x)g(u) in Ω if it is both a subsolution and a supersolution.

Remark 2.11. It is easy to prove that if u ∈ C2(Ω) is a classical subsolution
(supersolution) of the PDE ∆∞u = −b(x)g(u), then u is a viscosity subsolution
(supersolution) of the PDE ∆∞u = −b(x)g(u).

Our results in this section are summarized as follows.

Lemma 2.12. Let k ∈ Λ. Then
(i) limt→0+

K(t)
k(t) = 0, limt→0+

tk(t)
K(t) = C−1

k , i.e., K ∈ NRV ZC−1
k

;

(ii) limt→0+
tk′(t)
k(t) = 1−Ck

Ck
, i.e., k ∈ NRV Z(1−Ck)/Ck , limt→0+

K(t)k′(t)
k2(t) = 1 −

Ck;
(iii) when k ∈ Λ1,β, limt→0+(− ln t)β

(K(t)k′(t)
k2(t) − (1− Ck)

)
= −D1k;

(iv) when k ∈ Λ2, limt→0+ t−1
(K(t)k′(t)

k2(t) − (1− Ck)
)

= −D2k.

The proof of the above lemma is similar to the proof of [35, Lemma 2.1], so we
omit it.

Lemma 2.13. If g satisfies (H3)-(H5), then:

(i)
∫ a

0
ds(

g(s)
)1/3 <∞, for some a > 0;
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(ii)

lim
t→0+

((
g(t)

)1/3)′ ∫ t

0

ds(
g(s)

)1/3 = − γ

γ + 3
, lim

t→0+

(
g(t)

)1/3 ∫ t
0

ds(
g(s)
)1/3

t
=

3
γ + 3

.

Proof. (i) Assumption (H4) implies that g ∈ NRV Z−γ with γ > 1, so g(s) =
c0s
−γL̂(s), s ∈ (0, a1), where L̂ is normalized slowly varying at zero and c0 > 0.

(i) is obvious due to Propositions 2.7(i) and 2.5(ii).
(ii) Also we have(

g(t)
)1/3
t

∫ t

0

ds(
g(s)

)1/3 ∼ 3
γ + 3

t−
γ
3

(L(t))1/3

t
γ+3
3 (L(t))1/3

t
=

3
γ + 3

,

((
g(t)

)1/3)′ ∫ t

0

ds(
g(s)

)1/3 ∼ 1
3
tg′(t)
g(t)

3
γ + 3

= − γ

γ + 3
.

�

Lemma 2.14. Let g satisfy (H3)–(H5). If η = 0 in (H5) and (H6) holds. Then

(i) limt→0+(− ln t)β
(
tg′(t)
g(t) + γ

)
= σ1, where

σ1 =

{
0, if η > 0,
−σ, if η = 0;

(ii)

lim
t→0+

(− ln t)β
(∫ t

0
ds

(g(s))1/3

t
(g(t))1/3

− 3
γ + 1

)
= σ2;

where

σ2 =

{
0, if η > 0,
− 3σ

(γ+3)2 , if η = 0;

(iii)

lim
t→0+

(− ln t)β
((

(g(t)
)1/3)′

∫ t

0

ds(
g(s)

)1/3 +
γ

γ + 3

)
= σ3;

where

σ3 =

{
0, if η > 0,
− σ

(γ+3)2 , if η = 0;

(iv)

lim
t→0+

(− ln t)β
(g(ξ0t)
ξ0g(t)

− ξ−(γ+1)
0

)
= σ4.

where

σ4 =

{
0, if η > 0,
−σξ−(γ+1)

0 ln ξ0, if η = 0.
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Proof. When f ∈ NRV Zη with η > 0, by Proposition 2.5 (ii), it follows that
limt→0+(− ln t)βf(t) = 0, and when η = 0, by (H6), limt→0+(− ln t)βf(t) = σ.

(i) By tg′(t)
g(t) + γ = −f(t), we see that (i) holds.

(ii) By (H4) and a simple calculation, we obtain

s
( 1(
g(s)

)1/3)′ =
γ

3
(
g(s)

)1/3 +
f(s)

3
(
g(s)

)1/3 , s ∈ (0, a1]. (2.7)

Since g ∈ NRV Z−γ with γ > 1, by Proposition 2.5 (ii), we have limt→0+
t(

g(t)
)1/3 =

0. Integrating (2.7) from 0 to t, by parts, we obtain

t(
g(t)

)1/3 = (
γ

3
+ 1)

∫ t

0

ds(
g(s)

)1/3 +
1
3

∫ t

0

f(s)(
g(s)

)1/3 ds, t ∈ (0, a1],

i.e., ∫ t
0

ds(
g(s)
)1/3

t(
g(t)
)1/3 − 3

γ + 3
= − f(t)

γ + 3

∫ t
0

f(s)(
g(s)
)1/3 ds

t f(t)(
g(t)
)1/3 , t ∈ (0, a1].

Since g ∈ NRV Z−γ , f ∈ NRV Zη, we obtain by Proposition 2.7 that

lim
t→0+

∫ t
0

f(s)(
g(s)
)1/3 ds

t f(t)(
g(t)
)1/3 =

1
γ
3 + η + 1

.

Thus,

lim
t→0+

(− ln t)β
(∫ t0 ds(

g(s)
)1/3

t(
g(t)
)1/3 − 3

γ + 3

)

= − 1
γ + 3

lim
t→0+

(− ln t)βf(t) lim
t→0+

∫ t
0

f(s)(
g(s)
)1/3 ds

t f(t)(
g(t)
)1/3 = σ2.

(iii) By a simple calculation, we have

lim
t→0+

(− ln t)β
(((

g(t)
)1/3)′ ∫ t

0

ds(
g(s)

)1/3 +
γ

γ + 3

)

= lim
t→0+

(− ln t)β
(1

3
tg′(t)
g(t)

∫ t
0

ds(
g(s)
)1/3

t(
g(t)
)1/3 +

γ

γ + 3

)

= lim
t→0+

(− ln t)β
(1

3

( tg′(t)
g(t)

+ γ
)(∫ t0 ds(

g(s)
)1/3

t(
g(t)
)1/3 − 3

γ + 3

)

+
1

γ + 3

( tg′(t)
g(t)

+ γ
)
− γ

3

(∫ t0 ds(
g(s)
)1/3

t(
g(t)
)1/3 − 3

γ + 3

))
.
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Hence, by (i)-(ii), we obtain

lim
t→0+

(− ln t)β
(((

g(t)
)1/3)′ ∫ t

0

ds(
g(s)

)1/3 +
γ

γ + 3

)
= σ3.

(iv) When ξ0 = 1, the result is obvious. Now suppose that ξ0 6= 1. By (H4), we
obtain

g(ξ0t)
ξ0g(t)

− ξ−(γ+1)
0 = ξ

−(γ+1)
0

(
exp

(∫ t

ξ0t

f(ν)
ν

dν
)
− 1
)
.

Note that

lim
t→0+

f(ts)
s

= 0 and lim
t→0+

f(ts)
f(t)s

= sη−1

uniformly with respect to s ∈ [1, ξ0] or s ∈ [ξ0, 1]. So,

lim
t→0+

∫ t

ξ0t

f(ν)
ν

dν = lim
t→0+

∫ 1

ξ0

f(ts)
s

ds = 0

and

lim
t→0+

∫ 1

ξ0

f(ts)
f(t)s

ds =
∫ 1

ξ0

sη−1ds = χ,

where

χ =

{
− ln ξ0, if η = 0;
1
η (1− ξη0 ), if η > 0.

Since er − 1 ∼ r as r → 0, it follows that

g(ξ0t)
ξ0g(t)

− ξ−(γ+1)
0 ∼ ξ−(γ+1)

0

∫ t

ξ0t

f(ν)
ν

dν as t→ 0.

Hence,

lim
t→0+

(− ln t)β
(g(ξ0t)
ξ0g(t)

− ξ−(γ+1)
0

)
= ξ
−(γ+1)
0 lim

t→0+
(− ln t)βf(t) lim

t→0+

∫ 1

ξ0

f(ts)
f(t)s

ds = σ4.

�

Lemma 2.15. Let g satisfy (H3)-(H4) and φ be the solution to the problem∫ φ(t)

0

ds

(g(s))1/3
= t, ∀t > 0.

Then
(i) φ′(t) =

(
g(φ(t))

)1/3, φ(t) > 0, t > 0, φ(0) = 0 and

φ′′(t) =
1
3
(
g(φ(t))

)− 1
3 g′(φ(t)), t > 0;

(ii) φ ∈ NRV Z 3
3+γ

;
(iii) φ′ ∈ NRV Z− γ

3+γ
;

(iv) limt→0+
ln(φ(t))

ln t = 3
3+γ and limt→0+

ln(g(φ(t)))
− ln t = 3γ

3+γ ;

(v) limt→0+
ln t

ln(φ(K4/3(t)))
= Ck(γ+3)

4 , if k ∈ Λ;
(vi) limt→0+(− ln t)β t

φ(K4/3(t))
= 0, if k ∈ Λ and Ck(γ + 3) > 4.
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Proof. By the definition of φ and a direct calculation, we can prove (i).
(ii) Let u = φ(t), by Lemma 2.13, we have

lim
t→0+

tφ′′(t)
φ′(t)

=
1
3

lim
t→0+

tg′(φ(t))(
g(φ(t))

) 2
3

= lim
u→0+

((
g(u)

)1/3)′ ∫ u

0

ds(
g(s)

)1/3 = − γ

γ + 3
,

and

lim
t→0+

tφ′(t)
φ(t)

= lim
t→0+

t
(
g(φ(t))

)1/3
φ(t)

= lim
u→0+

(
g(u)

)1/3
u

∫ u

0

ds(
g(s)

)1/3 =
3

γ + 3
,

i.e., φ′ = g ◦ φ ∈ NRV Z− γ
γ+1

and φ ∈ NRV Z 1
γ+1

and (iii) follows.
(v) Since K ∈ NRV ZC−1

k
and φ ∈ NRV Z3/(γ+3), we see by Proposition 2.5 (iii)

that (v) holds.
(vi) By (iv) and Proposition 2.6, φ ◦K4/3 ∈ NRV Z4/(Ck(γ+3)) and t

φ(K4/3(t))
∈

NRV ZCk(γ+3)−4
Ck(γ+3)

. Since Ck(γ + 3) > 4, (vi) follows by Proposition 2.5 (ii). �

Lemma 2.16. Suppose that (H1)–(H5) are satisfied, and Ck(γ+3) > 4. If k ∈ Λ1,β,
η > 0 in (H5) and φ is the solution of the problem∫ φ(t)

0

ds

(g(s))1/3
= t, ∀t > 0,

then
(i)

lim
t→0+

(− ln t)β
(K4/3(t)φ′′(K4/3(t))

φ′(K4/3(t))
+

γ

γ + 3

)
= 0;

(ii)

lim
t→0+

(− ln t)β
(g(ξ0φ(K4/3(t)))
ξ0g(φ(K4/3(t)))

− ξ−(γ+1)
0

)
= 0.

Proof. (i) By the definition of φ, Lemma 2.14 (iii) and Lemma 2.15 (iv), we arrive
at

lim
t→0+

(− ln t)β
(K4/3(t)φ′′(K4/3(t))

φ′(K4/3(t))
+

γ

γ + 3

)
= lim
t→0+

(− ln t)β
(((

g(φ(K4/3(t)))
)1/3)′ ∫ φ(K4/3(t))

0

ds

g(s)
+

γ

γ + 3

)
= lim
t→0+

(− lnφ(K4/3(t)))β
((
g1/3(φ(K4/3(t)))

)′ ∫ φ(K4/3(t))

0

ds(
g(s)

)1/3 +
γ

γ + 3

)
× lim
t→0+

( ln t
lnφ(K4/3(t))

)β
= 0.

(ii) By Lemma 2.14 (iv) and Lemma 2.15 (iv), we infer that

lim
t→0+

(− ln t)β
(g(ξ0φ(K4/3(t)))
ξ0g(φ(K4/3(t)))

− ξ−(γ+1)
0

)
= lim
t→0+

(− ln(φ(K4/3(t))))β
(g(ξ0φ(K4/3(t)))
ξ0g(φ(K4/3(t)))

− ξ−(γ+1)
0

)
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× lim
t→0+

( ln t
lnφ(K4/3(t))

)β
= 0.

�

Lemma 2.17. Suppose that (H1)–(H5) are satisfied, and Ck(γ + 3) > 4. If η = 0
in (H5), (H6) holds and φ is the solution to the problem∫ φ(t)

0

ds

(g(s))1/3
= t, ∀t > 0,

then

(i)

lim
t→0+

(− ln t)β
(K4/3(t)φ′′(K4/3(t))

φ′(K4/3(t))
+

γ

γ + 3

)
= − A3σ

(γ + 3)2
;

(ii)

lim
t→0+

(− ln t)β
(g(ξ0φ(K4/3(t)))
ξ0g(φ(K4/3(t)))

− ξ−(γ+1)
0

)
= −A3σξ

−(γ+1)
0 ln ξ0,

where A3 = 4−β(Ck(3 + γ))β.

Proof. (i) By the definition of φ, Lemma 2.14 (iii) and Lemma 2.15 (iv), we find
that

lim
t→0+

(− ln t)β
(K4/3(t)φ′′(K4/3(t))

φ′(K4/3(t))
+

γ

γ + 3

)
= lim
t→0+

(− ln t)β
(((

g(φ(K4/3(t)))
)1/3)′ ∫ φ(K4/3(t))

0

ds(
g(s)

)1/3 +
γ

γ + 3

)

= lim
t→0+

(− lnφ(K4/3(t)))β
(((

g(φ(K4/3(t)))
)1/3)′ ∫ φ(K4/3(t))

0

ds(
g(s)

)1/3 +
γ

γ + 3

)
× lim
t→0+

( ln t
lnφ(K4/3(t))

)β
= − A3σ

(γ + 3)2
.

(ii) By Lemma 2.14 (iv) and Lemma 2.15 (iv), we obtain that

lim
t→0+

(− ln t)β
(g(ξ0φ(K4/3(t)))
ξ0g(φ(K4/3(t)))

− ξ−(γ+1)
0

)
= lim
t→0+

(− lnφ(K4/3(t)))β
(g(ξ0φ(K4/3(t)))
ξ0g(φ(K4/3(t)))

− ξ−(γ+1)
0

)
lim
t→0+

( ln t
lnφ(K4/3(t))

)β
= −A3σξ

−(γ+1)
0 ln ξ0.

�
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3. Proofs of main results

In this section, we prove Theorems 1.1 and 1.2. First we need the following
result.

Lemma 3.1 (The comparison principle [6, Lemma 4.3]). Suppose that f : Ω×R→
R is continuous, f(x, t) is non-decreasing in t. Assume further that f has one sign
(either positive or negative ) in Ω× R. If u, v ∈ C(Ω̄) are such that

∆∞u ≥ f(x, u), ∆∞v ≤ f(x, v), u ≤ v on ∂Ω,

then u ≤ v in Ω.

3.1. Proof of Theorem 1.1. Fix ε > 0. For any δ > 0, we define Ωδ = {x ∈ Ω :
0 < d(x) < δ}. Since Ω is C2-smooth, choose δ1 ∈ (0, δ0) such that d ∈ C2(Ωδ1)
and

|∇d(x)| = 1, ∆d(x) = −(N − 1)H(x̄) + o(1), ∀x ∈ Ωδ1 . (3.1)

where, for x ∈ Ωδ1 , x̄ denotes the unique point of the boundary such that d(x) =
|x− x̄| and H(x̄) denotes the mean curvature of the boundary at that point.

If h is a C2-function on (0, δ1), a simple computation shows that

∆∞h(d(x)) = (h′(d(x)))2h′′(d(x)).

Let

w± = ξ0φ(K4/3(d(x)))
(
1 + (A0 ± ε)(− ln(d(x)))−β

)
, x ∈ Ωδ1 .

By the Lagrange mean value theorem, we obtain that there exist λ± ∈ (0, 1) and

Φ±(d(x)) = ξ0φ(K4/3(d(x)))
(
1 + λ±(A0 ± ε)(− ln(d(x)))−β

)
such that for x ∈ Ωδ1 ,

g(w±(x))

= g(ξ0φ(K4/3(d(x)))) + ξ0(A0 ± ε)φ(K4/3(d(x)))g′(Φ±(d(x)))(− ln(d(x)))−β .

Since g ∈ NRV Z−γ , by Proposition 2.3, we obtain

lim
d(x)→0

g(ξ0φ(K4/3(d(x))))
g(Φ±(d(x)))

= lim
d(x)→0

g′(ξ0φ(K4/3(d(x))))
g′(Φ±(d(x)))

= 1.

Define r = d(x) and

I1(r) = (− ln r)β
(

(
4
3

)4K
4/3(r)φ′′(K4/3(r))
φ′(K4/3(r))

+ (
4
3

)3K(r)k′(r)
k2(r)

+
g(ξ0φ(K4/3(r)))
ξ3
0g(φ(K4/3(r)))

+
4
9

(
4
3

)2
)
,

I2±(r) = 3(A0 ± ε)
(

(
4
3

)4K
4/3(r)φ′′(K4/3(r))
φ′(K4/3(r))

+ (
4
3

)3K(r)k′(r)
k2(r)

+
1
3
ξ−2
0

g′(Φ±(r))
g′(ξ0φ(K4/3(r)))

φ(K4/3(r))g′(ξ0φ(K4/3(r)))(
φ′(K4/3(r))

)3 +
4
9

(
4
3

)2
)

;
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I3±(r) = (
4
3

)2β(A0 ± ε)2(− ln r)−β
(
(A0 ± ε)(− ln r)−β + 3

)
×
(

(
4
3

)2K
4/3(r)φ′′(K4/3(r))
φ′(K4/3(r))

+
4
3
K(r)k′(r)
k2(r)

+
4
9

)
+ 2(

4
3

)3 K(r)
rk(r)

r2(− ln r)−1
(
1 + (A0 ± ε)(− ln r)−β

)
;

I4±(r) = (
4
3

)2(A0 ± ε)β
(
1 + (A0 ± ε)(− ln r)−β

)2 φ(K4/3(r))
K4/3(r)φ′(K4/3(r))

K(r)
rk(r)

×
(

(A0 ± ε)
K(r)
rk(r)

+
2
3

(− ln r)−1
(

4
K4/3(r)φ′′(K4/3(r))

φ′(K4/3(r))

+ 1 +
16K(r)k′(r)

3(k(r))2

))
+ ξ−2

0 (A0 ± ε)(B0 ± ε)r
g′(Φ±(r))

g′(ξ0φ(K2(r)))
φ(K2(r))g′(ξ0φ(K2(r)))

(φ′(K2(r)))3 ;

I5±(r) = (A0 ± ε)2β2(− ln r)−β−2
(
1 + (A0 ± ε)(− ln r)−β

)
×
( φ(K4/3(r))
K4/3(r)φ′(K4/3(r))

)2((K(r)
k(r)

)2((
4
3

)3K
4/3(r)φ′′(K4/3(r))
φ′(K4/3(r))

+
4
9

+
4K(r)k′(r)

3(k(r))2

)
− 8

3
(K(r)
rk(r)

)3 +
8
3

(β + 1)
(K(r)
rk(r)

)3(− ln r)−1
)

+ ξ−3
0 r

g(ξ0φ(K4/3(r)))
g(φ(K4/3(r)))

;

I6±(r) = (A0 ± ε)3β3(− ln r)−2β−3
( φ(K4/3(r))
K4/3(r)φ′(K4/3(r))

)2(K(r)
rk(r)

)3
×
(8

3
+
(
(β + 1)(− ln r)−1 − 1

) φ(K4/3(r))
K4/3(r)φ′(K4/3(r))

K(r)
rk(r)

)
.

By (2.1), (2.6), Lemmas 2.12, 2.15 and 2.16, combining with the choices of ξ0, A0

in Theorem 1.1, we obtain the following lemma.

Lemma 3.2. Suppose that (H1)–(H5) are satisfied, and Ck(γ+ 3) > 4. If k ∈ Λ1,β

and η > 0 in (H5), then

(i) limr→0 I1(r) = − 4
3D1k;

(ii) limr→0 I2±(r) = ( 4
3 )3(A0 ± ε)(4− Ck(γ + 3));

(iii) limd(x)→0 I3±(r) = limd(x)→0 I4±(r) = limd(x)→0 I5±(r) = limd(x)→0 I6±(r)
= 0;

(iv) limd(x)→0 (I1(r) + I2±(r) + I3±(r) + I4±(r) + I5±(r) + I6±(r))
= ±( 4

3 )3ε(4− Ck(γ + 3)).

Proof of Theorem 1.1. Let v ∈ C(Ω̄) be the unique solution of the problem

−∆∞v = 1, v > 0, x ∈ Ω, v|∂Ω = 0. (3.2)

By [6, Theorem 7.7], we see that

c1d(x) ≤ v(x) ≤ c2d(x), ∀x ∈ Ω near ∂Ω. (3.3)

where c1, c2 are positive constants.
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By (H1), (H2), Lemma 2.12 and K ∈ C[0, δ0) with K(0) = 0, we see that there
exist δ1ε, δ2ε ∈

(
0,min{1, δ1}

)
(which is corresponding to ε) sufficiently small such

that
(i) 0 ≤ K4/3(r) ≤ δ1ε, r ∈ (0, δ2ε);

(ii) k4(d(x))(1 + (B0 − ε)d(x)) ≤ b(x) ≤ k4(d(x))(1 + (B0 + ε)d(x)), x ∈ Ωδ1ε ;
(iii) I1(r) + I2+(r) + I3+(r) + I4+(r) + I5+(r) + I6+(r) ≤ 0, for all (x, r) ∈

Ωδ1ε × (0, δ2ε);
(iv) I1(r) + I2−(r) + I3−(r) + I4−(r) + I5−(r) + I6−(r) ≥ 0 for all (x, r) ∈

Ωδ1ε × (0, δ2ε).
Now we define

ūε = ξ0φ(K4/3(d(x)))
(
1 + (A0 + ε)(− ln(d(x)))−β

)
, x ∈ Ωδ1ε .

Then for x ∈ Ωδ1ε ,

g(ūε(x))

= g(ξ0φ(K4/3(d(x)))) + ξ0(A0 + ε)φ(K4/3(d(x)))g′(Φ+(d(x)))(− ln(d(x)))−β ,

where λ+ ∈ (0, 1) and

Φ+(d(x)) = ξ0φ(K4/3(d(x)))
(
1 + λ+(A0 + ε)(− ln(d(x)))−β

)
, x ∈ Ωδ1ε .

By Lemma 3.2 and a direct calculation (h = φ(ξ0K4/3(t))), we see that for x ∈ Ωδ1ε ,

∆∞ūε(x) + k4(d(x))(1 + (B0 + ε)d(x))g(ūε(x))

= ξ3
0

(
φ′(K4/3(d(x)))

)3
k4(d(x))(− ln(d(x)))−β

(
I1(r) + I2+(r) + I3+(r)

+ I4+(r) + I5+(r) + I6+(r)
)
≤ 0,

where r = d(x), i.e., ūε is a classical supersolution of (1.1) in Ωδ1ε . Hence, ūε is a
viscosity supersolution of (1.1) in Ωδ1ε .

In a similar way, we show that

uε = ξ0φ(K4/3(d(x)))
(
1 + (A0 − ε)(− ln(d(x)))−β

)
, x ∈ Ωδ1ε ,

is a classical subsolution of (1.1) in Ωδ1ε . Hence, uε is a viscosity subsolution of
(1.1) in Ωδ1ε .

Let u ∈ C(Ω) be the unique solution to problem (1.1). We assert that there
exists M large enough such that

u(x) ≤Mv(x) + ūε(x), uε(x) ≤ u(x) +Mv(x), x ∈ Ωδ1ε , (3.4)

where v is the solution of problem (3.2).
In fact, we can choose M large enough such that

u(x) ≤ ūε(x) +Mv(x) and uε(x) ≤ u(x) +Mv(x)

on {x ∈ Ω : d(x) = δ1ε}. By (H3) we see that ūε(x) +Mv(x) and u(x) +Mv(x) are
also supersolutions of equation (1.1) in Ωδ1ε . Since u = ūε+Mv = u+Mv = uε = 0
on ∂Ω, (3.4) follows by (H3) and Lemma 3.1. Hence, for x ∈ Ωδ1ε ,

A0 − ε−
Mv(x)(− ln(d(x)))β

ξ0φ(K4/3(d(x)))
≤ (− ln(d(x)))β

( u(x)
ξ0φ(K4/3(d(x)))

− 1
)
,

(− ln(d(x)))β
( u(x)
ξ0φ(K4/3(d(x)))

− 1
)
≤ A0 + ε+

Mv(x)(− ln(d(x)))β

ξ0φ(K4/3(d(x)))
.
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Consequently, by (3.3) and Lemma 2.15 (v),

A0 − ε ≤ lim inf
d(x)→0

(− ln(d(x)))β
( u(x)
ξ0φ(K4/3(d(x)))

− 1
)
,

lim sup
d(x)→0

(− ln(d(x)))β
( u(x)
ξ0φ(K4/3(d(x)))

− 1
)
≤ A0 + ε.

Thus, letting ε→ 0, we obtain (1.7). �

Proof of Theorem 1.2. As before, fix ε > 0. For any δ > 0, we define Ωδ = {x ∈
Ω : 0 < d(x) < δ}. Since Ω is C2-smooth, choose δ1 ∈ (0, δ0) such that d ∈ C2(Ωδ1)
and (3.1) holds. Let

w± = ξ0φ(K4/3(d(x)))
(
1 + (A1 ± ε)(− ln(d(x)))−β

)
, x ∈ Ωδ1 .

By the Lagrange mean value theorem, we obtain that there exist λ± ∈ (0, 1) and

Φ±(d(x)) = ξ0φ(K4/3(d(x)))
(
1 + λ±(A1 ± ε)(− ln(d(x)))−β

)
such that for x ∈ Ωδ1 ,

g(w±(x))

= g(ξ0φ(K4/3(d(x)))) + ξ0(A1 ± ε)φ(K4/3(d(x)))g′(Φ±(d(x)))(− ln(d(x)))−β .

Since g ∈ NRV Z−γ , by Proposition 2.3 we obtain

lim
d(x)→0

g(ξ0φ(K4/3(d(x))))
g(Φ±(d(x)))

= lim
d(x)→0

g′(ξ0φ(K4/3(d(x))))
g′(Φ±(d(x)))

= 1.

Define r = d(x) and

I1(r) = (− ln r)β
(

(
4
3

)4K
4/3(r)φ′′(K4/3(r))
φ′(K4/3(r))

+ (
4
3

)3K(r)k′(r)
k2(r)

+
g(ξ0φ(K4/3(r)))
ξ3
0g(φ(K4/3(r)))

+
4
9

(
4
3

)2
)

;

I2±(r) = 3(A0 ± ε)
(

(
4
3

)4K
4/3(r)φ′′(K4/3(r))
φ′(K4/3(r))

+ (
4
3

)3K(r)k′(r)
k2(r)

+
1
3
ξ−2
0

g′(Φ±(r))
g′(ξ0φ(K4/3(r)))

φ(K4/3(r))g′(ξ0φ(K4/3(r)))(
φ′(K4/3(r))

)3 +
4
9

(
4
3

)2
)

;

I3±(r) = (
4
3

)2β(A0 ± ε)2(− ln r)−β
(
(A0 ± ε)(− ln r)−β + 3

)
×
(

(
4
3

)2K
4/3(r)φ′′(K4/3(r))
φ′(K4/3(r))

+
4
3
K(r)k′(r)
k2(r)

+
4
9

)
+ 2(

4
3

)3 K(r)
rk(r)

r2(− ln r)−1
(
1 + (A0 ± ε)(− ln r)−β

)
;
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I4±(r) = (
4
3

)2(A0 ± ε)β
(
1 + (A0 ± ε)(− ln r)−β

)2 φ(K4/3(r))
K4/3(r)φ′(K4/3(r))

K(r)
rk(r)

×
(

(A0 ± ε)
K(r)
rk(r)

+
2
3

(− ln r)−1
(

4
K4/3(r)φ′′(K4/3(r))

φ′(K4/3(r))

+ 1 +
16K(r)k′(r)

3(k(r))2

))
+ ξ−2

0 (A0 ± ε)(B0 ± ε)r
g′(Φ±(r))

g′(ξ0φ(K2(r)))
φ(K2(r))g′(ξ0φ(K2(r)))

(φ′(K2(r)))3 .

I5±(r) = (A0 ± ε)2β2(− ln r)−β−2
(
1 + (A0 ± ε)(− ln r)−β

)
×
( φ(K4/3(r))
K4/3(r)φ′(K4/3(r))

)2((K(r)
k(r)

)2(
(
4
3

)3K
4/3(r)φ′′(K4/3(r))
φ′(K4/3(r))

+
4
9

+
4K(r)k′(r)

3(k(r))2

)
− 8

3
(K(r)
rk(r)

)3 +
8
3

(β + 1)
(K(r)
rk(r)

)3(− ln r)−1
)

+ ξ−3
0 r

g(ξ0φ(K4/3(r)))
g(φ(K4/3(r)))

;

I6±(r) = (A0 ± ε)3β3(− ln r)−2β−3
( φ(K4/3(r))
K4/3(r)φ′(K4/3(r))

)2(K(r)
rk(r)

)3

×
(8

3
+
(
(β + 1)(− ln r)−1 − 1

) φ(K4/3(r))
K4/3(r)φ′(K4/3(r))

K(r)
rk(r)

)
.

By (2.1), (2.6), Lemmas 2.12, 2.15 and 2.17, combining with the choices of
ξ0, A1, A2, A3 in Theorem 1.2, we obtain the following lemma.

Lemma 3.3. Suppose that (A1)–(A5) are satisfied, and Ck(γ+ 3) > 4. If η = 0 in
(H5), and (H6) holds. Then

(i) limr→0 I1(r) = −( 4
3 )3D1k +A2, if k ∈ Λ1,β;

(ii) limr→0 I1(r) = A2, if k ∈ Λ2;
(iii) limr→0 I2±(r) = ( 4

3 )3(A1 ± ε)(4− Ck(γ + 3));
(iv) limd(x)→0 I3±(r) = limd(x)→0 I4±(r) = limd(x)→0 I5±(r) = limd(x)→0 I6±(r)

= 0;
(v) limd(x)→0 (I1(r) + I2±(r) + I3±(r) + I4±(r) + I5±(r) + I6±(r))

= ±( 4
3 )3ε(4− Ck(γ + 3)).

Proof of Theorem 1.2. As in the proof of Theorem 1.1, suppose that

ūε = ξ0φ(K4/3(d(x)))
(
1 + (A1 + ε)(− ln(d(x)))−β

)
, x ∈ Ωδ1ε .

Then, by Lemma 3.3 and a direct calculation, for x ∈ Ωδ1ε , we have

∆ūε(x) + k4(d(x))
(
1 + (B0 + ε)d(x)

)
g(ūε(x))

= ξ3
0

(
φ′(K4/3(d(x)))

)3
k4(d(x))(− ln(d(x)))−β

(
I1(r) + I2+(r) + I3+(r)

+ I4+(r) + I5+(r) + I6+(r)
)
≤ 0,

where r = d(x), i.e., ūε is a classical supersolution of equation (1.1) in Ωδ1ε . Hence,
ūε is a viscosity supersolution of equation (1.1) in Ωδ1ε .

In a similar way, we show that

uε = ξ0φ(K4/3(d(x)))
(
1 + (A1 − ε)(− ln(d(x)))−β

)
, x ∈ Ωδ1ε ,
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is a classical subsolution of (1.1) in Ωδ1ε . Hence, uε is a viscosity subsolution of
(1.1) in Ωδ1ε .

As in the proof of Theorem 1.1, for x ∈ Ωδ1ε , we obtain

A1 − ε−
Mv(x)(− ln(d(x)))β

ξ0φ(K2(d(x)))
≤ (− ln(d(x)))β

( u(x)
ξ0φ(K2(d(x)))

− 1
)
,

(− ln(d(x)))β
( u(x)
ξ0φ(K2(d(x)))

− 1
)
≤ A1 + ε+

Mv(x)(− ln(d(x)))β

ξ0φ(K2(d(x)))
.

Consequently, by (3.3) and Lemma 2.15 (v),

A1 − ε ≤ lim inf
d(x)→0

(− ln(d(x)))β
( u(x)
ξ0φ(K2(d(x)))

− 1
)
,

lim sup
d(x)→0

(− ln(d(x)))β
( u(x)
ξ0φ(K2(d(x)))

− 1
)
≤ A1 + ε.

Thus letting ε→ 0, we obtain (1.9). The proof is complete. �
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