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ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO A SYSTEM OF
SCHRODINGER EQUATIONS
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Commumnicated by Dung Le

ABSTRACT. This article concerns the behaviour of solutions to a coupled sys-
tem of Schrodinger equations that has applications in many physical problems,
especially in nonlinear optics. In particular, when the solution exists globally,
we obtain the growth of the solutions in the energy space. Finally, some con-
ditions are also obtained for having blow-up in this space.

1. INTRODUCTION

In this work, we consider the following initial value problem (IVP) for two cou-
pled nonlinear Schréodinger equations (NLS):

e+ o+ (aful? -+ Blulo] ) = 0,
vy + Av + (afv* + Blv]?|u|1T?)v = 0, (L.1)
u(x,0) = ug(x), v(z,0) = vo(z),

where x € R®, a, B € R, p > 0 and ¢ > 0.
For 3 a real positive constant, « = 1 and ¢ = p — 1, system leads to the
model
iug 4+ Au+ (Ju* + BlulP o )u =0,
ive + Av -+ (o] + BofP~ a1y = 0,
u(z,0) =uo(x), v(z,0)=uve(x).
This problem arises as a model for propagation of polarized laser beams in birefrin-
gent Kerr medium in nonlinear optics (see, for example, [4, [16], 24] 27] B3] [36] and
the references therein for a complete discussion about the physical standpoint of
the problem). The two functions u and v are the components of the slowly varying
envelope of the electrical field, ¢ is the distance in the direction of propagation, x are
orthogonal variables and A is the diffraction operator. The case n = 1 corresponds
to propagation in a planar geometry, the case n = 2 describes the propagation in
a bulk medium and the case n = 3 represents the propagation of pulses in a bulk
medium with time dispersion. The focusing nonlinear terms in describes the

(1.2)
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dependence of the refraction index of material on the electric field intensity and
the birefringence effects. The parameter 3 > 0 has to be interpreted as the bire-
fringence intensity and describes the coupling between the two components of the
electric-field envelope.

If o and 3 are real constants and u = v, system reduces to the nonlinear
Schrodinger with double power nonlinearity.

i + Au+ (aful™ + Blul* T Ju =0,
u(x,0) = up(x).

Special case of (1.3)) is the cubic-quintic nonlinear Schrédinger equation (p =
q=1)

(1.3)

iug + Au + (afu* + Blul* )u = 0. (1.4)
This equation arises in a number of independent physics field: nuclear hydrody-
namic with Skyrme [20], the optical pulse propagations in dielectrical media of
non-Kerr type [23]. Also, it is used to describe the boson gas with two and three
body interaction [2, [3].
The equation is just one of many models of Schrodinger equations. Many
of different aspects of this model were investigated by various techniques by any
authors [10} 14} 18, 17, 19, 28, 211, 33] and references therein. In [33] was consider

iug + Au + (afulP* + BlulP? )u =0,
u(z,0) = ug(z),
with (z,t) € R® xR, n > 3 and 0 < p; < p2 < % and they proved local
and global well-posedness, they also addresses issues related to finite time blow-up,
assymptotic behaviour and scattering in the energy space H!(R™).
System ({1.1]), admits the mass and the energy conservation in the spaces L?(IR™)x
L?(R™) and H*(R™) x H'(R™) respectively. More precisely, the mass (L? norm):
M (u(t),v(t)) = |lu(t)|Z2@n) + 022 @n) = M (uo, vo), (1.6)
and the energy
B(t) :=E(u(t),v(t)) == [Vu(t)|Z2@n) + Vo) Z2n) — X (t)
:E(O) = E(UO,’U()),
are conserved by the flow of (1.1)), where
20

() = 25 [l OO ey (18)

For some remarks and proofs of conservation laws for nonlinear Schrédinger equa-
tions, we refer to [29].

Well-posedness issues and the blow-up phenomenon for the IVP has been
studied in the literature, see for example in [T11 13}, [16] 26, 27 [30, B5] and references
therein. The system has scaling, this is if v and v are two solutions from
and A > 0 then

(1.5)

(1.7)

2p+2 2p+2
w2y + W75 gy | +

n(z,t) = XPu(dz, A%t),  w(z,t) = \Po(z, N21), (1.9)
are also solutions of (|1.2]). Hence, putting
2
p =

n—2sg’
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the Sobolev space H* is invariant under the scaling (I.9). In what follows we list
some important results that are relevant in our work.
(1) Local solution: Under assumptions s > max{sg,0} and p > [s]/2, if p & Z then
the solution of the Cauchy problem , exists locally in time.
(2) Global solution: Assuming that 0 < p < 2/n, the solution of the Cauchy
problem 7 exists globally in time (see [I6], see also Theorem and Section 4
in this work).
(3) When p > 2/n, the solution of the Cauchy problem , blows-up in a finite
time for some initial data, especially for a class of sufficiently large data (see [13]
16l 26l B0] and Theorem in this work). On the other hand, the solution of the
Cauchy problem exists globally for other initial data, especially for a class of
sufficiently small data (see [IT], 16} 27]).

In [35], Xiaoguang et al. obtained a sharp threshold of blow-up solution for .
To study the blow-up threshold, they considered the stationary system

so- O 20 g o imria <o,
AR - BZPR2 g (g gRp QR =0

associated with (L.2]).
Let, s. =n/2 —1/p,

pn _
O = (?)1/4(1 1/”)\/\|Q||2L2(Rn) + | RIZ2 gy
T(u,v) := E* (u,v) M™% (u, ),
I(u,v) = ([Val oy + 1V001 72 @) 2 (lullFe gy + [0l T2 ) 572,

The following is the result proved by Xiaoguang et al. [35].
Theorem 1.1 ([30]). Let 2/n < p < A,,, where A, = 00 if n = 1,2, and A, =
2/(n —2) if n >3, and let (|z|ug, |z|ve) € L2(R™) x L*(R"). Assume that
S¢ Se
I'(uo,v0) <T(Q, R) = Y (Tp.n,6)°
then the following two conclusions are valid.

(1) If 9(ug,v9) < HQ, R), then the solution of the Cauchy problem (1.2)) exists
globally in time.

(2) If 9(ug, vo) > ¥(Q, R), then the solution of the Cauchy problem blows-
up in finite time.

In [7], they considered the initial value problem (IVP) associated with the cou-
pled system of supercritical nonlinear Schrodinger equations

iy + Au + 0y (wt)([u|?? + BlulP~v|PTHu = 0,

i + Av + O (wt) ([0 + BlofP~ ulPT)o = 0,

where 61 and 05 are periodic functions. They proved that, for given initial data
o, € HY(R"), as |w| — oo, the solution (u,v,) of IVP (L.11)) converges to the
solution (U, V) of the IVP associated with

iUy + AU + 1(00)(|U* + plU PP~ VIPTHU =0,
iVi + AV + 1(02)(|V?P + VP HU PV = 0,

(1.11)

(1.12)
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with the same initial data, where I(g) is the average of the periodic function g.
Moreover, if the solution (U, V') is global and bounded, then they also proved that
the solution (uy,,v,) is also global provided |w| > 1.

Our main result characterize the asymptotic properties of solutions of and
gives the growth of the Sobolev norm in H'.

Theorem 1.2. Let ug, vy € L?(|z|?dz)NH(R™) and u(t),v(t) be solutions of (1.1))
with t > 1, we have
(1) Ifo<p<2andp>q+1if3>00rp<q+1if3<0 then

b
I S / (IVu(z, ) + |Vo(z, t)[?) da.

And if moreover X <0 (see (1.8), e.g., « <0 and § < 0), we also have
[Vu)llzz@ny + Vo)l rz &e)

E(0) -

205\ b2 — np) (1.13)
< mi 0 _ % —np/2
< mln{(co—i— " ) p” t , E(O)},
2b0/2\  abtP(np—1) ,_
lzu(t)lzz + [z v(®)]zz < 2t(€o+ nop )+ 0 (n;) Jy /2, (1.14)
lim [ (|Vu(z,t)]* + [Vo(z, t)[*)dz = E(0), (1.15)

t—+o00

where by := by(n,p) and ¢y = co(ug,vo) are defined in (5.7) and (5.16]) respectively.
(2)If0<qg<2—-1landp<q+1lifa>0o0rp>q+1ifa<O0 then

b
BO) - fpry < [ (Vulw O + [Vo(z, ) da.

And if moreover X <0 (e.g., « <0 and 8 <0), we also have
[Vu()ll L2 @ny + Vo) L2 @n)

opl/2 b1/2(2 —n(g+1))
o : b t—n(q+1)/2 FE
< min { (CO + ’I’I,(q + 1)) n(q + 1) ’ (O)}7
op/? 4b1/2(n(q +1)—1)
Iz + o o) 2 < 2t(co + ——2 1 (ot /2,
lzu(®)lLz + lz o)z < <c° n(g+1) na+1) (1.16)

lim [ (|Vu(z,t)]* + |Vu(z,t)|?) dz = E(0),

t——+oo

where by := b1(n,q) > 0 and ¢y = co(ug,vo) > 0 are defined in (5.20) and (5.16)

respectively.

Remark 1.3. (i) The restriction ¢ > 1 in Theorem can be replaced by t > ¢,
where ¢y > 0 is any arbitrarily small constant.
(ii) Observe also that using interpolation

lull o < Ml 720 ullG, 6 € [0,1],

the theorem above also gives the growth of the Sobolev norm in H?(R"), 6 € [0, 1].
The growth of Sobolev norms, in the Schrédinger equation was studied by Bourgain
[6]. See also [31) [9] and references there.
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(iii) If np = 2 and n(q+ 1) = 2 then

%[/(U(U)|2+|J(v)\2) dm—tf(t)} —0

(see equality (5.1))) and therefore if a < 0, 8 < 0 and ug, vo € L?(|z|*>dz) then

s | s _ (0 D(lwuols + zvol2:)
ol + 2552 < oz,

22, < @+ DzwolEs + lewF.)
Lat2 —= S‘ﬁth

Our blow-up result is as follows.

Theorem 1.4. Let ug,vg € L*(|z|?dxz) N HY(R™) and u(t),v(t) be solutions of
(1.1), we have

(1) Ifnp>2andp <q+1if>00rp>qg+1if <0, then there exists
0 <T* < oo such that

lim [V =oe,  lim [Vo(t)]ze = oo,
in the following three cases:
(1) E(0) =0 and
Im/ (Tox - Vug + vox - Vug) dx < 0,

(2) E(0) <0,
(3) E(0) >0 and

2 E(0
(Im/(ﬂoz~Vuo + Toz - V) da:) > WT()/|I|2(\UQ\2+|U0|2) dx.

(2) Ifn(g+1)>2andp>q+1ifa>0o0rp<qg+1ifa<0, then there exists

0 <T* < oo such that
lim [Vu(t)z2 = oo, lim || Vo042 = oo,

in the following three cases:

(1) E(0) =0 and

Im/ (Tozx - Vug + vox - Vug) dx < 0,
(2) E(0) <0,
(3) E(0) >0 and

2 HE
(Im/(ﬂox~Vuo + Doz - V) dx) > w/|w|2(\uo|2+|vo\2)dw.

Remark 1.5. If
1. t = d 1. t =
lim [Vu(t)z2 = oo, and  lim [Vo(0)|z: = oo,
then by the energy conservation (|1.7) we have that lim;_p« X(t) = oo, and this
limit implies
i u(Dfl o~ = o0, lim [u()]o~ = oo.
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2. NOTATION

Let x = (z1,...,2z,) € R, we denote the partial derivative of u with respect to
spatial variable x; as: ug,, O,;u or %. Similarly we denote the partial derivative
: . z;

of u with respect to time variable ¢ € R as: uy, Oyu or %. All the integrals in our
work are defined on R™, in this way [ f(z)dz := [, f(z)dz. If f(x) is a function
of x € R™, the laplacian of f is denoted by

Af(z) = Zaijf(as), x=(21,...,2n).

The gradient of f is denoted by

V@)= (0uf, .., 0,f)
The product of two vectors = (z1,...,2,) € C" y = (y1,...,yn) € C" is denoted

by
n
voy= >,
j=1

and this manner |z|? = z - 7.

3. PRELIMINARY RESULTS

In this section we present important results that will be useful in the following
sections.

Lemma 3.1 (Gronwall Inequality). Let u and 3 be continuous and o and § Rie-
mann integrable functions on J = [a,b] with 6 and B nonnegative on J.
If u satisfies the integral inequality

u(t) < aft) + (5(t)/ B(s)u(s)ds, VteJ,
then

u(t) < alt) + 5(t) / " a(5)3(s) exp ( / t 5(r)B(r)dr ).

a
For a proof of the above lemma, see [I5, Theorem 11]. Observe that there are
no assumptions on the signs of the functions o and wu.

Theorem 3.2 (Existence of solutions in the energy space). Assume 0 < max{p, ¢+
1} <2/(n—2) if a <0 and 8 < 0 (focusing case), otherwise 0 < max{p,q+ 1} <
2/n. Then for any (ug,vo) € HY(R™) x H'(R™), there are Tyax > 0 and a unique
solution (u,v) € C([0, Tmax); HY(R™) x HY(R")) of satisfying (u(0),v(0)) =
(up,vp). Moreover, it holds the blow up alternatives: (i) Tinax = 00, o1 (1) Tax <
oo with

lim  ([[Vu(t)]] g2 @n) + [IVo(@)]] 2 (8n)) = 0.

t—Tmax

When (i) occurs, we say that the solution is global. When (ii) occurs, we say
that the solution blows up in finite time. The proof of this theorem is similar to
that for the Schrodinger equation and it combines Strichartz estimates with the
contraction mapping principle.
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Lemma 3.3. Let u and v be solutions of (1.1)), then

9]
at{/hn(um Vu + vz - Vv)dx}

2 — 2 n(1l
—2B(0) + o np)/(|u|2p+2+|v|2p+2) de + B(2— +q /|uv\q+2dx

p+1

Proof. Differentiating with respect to ¢ and integrating by parts we obtain

gt{/hn (ux - Vu) dx} *QIm/utx Vudxfn/lm(uut) dz,

using the first equation in we have

/Im (Tuy) de = — / |Vul|?dx + a/ |u| P2 dz + ﬁ/ Ju| T |v|* T de,
similarly

Im/utx -Vudzs = Re/Aum -Vudr + aRe/ |u|*Puz - Va dx
+ ﬁRe/ lu|? |v])*Tuz - VT da.
Using integration by parts twice, it is easy to see that
/Aux -Vudr = (n—2) / |Vul*dz — /Aﬂx -Vudz

and therefore

Re/Auaz -Vudr = @/|VU|2d5&

Integrating by parts again gives
2Re/ |u|*Puz - Vi dr = —n/ lu*PT2dx — / lul?x - V(Jul*?)dz

:_n/\u|2p+2d 2 +2 - V(Ju*P*?)de

= fn/\u|2p+2d + — /| |2P 2y

_ /\u|2p+2dx.
2p+2

Similarly,
2Re/ |u? |v]*Tuz - Va dx
= —n/ luv|T2dx — 4 / [v|7T 22 - V(Ju|7?)dx
q+2

—/\u|q+2x . V(|v|q+2)d:v

(3.3)
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Combining (3.4))-(3.7) it follows that

Im/utac -Vu
—9
S o [ = [t e

/ ]2z - (a2} de — 2 / [T+ - T (jo]+2)de

2(q + 2)
The symmetry of (1.1) in v and v and one integration by parts gives
Im/utm -Vu+ vz -Vodr

- (”;2)/(\W|2+|W|2) o o [ (2 0P 2) do (3.9)

3 [ i — 80T / L L

Now from (3.2)), (3.3 and is not hard to see that

0
o {/Im(ux -Vu+7vz - Vv)dx}
- 2/ (IVul]® + [Vo|?) da (3.10)
1
- (Ju[?P*2 + [v|*P*?) dz — nBla+1) /|uv|q+2dx.
p+1 q+2
We conclude the proof of Lemma by using the conservation law ((1.7)). O

The following Lemma is an obvious result.

Lemma 3.4. Let u and v be solutions of the coupled system (1.1)), we have
0, 9 _ 0, _
a\u| =2Im(Awu) and a|v| =2 Im(Avv). (3.11)

The following lemma will be useful to prove the asymptotic behaviour of solutions
of (L1).

Lemma 3.5. Let ug,vg € L?(|z|>dz) N HY(R™) and u(t),v(t) solutions of (1.1)),
then if 0 <t < T, we have

2 2 1/2 2 2 1/2 ‘ / /
(/m fu(z, )| da:) < (/m o da:) +2/ IVult)|dt,  (3.12)

/|x\ |v(x,t) 2dx /|x\ |v0|2dm —|—2/ (IVo(t')| p2dt’. (3.13)
Proof. Using Lemma [3.4 - we obtain
2
%/\x|2|u(t)\2dz:/|z|28|ua(tt)| dx:2/|z|21m(uAﬂ) dz, (3.14)

integrating by parts once, we have

/\x|2uAﬂdx:—2/ux-Vﬂdx—/|x\2|Vu\2d;v, (3.15)



EJDE-2017/171 SYSTEM OF SCHRODINGER EQUATIONS 9

inserting (3.15) in (3.14]) we arrive at

%/|az|2|u(ﬁ)|2 dzx = —4Im/um -Vudz = 4Im/ﬂm -Vudx. (3.16)
Let Q(t) = ||zu|| 12, then using Cauchy-Schwartz, the inequality (3.16)) implies
Q(t)? Q
U 200 < 40092, (3.17)

and from integrating, we have
Q(t) < Q(0) + Q/Ot [Vul|g2dt’.
Similarly we obtain the inequality . (Il
In this article we use the operators J and L defined by

Jw = e“I|2/4t(2it)V(e*i|I|2/4tw) = (x4 2itV)w, Lw = (i0; + A)w.
With this notation the system (1.1]) is

Lu = —F(u,v) = —(a|ul* + Blu|?|v|7?)u,

(u,0) = ~(alul* + Blufto]*) 19
Lv=—F(v,u).

We note that (see Remark after proof Theorem [3.8).
J(Lu) = L(Ju) (3.19)

Lemma 3.6. Let u and v be solutions of coupled system (L.1)), then we have

Im(/J(|u‘2pu) .ﬁd:c) = —Wt/mppwda&

2 9
B (p+1)&{t2/|”|2p+2 dx}’

Im(/J(|v|2pv) .ﬁdaz) = —Wt/|v|2p+2d$

2 0
ot [ b

Proof. Using the definition of J, the scalar product of vectors and differentiating
gives

J(|ul*u) - Ju
= |22|u?PT? = 2it|u|*Puzx - VT + 2itaV (jul*Pu) - x + 4>V (|u|*Pu) - Va
= |22 + 2it|u|*z - (@Vu — uVa) + 2it|u*V(|u*) - x

+ 482 |u|?P|Vu|? + 4t*uV (Ju|??) - VT,

taking the imaginary part we have
Im (J(Jul*Pu) - Ju) = 2t[ul*V([u[*?) - 2 + 4t Im (uV (Ju|*).Va)

3.20
:Qt%V(MzP*z) -z + 42 Im (uV(Ju|??).VT), (8:20)
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and after integration over R™, we obtain

Im / T(|ulPu)Tu dz

of (3.21)
= i/V(|u|2p+2) ~xdx+4t21m/uV(|u|2p).Vﬂ)dz
p+1
Integrating by parts, we have
/V(|u|2p+2) cxdr = —n/ lu|?P+2 da,
/uV(|u\2p).Vﬂ: —/|u|2p|Vu|2dx—/|u|2puAﬂdx.
Substituting into the equation (3.21)) and applying Lemma we arrive at
— 2t
Im/J(\u|2pu)Juda:——ﬂ/| |?PF2 do — 4t2/|u|2plm(Auu) dx
2t
S /|u|2’1>+2 dx—2t2/|u|2p—\u|2dx
pt1 ot
2tpn 2pt2 2t2 / 0, 9p49
=—— dx — —|u*P*2d
p—i—l/'ul . p+1 8t|u| -
we conclude the proof by observing that
0 0
29 2p+2) — D (421,120+2) _ of ||2P+2.
o (uPr2) = = (PJulrt2) — 2t
|

Lemma 3.7. Let u and v be solutions of coupled system (L.1)), then we have

Im(/J(|u|q|v|q+2u) .EC@ +1m(/J(|v|Q|u\q+2v) .ﬁdz)
_At(nlg+1)-2)

(3.22)
_ nlg+1) q+2 4 O0fp g+2
= .2 /|uv| dx — +2(,%{15 (Juvl )dm}
Proof. From the definition of J we have
J(|ul?|o| 7 2u) = |ul?|v| T 2ux + 20tV (|Ju|?]v]TTu), (3.23)

making the scalar product of (3.23) with Ju = 2w — 2itVu and differentiating gives

J(Jul?o]™"?u) - Ju
= |2[2|u|?v|TT2|u)? — 2it|u|?|v|TPur - VT + 2itax - V(Ju|?v]|Tu)
+ 482V (|u|?|v|7 %) - Va
= || Ju||v] 9T ul? + 2it|ul? [v]9T% - (@YU — uVT) + 2it|u)®z - V(|u|?]v]TT?)
+ 4% Ju| |12 Vu|? 4 462u YV (|ul?|v]?1?) - Va.
(3.24)
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Taking the imaginary part of and differentiating again, we obtain
Tm(J (Ju|?[o]T"2u) - Ju)
= 2t|ul?z - V(|u|?0|9?) + 4¢% Im (u V(|ul?|v]?T?) - Va)
= 2to|7" 2z - [u*V (Ju|?) + 2tu|T2z - V(|0]7F?)
+ 4t* Im (uV (Ju|?|v|*T?) - Va)
= ol
+ 4t Im (u V(|u|?]v|7?) - V).

(3.25)
V([u|72) + 2tu|? 2z - V([v]7?)

Observe that

/uvqu|q\u|q+2)-vm= —/ |u|q\v|q+2\vu|2dx—/|u|q|v|q+2mudx,

using the Lemma [3.4] it follows that

4¢* Im/uV(|u|q|v|q+2) -Vudr = —4:1?2/|u|q\v|q'*'2 Im (Avv) dx

:f2t2/|v\q+2|u|qg|u|2da¢ (3.26)
4t2
1w 7520 2
q+2

Combining (3.25)), (3.26) and integrating by parts in R"™, it is not difficult to see
that

/Im(J(\u|q|v|q+2u) Tu)dz + /Im(.](|v|q|u|q+2) To)da
2tq g+2 / 0+2) gy 4t? / 7+2)
P - V(uv|?™)de + 2t [ z-V(Juv] py uv|
At 1) 4¢2
= dtnfg +1) /|uv\q+2 dx — / (juv|?™?) d
q+2 ot

the proof of lemma follows using the following identity

dx

5 0 0
q+2\ __ 2 q+2 q+2
875 (Juv|??) = o (% Juv]®h?) — 2t ju |72

t
Theorem 3.8 (Pseudo-Conformal Law). Let u and v be solutions of the coupled
system (1.1)), then

9 2 2 dat? 2(p+1) 2(q+1)
{1+ 102 - (p+1)/[|u| + 2@+ gy
83t2

— (q+2)/|uvq+2dx}

o 2 (3.27)
_ zonp — 2(p+1) 2(¢+1) | g
e

83t .
+ (q+2)[(Q+1)n2]/uv| 2 de.




12 X. CARVAJAL, P. GAMBOA, S. NECASOVA, H. H. NGUYEN, O. VERA EJDE-2017/171

Proof. From (3.18]) and (3.19]), we obtain
L(Ju) = J(Lu) = —aJ (Ju|*u) — BJ(Ju|?|v|7"?u) (3.28)
and by the definition of L, we have

i%(J”) + A(Ju) = —ad ([uPu) — BT (|Jul|v|?w). (3.29)

Computing the scalar product of (3.29) with Ju, taking two times the imaginary
part, after integration in R™, we obtain

%/|Ju(m)\2dx—21m/|V(Ju(x))\2dx

(3.30)
= —2aIm/J(|u|2pu) ~Judz — 2ﬁIm/J(|u\q\v\q+2u) ~Judz.
Therefore,
9 >
i |Ju(x)|* dx
(3.31)
_ —2aIm(/ J(|ul2Pu) - Tu dz) —zmm(/ J(lul?[o]™20) - T dz).
Similarly,
%/uv(az)ﬁdx
(3.32)

= —QOzIm(/ J(|[v]*Pv) - Jvda) — 261111(/ J(|v|?|u|TT%0) - Jvdz).
Adding (3.31)) and (3.32)) and applying the lemmas and [3.7] we completes the
proof. (Il

Remark 3.9. Let u € S(R™), we consider the multiplication differential operator
Pu(§) = > qeu(e), €eRrn, (3.33)
1=1

where (§ € R and the multi-index 6; = (Hf)jzl,myn € (Z*)™. In order for the
differential operators
L=0,—iP, J=z+1tQ, zeR"

to commute, where @) is also a multiplication differential operator, it is easy to see
that we need

Q(u) = i(P(zu) — xP(u)) = i(P(zju) — 2;P(u))j=1, n;

3.34
z = (2;)j=1,..n € R" ( )
and using properties of Fourier transform we have
Quie) = (Yasje" ~a®) | . ceRr", (3.35)
1=1 Then
J
where the canonical unit vector is e; = (0,...,0,1,0,...,0). Observe that in this

case J also commutes with cL for any constant ¢ € C and reciprocally L commutes
with ¢J for any constant ¢ € C.
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In our case, if we consider
n
Pu=Au= Pu(¢) =Y &(¢),
1=1

and by definition of @ (see (3.35])) we obtain
Qu(&) = — (2€979a(E)),_, = —260(E),

and therefore
Qu = 2iVu.
In the case n = 1, considering the operator 9; + 92**1 z € R, then

Pu(g) = (-G, £eR,
and Qu(¢) = (—1)"+1(2k + 1)€267(¢), thus
Qu = (—1)k(2k + 1) u,
in the particular case k = 1 (KdV equation), we obtain J = x — 3t92.

4. A PRIORI ESTIMATES IN H}(R") x H'(R")

Here we will give conditions about of the global existence. We begin with the
well-known result: The Gagliardo-Nirenberg inequality.

Lemma 4.1. Let f : R" — R. Fiz1 < gq,r < 0o and a natural number m. Suppose
also that a real number A\ and a natural number j are such that

1 5 1 1- A '
Sl oD =2 ad L<a<t
p on roon q m

Then

(1) every function f : R™ — R that lies in LY(R™) with mth derivative in
L™ (R™) also has jth derivative in LP(R™);
(2) furthermore, there exists a constant C depending only on m,n,j,q,r and A

such that ‘
1D fllee < CID™ FlIZ- I Fll 7 (4.1)
In the particular case j =0, r = ¢ = 2 and m = 1, we have
1£llze < CIDAIZ=IFIL (4.2)
where )
Og)\::)\(r):(rgi)ngl.
T
Considering the energy equation (1.7]), we can to obtain an “a priori” estimate for
IVu(®) | 22@n) + V)22 @) (4.3)
if (2p+2)A(2p+2) <2and (4+29)\(4+2q) <2, ie. if
2 2
O<p<—, O0<g<——1, (4.4)
n n
or if 5
O < p S ﬁa and 6 S Oa
or if

2
0<g<—-—1, and a<0,
n
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where in the equality, we obtain “a priori” estimate only to |lugllzz < C and
lvollz2z < C (small data).
We observe that if X <0, then from (1.7) it follows that

/ (IVu(z,t)]* + |Vo(z,t)[*) de < E(ug,vo), Vt > 0. (4.5)

In the next section we will see that in some cases when X < 0, we can also get us
a better asymptotic growth to (4.3)).

5. ASYMPTOTIC GROWTH IN THE ENERGY SPACE

In this section we prove Theorem [I.2] From Theorem [3.§ we obtain

38,5[/(“( 1?4+ [T (v)]?) dx_tf(t)}

4t -2 8t 1) —2]
MO0 22) [lypsa g 2 gy SRCED I [y pjoseg,,
p

where the function

(5.1)

4ot 84t 2
ft) =4tX(t) = 7/ w2 4 2D g / wo|T? dz. (5.2
() = 42(t) = 2 [ [P0 o0V e 2o [ w2 (5.2)
We consider two cases.

Case I: If
p>q+1 if >0,
Bn(g+1) < fBnp<= < or
p<qg+1 if g <0.

In this case

and implies
0 ) ,
at{/(lJ( )2+ 17 (v)[?) dx—tf(t)]

< W/|u|2p+2+|v|2p+2 Stﬁ np 2) /\uv|q+2dx (5:3)
p

— (np—2)(2).

Integrating the inequality above,

/ﬂﬂ@ﬁ+¢ﬂwﬁﬁhftﬂw

8tf[n(g +1) — 2] < 8tB(np — 2),

<ag+ (np — 2)/0 f(t)Hat (5.4)

1 t
<t =2 [ F)a+ o= [ r@)ar
where
a0 = [ Jaf (@) + foo(z)?) dz, (5:5)

which gives
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where .
bo = bo(.p) i=ao + (np —2) [ (2t
The Gronwall inequality in with np < 2, impli(;s
F(t) < bge™ JL(mp=2)/tdt" _ py2=mp 4 > q
From the conservation of energy we deduce
/ (IVul?> + |Vol?) dz = E(0) + ==
and from and it follows that

/ (IVul® + |Vol*) dz > E(0) — bo >1

1 U2

15

On the other hand, if f(t) = 4tX(t) < 0 (e.g. @ < 0and 8 < 0) the above inequality

and (4.5)) imply (1.15)). and from inequalities (5.4)-(5.8]) we obtain

I+ P e+ 0] <o+ 2 - ) [ 20

=bot> ™ ifnpp<2andt>1.

dt’

By the definition of J it follows that
|J(u)* = |2} |ul* + 42| Vu|?* — 4t Im Tz - V.

Hence if np < 2, using Cauchy-Schwartz we obtain
/|w\2 (|u|2 + |v|2) dx + 42 / (|Vu|2 + |VU|2) dx

< bt? TP 4 4t/1mﬂx - Vudx + 4t/1m5:1c -Voudz
< bot* P+ dt|w ul| g2 ||Vl 2 + 4tz 0| 12| V0l 2,
and from we have
(lzull g2 = 26 Vul|2)* + (|2 vl 2 — 26 Vol 2)* < bo >,
and consequently
2t (IIVull g2 + 1V0]l2) < [lzullzz + ooz + 265 "2/,

therefore, using Lemma [3.5] we obtain

(5.10)

(5.11)

(5.12)

(5.13)

t
2t (||Vul| L2 + Vol 12) < 260/ 2772 4+ ag + 2/ (IVull g2 + |Voll2) dt'. (5.14)
0

Let W(t) = ||[Vu(®)|lzz + [[Vv(t)| 2, the above inequality gives

t
W(t) < by 2t =me/2 4 % +/ W(t")dt!
0
_41/2 1—np/2 ao
=b/?t + =+
2 0

1
= b/ PP e / (ﬂ) YW )dt,

1

t
W(t")dt' + / W(t")dt'
1

1
t

(5.15)
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where

1
co = % +/ W(t)dt', (5.16)
0

and ag as defined in (5.5)), and by Gronwall’s inequality (see Lema, we concludes
that if np < 2 and ¢t > 1, then

t

k 1 1
tW(t) < bé/Qtl—np/Z T o +/ (b(l)/Ztll—np/Q +CO) PGXP{/ il

1 v T

dr}dt’

; (5.17)
< by/HPI2 gy t/l (b(l)/Qt’l’”p/Q + co) ﬁdt
Consequently, if np < 2 and t > 1 we estimate W(t) by
opl/2 b2 (9 _
W(t) < ( 0 +CO) _ Yo ( np)t—np/Q.
np np
Using this inequality and (5.12)) is easy to verify the estimate (1.14]).
Case II: If
< 1 if 0
n(g+1) > anp < pP=a+t ?a> ’
p>q+1 if a < 0.
In this case
dtan(q + 1) — 2] > dta(np — 2),
and (5.1]) implies
0]
21 I@P +17@P) do - t0]
S 4ta[ (q+ /| |2p+2+ |U‘2p+2 da:
p+1 (5.18)
t 1) — 2]
8 Blnlg + /|uv|q+2 dx
qg+2
=—[2=n(¢+1]f(),
and similarly as the above case we can show that if n(g + 1) < 2, then
t
/ (IVul® + |Vo|?) dz = E(0) + %)
) (5.19)
1
_E(O)—W, t>1,
where
1
b = b1(7’L, q) =ap — [2 — n(q + 1)]/ f(t/)dt/. (520)
0

Similarly as in Case I, if f(t) = 4tX () < 0, from the inequalities above we obtain

t 12—n(g+1)
/(|J(u)|2 + ()] dx + [Lf ()] < by + (2= nlq + 1))/1 bltti ’ (5.21)

= b t> @D i p(g4+1) <2and t > 1.
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Let W(t) = ||Vu(t)||z2 + || Vv(t)] 2, as in Case I, we obtain
tW(t)

t 1 ‘1
< b}/Qtl_n(q-H)/Q + o+ / (b}/Qtll_"(q-H)/Z + CO) m exp { / fdr}dt' (5.22)
1 g T .

t
Sl)}/2t17n(q+1)/2<FCO4>t/ (bi/Qtllfn(q+1)/2+CO> t%dt/
1

Consequently, if n(¢+ 1) < 2 and ¢t > 1 we estimate W(t) by
2b1/? b/%(2 = n(g+1))
W(t) < (; 4 ) _ A p—me+1)/2,
W= Ggrn T n(g+1)
Finally using this inequality and (5.12) is easy to verify the estimate (1.16)).
Corollary 5.1. Let
P(t) = [lzu®)||72 + lzv®)ll7z, W) = [[Vu®)lz: + [Vo@)l|Z..

Then: (i) If E(0) > 1 is large and P(0) < 1 is very small, then in the right side
of (1.13)) we have

Qbé/2 B 63/2(2 —np)
np np

(i) With the conditions of Theorem|1.9, i.e. ifnp <2 andp >q+14if B3>0 or
p<qg+1ifB<0and X <0 (see (L.8), e.g., « <0 and f < 0) we have

(co n /2 < B(0).

t
W (t) — 2ot~ < P(t) < 2ag + St/ W(t'dt, (5.23)
0

and similarly if n(¢g+1) <2 andp >q+1ifa>0o0rp<qg+1ifa<0 and
X <0, then

t
t2W(t) — 2bpt> ™ 9HY < P(t) < 2a0 + 8t / W (t')dt'. (5.24)

0

(iti) With the hypotheses of Theorem[1.9 item (1) we have
bo d ¢ P(t)
4 —— < —(—=). 2

W) (AL dt( t ) (5.25)
Proof. First we prove item (i): we consider X < 0 and np < 2. From energy

equation we have
E(0) = W(t) +|X ().
and therefore
W(t) < E(0) and |X(t)] < E(0). (5.26)
consequently from definition of ¢ in and Cauchy-Schwarz we obtain

cogazo+f2(/01 W(t)dt>1/2 @,

if P(0) =ap < 1 and E(0) > 1. Similarly from definition of by in (5.7) we have

< % +V2E(0)/? < (5.27)

by < ag + 4(2 — np) /01 t| X (t)|dt < ap + 2E(0)(2 —np) < 5E(0), (5.28)
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if P(0) =ap < 1 and E(0) > 1, thus
205/ 2\/513(0)1/2 _EO

5.29
o o , (529)
finally combining ([5.27)) and ( we have
2b1/2 b1/2 2 — 2b,/
(c0+ y )— o np)t‘”p/QScoJr C— < B(0).
np np np

To prove (ii), using Lemma it follows that
P(t) < 2P(0) + 8</t ||Vu(t’)||det')2 + 8(/t HVv(t’)H,ydt’)Q, (5.30)
and Cauchy-Schwarz ineqtfality gives :
P(t) <2P(0) + 8t /Ot W (t"dt', (5.31)

and this proves the side right of (5.23). On the other hand, from (5.13)) we obtain
487 (IVull gz + [Vol72) < 4l ulfs + 4l vllZa + 8bot* ",

and this inequality proves the side left of (5.23). In a similar way we prove (5.24)).
Now we prove (iii): using equality (3.16) in the first inequality from (5.11f), we
obtain

P(t) + 482 W (t) < bot®> ™™ + 4t / Imuz - Vudz + 4t / Imvz - Vodz

< bt? TP £ tP'(t),

hence
P(t) + 42W (t) < bot>~"P 4 tP'(t);

this inequality proves (5.25]). O
6. BLOW-UP IN H}(R") x H'(R")
In this section we prove Theorem Using Lemma and equality (3.16]) we

obtain
2 [P uto + o)) de

at{lm/(ux Vu + vz - Vv) dx}
_ 8E(0) I 4a(2+—1np) / (|u|2p+2 + |v|2p+2) dx

n(1l
+ 85( +q /\uv|q+2da§

We consider two cases.
Case I: If

(6.1)

p—qg<1 ifB>0,
< +1) <~
Bp<pB(qg+1) {p_q21 5 <0,

In this case
86[2 —n(g +1)] < 85(2 —np),
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and (6.1]) gives

atg/m (u(t)P? + o(0)?) da

86 (2 —
< 8E(0) + 4or(2 np)/(|u|2p+2+|,u|2p+2) dr + ﬁ( np) /|uv\q+2dx (6.2)
p+1 q+2
(np —2)f(t)
; .
From the conservation of energy (|L.7]) we deduce

L0~ 5 - [ (Vu + 90) a (6:3)

<8E(0) -

4t

therefore,

— @ < 4E(0). (6.4)

Combining (6.2)), (6.4) and that np > 2, we have

. / [P () +o(t)P) do < 4npB(0). (65)

Integrating and using we can show that

0

5 [P (aF + o)) de
(6.6)

< 4Im/ (Wox - Vug + Tz - Vug) dx + dnpE(0)t,

integrating again we obtain
[ 1P (u) +1o(0))d
< / |22 (Juo|? + |vo|*)dx + 4t Im/ (o - Vug + Doz - Vvg) dz + 2npE(0)t?

:= Ag + Bot + Cot? := Py(t).
(6.7)

It is not difficult to see that there exists a 7 > 0 such that [ |z|?(Ju(T)> +
|v(T)|?)dx = 0 in the following three cases:

(1) E(0) =0 and
Im/ (@ox - Vug + vox - Vug) dx < 0,

(2) E(0) <0,
(3) E(0) >0 and

2 E(0
(Im/(ﬂox - Vg + toz - V) dx) > npz( ) /\:U|2(|uo|2 + |vg|?)dz

Figures and [3| correspond to the cases (1), (2) and (3) above.
Now the Heisenberg inequality (Uncertainty inequality)

2
11172 < N flle=lV £llze, (6.8)
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FIGURE 1. Graph of Py(t) corresponding to case (1).

FIGURE 2. Graph of Py(t) corresponding to case (2).

FIGURE 3. Graph of Py(t) corresponding to case (3).
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implies that if the initial data uo and v satisfies (1), (2) or (3) then, there exists

0 < T™* < T such that

i [[Vu(t)z2 = o0, Tim [Vo(t)]ze = oo.
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Case II: If
- 1 if 0
alg+1) < ap = p—q~> ?a> ’
p—qg<1l ifa<O.
In this case

4a(2 — np) < 4a[2 — n(qg+ 1)],

and (6.1) gives
il n(g+1)—2)f(t
@/|33|2(\U(t)|2+|v(t)|2)dz < 8E(0) — (r( )t )f(t)
As in Case I, using (6.4) and n(q+ 1) > 2, we have
92

ETe) / |2 (lu(D)* + [u(t)[*) do < 4n(1 + q) E(0).

Integrating two times and using (3.16]) we obtain
[ PO + p(o))do
< / 2| (Juo|? + |vo|*)dx + 4tIm/ (o - Vug + oz - Vo) dz + 2n(1 + q) E(0)t?

:= Ag + Bot + Cth.

It is not difficult to see that there exists a 7' > 0 such that [ |z|?(Ju(T)* +
|v(T)|?)dx = 0 in the following three cases:

(1) E(0) =0 and
Im/ (@ox - Vug + vox - Vug) dx < 0,

(2) E(0) <0,
(3) E(0) >0 and

2 HE(O
(Im/ (woz - Vug + o - V) dx) > w / 2|2 (Juo | + |vo|?)da.

Using the Heinseberg inequality again we concludes in this case that if the
initial data ug and vg satisfies (1)—(3) then, there exists 0 < T* < T such that

i [Vu(t)z2 =00, Jim [Vo(t)]z = oo.
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