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Abstract. In this article, we develop a fully discrete finite element method
for the nonlinear Schrödinger equation (NLS) with time- and space-fractional

derivatives. The time-fractional derivative is described in Caputo’s sense and

the space-fractional derivative in Riesz’s sense. Its stability is well derived; the
convergent estimate is discussed by an orthogonal operator. We also extend

the method to the two-dimensional time-space-fractional NLS and to avoid the

iterative solvers at each time step, a linearized scheme is further conducted.
Several numerical examples are implemented finally, which confirm the theo-

retical results as well as illustrate the accuracy of our methods.

1. Introduction

The fractional calculus, as a generalization of classical integer calculus, possesses
a long history and affluent connotation, which was discovered by mathematicians
over three hundred years ago. Recently, due to their excellent properties to charac-
terize the effects of memory and long-range interaction, fractional partial differential
equations (FPDEs) have aroused keen interests among academic circles and have
also been applied broadly in various applications, examples including complex net-
work, stochastic interfaces, synoptic climatology, certain option pricing mechanism,
medical image processing, dielectric polarization, and the chaotic dynamics of non-
linear systems, etc. In virtue of the singular integral form of fractional derivatives,
however, solving FPDEs suffers more obstacles than those associated with classical
derivatives. In many cases, as we all know, the analytic solutions are unattainable
or even unrealistic for most of the mathematical models, so resorting to the efficient
numerical approaches to obtain numerical solutions turns into a preferred option.
In the past decades, much to our delight, great efforts have been devoted to this
area and numerous commonly used methods have been developed, such as finite
difference method [6, 26, 30, 34], finite element method [8, 11], spectral method
[24], adomian decomposition method [36], and variational iteration method [10]. In
general, finite difference method and finite element method are the most accepted
methods for solving FPDEs. It is noteworthy that, because of the universal mutu-
ality of these models, considering the high-dimensional space-FPDEs efficiently in
the numerical aspect appears somewhat challenging [5, 7, 27, 39, 47].
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In this work, our aim is to propose a fully discrete finite element method for the
one- and two-dimensional time-space-fractional NLS. Due to the similarity, we first
focus on the following one-dimensional model

i
∂αψ

∂tα
+

∂2βψ

∂|x|2β
+ λf(|ψ|2)ψ = 0, (x; t) ∈ Ω× (0, T ], (1.1)

with i2 = −1, real parameters λ, 0 < α ≤ 1, 1/2 < β ≤ 1, and the initial and
boundary conditions given by

ψ(x, 0) = ϕ(x), x ∈ Ω ∪ ∂Ω, (1.2)

ψ(a, t) = 0, ψ(b, t) = 0, t ∈ (0, T ], (1.3)

where Ω = (a, b), f(s) is real on R and ϕ(x) is a prescribed function. In (1.1), the
time-fractional derivative is defined in Caputo sense as follow

∂αψ(x, t)
∂tα

= C
0 D

α
t ψ(x, t) =

1
Γ(1− α)

∫ t

0

∂ψ(x, ξ)
∂ξ

dξ

(t− ξ)α
, (1.4)

and the Riesz space-fractional derivative is defined as

∂2βψ(x, t)
∂|x|2β

=
−1

2 cos(βπ)
(
D2β
L ψ(x, t) +D2β

R ψ(x, t)
)
,

D2β
L ψ(x, t) =

1
Γ(2− 2β)

∂2

∂x2

∫ x

a

(x− ξ)1−2βψ(ξ, t)dξ,

D2β
R ψ(x, t) =

1
Γ(2− 2β)

∂2

∂x2

∫ b

x

(ξ − x)1−2βψ(ξ, t)dξ.

In particular, we note (1.1) degenerates to the classical NLS, while α, β = 1, which
has been the subject of intense research in the past few decades [3, 16, 40, 41].

The time-fractional NLS was generated by Naber [32], where two kinds of differ-
ent means were utilized to perform this generalization. The time-fractional NLS,
also covering the mixed time-space-fractional NLS, have been investigated by many
authors [9, 20, 45]. For the numerical algorithms to the pure time-fractional NLS,
see [13, 31, 46] for reference. The space-fractional NLS was first raised by Laskin
[22, 23], via extending the Feynman path integral over the Brownian paths to a
new path integral over the Lévy quantum mechanical paths. Its local and global
well-posedness were studied in [15, 18]. In addition, numerous works are dedi-
cated to researching the theoretical properties for such equation in various regimes
[12, 14, 19, 38]. As to the numerical works for the space- and time-space-fractional
NLS in one-dimension, Amore et al. used an effective collocation method to solve
the space-fractional NLS [1]. Herzallah and Gepreel advised an adomian decompo-
sition method for the time-space-fractional NLS [17]. The variable-order space-
fractional NLS was considered in [2], using the Crank-Nicholson scheme. The
ground state solutions of the semiclassical fractional NLS was investigated in [21] by
a Fourier spectral method. Wang and Huang gave a second-order energy conserva-
tive finite difference method for the space-fractional NLS [44]. Wang et al. proposed
two mass conservative difference methods for the space-fractional coupled nonlin-
ear Schrödinger equations (CNLS) [42, 43]. Liu et al. presented the implicit and
explicit-implicit finite difference methods for the time-space-fractional NLS and an
implicit method for the time-space-fractional CNLS [28]. In two-dimensional case,
Zhao et al. derived a new fourth-order compact operator and applied it to construct
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a compact alternating direction implicit method for the Riesz space-fractional NLS
[49], which is linearized and validated to be stable and well convergent.

In this context, inspired by these methods in existence, we tend to propose the
finite element method to solve the one- and two-dimensional time-space-fractional
NLS, and as the character of the space-fractional NLS, some necessary properties
of fractional derivatives will be introduced for auxiliary analysis. The layout of this
article is organized as follows. In Section 2, we recall some fractional derivative
spaces and basic properties for the fractional derivatives. In Section 3, the weak
formulations are described. The fully discrete finite element method is formulated
in Section 4, and its unconditional stability is analyzed. The convergence of it is
discussed in Section 5. In Section 6, we extend the method to the two-dimensional
time-space-fractional NLS and carry out some numerical tests in Section 7.

2. Preliminaries

In this section, we present some auxiliary results related to the Riemann-Liouville
fractional derivatives. Let u, v be the real-valued functions. We employ

‖u‖L2(R) = 〈u, u〉1/2L2(R), 〈u, v〉L2(R) =
∫

R
uvdx,

and denote the norms ‖ · ‖L2(Ω) by ‖ · ‖0, ‖ · ‖Hc(Ω) by ‖ · ‖c, and the inner products
〈·, ·〉L2(Ω), 〈·, ·〉L2(R) by 〈·, ·〉, with c > 0 and a subinterval Ω ⊂ R. Referring to [11],
we define the following fractional derivative spaces by the above inner product.

Definition 2.1 (Left fractional derivative space). For µ > 0, we define the left
semi-norm

|u|JµL(R) = ‖Dµ
Lu‖L2(R),

and left norm
‖u‖JµL(R) =

(
‖u‖2L2(R) + |u|2JµL(R)

)1/2
,

and let JµL(R) be the closure of C∞(R) with respect to ‖ · ‖JµL(R).

Definition 2.2 (Right fractional derivative space). For µ > 0, we define the right
semi-norm

|u|JµR(R) = ‖Dµ
Ru‖L2(R),

and right norm
‖u‖JµR(R) =

(
‖u‖2L2(R) + |u|2JµR(R)

)1/2
,

and let JµR(R) be the closure of C∞(R) with respect to ‖ · ‖JµR(R).

Definition 2.3 (Fractional Sobolev space). Let µ > 0 and F(u) be the Fourier
transform of a prescribed u(x) defined on R, i.e., F(u) =

∫
R u(x)e−iωxdx, with the

variable ω. Then, we can define the semi-norm

|u|Hµ(R) = ‖ |ω|µF(u)‖L2(Rω),

and norm
‖u‖Hµ(R) =

(
‖u‖2L2(R) + |u|2Hµ(R)

)1/2
,

and denote the closure of C∞(R) with respect to ‖ · ‖Hµ(R) by Hµ(R).

Lemma 2.4 ([11]). For µ > 0, JµL(R), JµR(R), and Hµ(R) are equivalent with the
equivalent semi-norms and norms.
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Lemma 2.5 ([11]). For µ > 0, we have the property in L2-sense

〈Dµ
Lu,D

µ
Ru〉 = cos(µπ)‖Dµ

Lu‖
2
L2(R). (2.1)

Let JµL,0(Ω), JµR,0(Ω), Hµ
0 (Ω) be the closures of C∞0 (Ω) with respect to ‖ ·‖JµL(Ω),

‖ · ‖JµR(Ω), and ‖ · ‖Hµ(Ω), respectively. Then, we have the following lemmas.

Lemma 2.6 ([48]). If 0 < β < 1, u ∈ J2β
L,0(Ω), and v ∈ J2β

R,0(Ω), then

〈D2β
L u, v〉 = 〈Dβ

Lu,D
β
Rv〉, 〈D2β

R u, v〉 = 〈Dβ
Ru,D

β
Lv〉. (2.2)

Lemma 2.7 ([11]). Let µ > 0, µ 6= n− 1/2, n ∈ N. JµL,0(Ω), JµR,0(Ω), and Hµ
0 (Ω)

are equivalent with the equivalent semi-norms and norms.

Lemma 2.8 ([11]). For µ > 0, u ∈ JµL,0(Ω), and 0 < γ < µ, we have

‖u‖0 ≤ C|u|JµL(Ω), |u|JγL(Ω) ≤ C|u|JµL(Ω), (2.3)

and for u ∈ JµR,0(Ω), 0 < γ < µ, we have

‖u‖0 ≤ C|u|JµR(Ω), |u|JγR(Ω) ≤ C|u|JµR(Ω). (2.4)

If u ∈ Hµ
0 (Ω), 0 < γ < µ, µ 6= n− 1/2, n ∈ N, the analogous result is obtained.

Remark 2.9. In two-dimensions, the fractional derivative and Sobolev spaces can
also be established and (2.1)-(2.4) still work; see [5, 37] for overall views.

3. Weak problem

At first, decompose the unknown ψ(x, t) into its real and imaginary parts by

ψ(x, t) = u(x, t) + iv(x, t).

Inserting it into (1.1)-(1.3), the original problem can be recast as a coupled system

∂αu

∂tα
+

∂2βv

∂|x|2β
+ λf(u2 + v2)v = 0,

∂αv

∂tα
− ∂2βu

∂|x|2β
− λf(u2 + v2)u = 0, (x; t) ∈ Ω× (0, T ],

with the initial and boundary values

u(x, 0) = Reϕ(x), v(x, 0) = Imϕ(x), x ∈ Ω ∪ ∂Ω,

u(x, t) = 0, v(x, t) = 0, (x; t) ∈ ∂Ω× (0, T ].

where “Re”, “Im” mean retaining the real and imaginary parts, respectively. Then,
using Lemma 2.6, we can derive the weak problem, i.e., seek u(·, t), v(·, t) ∈ Hβ

0 (Ω),
for any χ1, χ2 ∈ Hβ

0 (Ω), to solve〈∂αu
∂tα

, χ1

〉
− Λ(v, χ1) + λ〈f(u2 + v2)v, χ1〉 = 0, (3.1)〈∂αv

∂tα
, χ2

〉
+ Λ(u, χ2)− λ〈f(u2 + v2)u, χ2〉 = 0, (3.2)

u(x, 0) = Reϕ(x), v(x, 0) = Imϕ(x), (3.3)

with zero boundary values, where Λ(·, ·) takes the form

Λ(u, v) =
1

2 cos(βπ)
〈Dβ

Lu,D
β
Rv〉+

1
2 cos(βπ)

〈Dβ
Ru,D

β
Lv〉,

and ϕ(x) denotes the same initial function prescribed before.
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Theorem 3.1. The bilinear form Λ(·, ·) is symmetric and enjoys the properties
Λ(u, v) ≤ C1‖u‖β‖v‖β, Λ(u, u) ≥ C2‖u‖2β, where C1, C2 are positive constants.

The above theorem was proved in [48], by recalling Lemmas 2.5, 2.7, and 2.8.

4. Fully discrete finite element method

Let tn = nτ , n = 0, 1, . . . , N , and T = τN with a constant N ∈ Z+; we discretize
the Caputo derivative by a difference approach as follows

C
0 D

α
t w(x, tn) =

1
Γ(1− α)

n∑
j=1

∫ tj

tj−1

∂w(x, ξ)
∂ξ

dξ

(tn − ξ)α

=
1

Γ(1− α)

n∑
j=1

∂w(x, tj−1/2)
∂t

∫ tj

tj−1

dξ

(tn − ξ)α
+R1

τ

=
τ1−α

Γ(2− α)

n−1∑
j=0

bj
∂w(x, tn−j−1/2)

∂t
+R1

τ

=
τ−α

Γ(2− α)

n−1∑
j=0

bjdtw(x, tn−j) +R1
τ +R2

τ ,

where bj = (j + 1)1−α − j1−α, dtw(x, tn−j) = w(x, tn−j) − w(x, tn−j−1), and j =
0, 1, . . . , n − 1. Particularly, we assign 00 = 0 when α = 1. According to [25], the
truncated errors R1

τ , R2
τ satisfy R2

τ = O(τ2) and

|R1
τ | =

∣∣∣ 1
Γ(1− α)

n∑
j=1

∫ tj

tj−1

{∂w(x, ξ)
∂ξ

−
∂w(x, tj−1/2)

∂t

} dξ

(tn − ξ)α
∣∣∣

≤ Cτ2−α max
0≤t≤tn

∣∣∣∂2w(x, t)
∂t2

∣∣∣,
with a bounded constant C independent of τ for all α ∈ (0, 1) and n ≥ 1. If we
denote the discretized fractional operator by

Dαt w(x, tn) =
1

Γ(2− α)

n−1∑
j=0

bj
w(x, tn−j)− w(x, tn−j−1)

τα
,

then ∂αw(x,tn)
∂tα can be approximated by Dαt w(x, tn), more precisely,

∂αw(x, tn)
∂tα

= Dαt w(x, tn) +Rτ , (4.1)

where Rτ = R1
τ + R2

τ . Let Σh be a family of subdivisions of Ω, h be their grid
parameters, and Xh ⊂ Hβ

0 (Ω) be the finite element subspace, denoted as

Xh = {vh ∈ Hβ
0 (Ω) ∩ C0(Ω̄) : vh|D ∈ Pr(D), ∀D ∈ Σh},

in which, Pr(D) is the set of polynomials of degree at most r on D. Discretizing the
Caputo derivative by (4.1) and applying finite element method in space, we obtain

〈Dαt Un, χ1〉 − Λ(V n, χ1) + λ〈f((Un)2 + (V n)2)V n, χ1〉 = 0, (4.2)

〈Dαt V n, χ2〉+ Λ(Un, χ2)− λ〈f((Un)2 + (V n)2)Un, χ2〉 = 0, (4.3)
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with any χ1, χ2 ∈ Xh, U0 = Re δϕ(x), V 0 = Im δϕ(x), and Dαt wn, given by

Dαt wn =
1

Γ(2− α)

n−1∑
j=0

bj
wn−j − wn−j−1

τα
,

where wn = Un or V n, δϕ(x) is vital to the starter of (4.2)-(4.3) and thereby shall
be properly chosen. Let us introduce the parameter Gα:

Gα := ταΓ(2− α).

Regroup Dαt wn as follows

Dαt wn =
τ−α

Γ(2− α)

n−1∑
j=0

bj(wn−j − wn−j−1)

= G−1
α

(
wn −

n−1∑
j=1

(bj−1 − bj)wn−j − bn−1w
0
)
,

then (4.2)-(4.3) can be recast, i.e., seek Un, V n ∈ Xh, for χ1, χ2 ∈ Xh, such that

〈Un, χ1〉 −GαΛ(V n, χ1)

=
n−1∑
j=1

(bj−1 − bj)〈Un−j , χ1〉+ bn−1〈U0, χ1〉 − λGα〈f((Un)2 + (V n)2)V n, χ1〉,

(4.4)

〈V n, χ2〉+GαΛ(Un, χ2)

=
n−1∑
j=1

(bj−1 − bj)〈V n−j , χ2〉+ bn−1〈V 0, χ2〉+ λGα〈f((Un)2 + (V n)2)Un, χ2〉,

(4.5)

with the initial conditions

U0 = Re δϕ(x), V 0 = Im δϕ(x), x ∈ Ω ∪ ∂Ω, (4.6)

and boundary conditions

U j = 0, V j = 0, 1 ≤ j ≤ N, on ∂Ω. (4.7)

In particular, as n = 1, i.e., at the first step, (4.4)-(4.5) simply become

〈U1, χ1〉 −GαΛ(V 1, χ1) = 〈U0, χ1〉 − λGα〈f((U1)2 + (V 1)2)V 1, χ1〉, (4.8)

〈V 1, χ2〉+GαΛ(U1, χ2) = 〈V 0, χ2〉+ λGα〈f((U1)2 + (V 1)2)U1, χ2〉. (4.9)

Next, we proceed with the stability for (4.4)-(4.7). To this end, we recall some
requisite properties for bj = (j + 1)1−α − j1−α, j = 0, 1, . . . , n, which read

1 = b0 > b1 > b2 > · · · > bn > 0, bn → 0, as n→ +∞, (4.10)
n∑
j=1

(bj−1 − bj) + bn = (1− b1) +
n−1∑
j=2

(bj−1 − bj) + bn−1 = 1. (4.11)

Theorem 4.1. The method (4.4)-(4.7) is stable in the sense that

‖Un‖20 + ‖V n‖20 ≤ ‖U0‖20 + ‖V 0‖20, n = 1, 2, . . . , N.
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Proof. Let χ1 = Un, χ2 = V n in (4.4)-(4.5). It follows that

〈Un, Un〉 −GαΛ(V n, Un) =
n−1∑
j=1

(bj−1 − bj)〈Un−j , Un〉+ bn−1〈U0, Un〉

− λGα〈f((Un)2 + (V n)2)V n, Un〉,

(4.12)

〈V n, V n〉+GαΛ(Un, V n) =
n−1∑
j=1

(bj−1 − bj)〈V n−j , V n〉+ bn−1〈V 0, V n〉

+ λGα〈f((Un)2 + (V n)2)Un, V n〉.

(4.13)

The sum of (4.12) and (4.13) shows

‖Un‖20 + ‖V n‖20

=
n−1∑
j=1

(bj−1 − bj)(〈Un−j , Un〉+ 〈V n−j , V n〉) + bn−1(〈U0, Un〉+ 〈V 0, V n〉),

since Λ(Un, V n) = Λ(V n, Un). We go on with the work by the method of induction.
In the case of n = 1, using Hölder’s and Young’s inequalities, there holds

‖U1‖20 + ‖V 1‖20 = 〈U0, U1〉+ 〈V 0, V 1〉

≤ 1
2

(‖U0‖20 + ‖V 0‖20) +
1
2

(‖U1‖20 + ‖V 1‖20),

which suggests the result at the first step, i.e., ‖U1‖20 + ‖V 1‖20 ≤ ‖U0‖20 + ‖V 0‖20.
We now preset the essential hypothesis

‖Un‖20 + ‖V n‖20 ≤ ‖U0‖20 + ‖V 0‖20, n = 2, 3, . . . , p− 1, (4.14)

and begin to consider the case of n = p. Using (4.14), we obtain

‖Up‖20 + ‖V p‖20 =
p−1∑
j=1

(bj−1 − bj)(‖Up−j‖0‖Up‖0 + ‖V p−j‖0‖V p‖0)

+ bp−1(‖U0‖0‖Up‖0 + ‖V 0‖0‖V p‖0)

≤ 1
2

p−1∑
j=1

(bj−1 − bj)(‖Up−j‖20 + ‖V p−j‖20) +
1
2
bp−1(‖U0‖20 + ‖V 0‖20)

+
1
2

p−1∑
j=1

(bj−1 − bj)(‖Up‖20 + ‖V p‖20) +
1
2
bp−1(‖Up‖20 + ‖V p‖20).

Then, via (4.10)-(4.11), we easily see that

‖Up‖20 + ‖V p‖20 ≤
p−1∑
j=1

(bj−1 − bj)(‖Up−j‖20 + ‖V p−j‖20) + bp−1(‖U0‖20 + ‖V 0‖20)

≤
(

(1− b1) +
p−1∑
j=2

(bj−1 − bj) + bp−1

)
(‖U0‖20 + ‖V 0‖20)

= ‖U0‖20 + ‖V 0‖20,

and hence, the method is unconditionally stable, which proves the theorem. �
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5. Convergent analysis

In this part, we describe the error estimate for (4.4)-(4.7). Define a Ritz projec-
tion Πh : Hβ

0 (Ω) 7→ Xh, via the orthogonal relation

Λ(u−Πhu, vh) = 0, ∀vh ∈ Xh. (5.1)

Then, relying on [4, 8], for a ε ∈ (0, 1/2), the following lemma is admitted.

Lemma 5.1. If u ∈ Hβ
0 (Ω) ∩Hr+1(Ω) and ε ∈ (0, 1/2), then

‖u−Πhu‖0 ≤ Chr̃+1‖u‖r+1,

where if β 6= 3/4, r̃ = r and if β = 3/4, r̃ = r − ε; C is independent of h.

Lemma 5.2. Let εj ≥ 0, R ≥ 0, j = 0, 1, . . . , N , and satisfy

εn ≤
n−1∑
j=1

(bj−1 − bj)εn−j +R.

Then, when 0 < α < 1, we have

εn ≤ b−1
n−1R ≤ nαR/(1− α), (5.2)

and when α closes to 1, it turns to be

εn ≤ nR. (5.3)

Proof. In fact, the lemma is implicitly involved in [8, 25, 29]; here, we only underline
the process to (5.3), since it can not be directly derived from (5.2) when α→ 1. It
holds trivially as n = 1. We now suppose that

εn ≤ nR, n = 2, 3, . . . , p− 1,

and show the result remains valid at n = p. By (4.10)-(4.11), it is clear that

εp ≤
p−1∑
j=1

(bj−1 − bj)εp−j +R ≤
p−1∑
j=1

(bj−1 − bj)(p− j)R+R

≤
p−1∑
j=1

(bj−1 − bj)(p− 1)R+R ≤ pR,

in which, 1 +
∑p−1
j=1(bj−1 − bj)(p− 1) ≤ p. As a result, (5.3) is concluded. �

In the sequel we use the following notation:

∂tu = ∂u/∂t, ∂2
t u = ∂2u/∂t2, ∂αt u = C

0 D
α
t u,

and as stressed before, we select δϕ(x) = Πhϕ(x) and Reϕ(x), Imϕ(x) ∈ Hr+1(Ω)
so that the discrete system can be started; C will be regarded as a general constant
that may be different at different occasions. In the error analysis, we let ψn be the
analytic solution to the model (1.1)-(1.3) at t = tn with its real and imaginary parts
un, vn, and {Un}Nn=0, {V n}Nn=0 be the numerical solutions obtained by (4.4)-(4.7).
Also, we define ψnh = Un + iV n and the complex norm

‖ψn − ψnh‖0 =
(
‖un − Un‖20 + ‖vn − V n‖20

)1/2
, n = 0, 1, . . . , N. (5.4)

Then, with the help of mathematical induction, we state the convergent theorem.
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Theorem 5.3. Assume u, v, ∂αt u, ∂
α
t v, ∂tu, ∂tv, ∂

2
t u, ∂

2
t v ∈ L∞(0, T ;Hr+1(Ω)),

and U0 = ReΠhϕ, V 0 = ImΠhϕ. Then, for 0 < α < 1, we have

‖ψn − ψnh‖0 ≤ C(α, u, v, Tα)(τ2−α + hr̃+1), n = 0, 1, . . . , N, (5.5)

and when α closes to 1, the estimate becomes

‖ψn − ψnh‖0 ≤ C(u, v, T )(τ + hr̃+1), n = 0, 1, . . . , N, (5.6)

where if β 6= 3/4, r̃ = r and if β = 3/4, r̃ = r − ε, 0 < ε < 1/2; C(α, u, v, Tα) is
only related to α, u, v, Tα, and C(u, v, T ) is only related to u, v, and T .

Proof. We consider the case of λ = 0. From U0 = Re Πhϕ and V 0 = Im Πhϕ, (5.5),
(5.6) are automatically fulfilled as n = 0. The claims to n ≥ 1 will be showed next.
It follows from (3.1), (3.2), and (4.1) that

〈Dαt un, χ1〉 − Λ(vn, χ1) = −〈Ru,τ , χ1〉, ∀χ1 ∈ Xh,

〈Dαt vn, χ2〉+ Λ(un, χ2) = −〈Rv,τ , χ2〉, ∀χ2 ∈ Xh,

where Ru,τ , Rv,τ are the truncated errors in time. Let Ũn = Πhu
n, Ṽ n = Πhv

n,
εnu = un − Ũn, and εnv = vn − Ṽ n. Using (5.1), we obtain

〈Dαt Ũn, χ1〉 − Λ(Ṽ n, χ1) = −〈Dαt εnu, χ1〉 − 〈Ru,τ , χ1〉,

〈Dαt Ṽ n, χ2〉+ Λ(Ũn, χ2) = −〈Dαt εnv , χ2〉 − 〈Rv,τ , χ2〉,
i.e., there exist

〈Ũn, χ1〉 −GαΛ(Ṽ n, χ1) = (1− b1)〈Ũn−1, χ1〉+
n−1∑
j=2

(bj−1 − bj)〈Ũn−j , χ1〉

+ bn−1〈Ũ0, χ1〉 −Gα〈γnu , χ1〉,

(5.7)

〈Ṽ n, χ2〉+GαΛ(Ũn, χ2) = (1− b1)〈Ṽ n−1, χ2〉+
n−1∑
j=2

(bj−1 − bj)〈Ṽ n−j , χ2〉

+ bn−1〈Ṽ 0, χ2〉 −Gα〈γnv , χ2〉,

(5.8)

with terms γnu = Dαt εnu+Ru,τ , γnv = Dαt εnv +Rv,τ . Let enu = Un−Ũn, env = V n−Ṽ n.
Then, subtracting (5.7)-(5.8) from (4.4)-(4.5) declares the residual equations

〈enu, χ1〉 −GαΛ(env , χ1) = (1− b1)〈en−1
u , χ1〉+

n−1∑
j=2

(bj−1 − bj)〈en−ju , χ1〉

+ bn−1〈e0
u, χ1〉+Gα〈γnu , χ1〉,

(5.9)

〈env , χ2〉+GαΛ(enu, χ2) = (1− b1)〈en−1
v , χ2〉+

n−1∑
j=2

(bj−1 − bj)〈en−jv , χ2〉

+ bn−1〈e0
v, χ2〉+Gα〈γnv , χ2〉,

(5.10)

which yield, by setting χ1 = enu, χ2 = env , and adding (5.9), (5.10), that

‖enu‖20 + ‖env‖20 =
n−1∑
j=1

(bj−1 − bj)(〈en−ju , enu〉+ 〈en−jv , env 〉)

+ bn−1(〈e0
u, e

n
u〉+ 〈e0

v, e
n
v 〉) +Gα(〈γnu , enu〉+ 〈γnv , env 〉),
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where Theorem 3.1 is also applied. Handled by Hölder’s inequality, i.e., for all
a1, b1, a2, b2 > 0:

a1b1 + a2b2 ≤ (a2
1 + a2

2)1/2(b21 + b22)1/2,

it leads to

‖enh‖20 ≤
n−1∑
j=1

(bj−1 − bj)(‖en−ju ‖0‖enu‖0 + ‖en−jv ‖0‖env‖0)

+ bn−1(‖e0
u‖0‖enu‖0 + ‖e0

v‖0‖env‖0) +Gα(‖γnu‖0‖enu‖0 + ‖γnv ‖0‖env‖0)

≤
n−1∑
j=1

(bj−1 − bj)‖en−jh ‖0‖enh‖0 + bn−1‖e0
h‖0‖enh‖0 +Gα‖γnτ ‖0‖enh‖0,

with norms ‖en−jh ‖20 = ‖en−ju ‖20 + ‖en−jv ‖20, ‖γnτ ‖20 = ‖γnu‖20 + ‖γnv ‖20, j = 0, 1, . . . , n.
This further implies the following result

‖enh‖0 ≤ (1− b1)‖en−1
h ‖0 +

n−1∑
j=2

(bj−1 − bj)‖en−jh ‖0 + bn−1‖e0
h‖0 +Gα‖γnτ ‖0.

Also, it can be deduced that

‖Dαt εnu‖0 ≤ ‖∂αt εnu‖0 + Cτ2−α max
0≤t≤tn

‖∂2
t εu‖0

≤ Chr̃+1‖∂αt un‖r+1 + Cτ2−αhr̃+1 max
0≤t≤tn

‖∂2
t u‖r+1,

which gives

‖γnu‖0 ≤ Chr̃+1‖∂αt un‖r+1 + Cτ2−α max
0≤t≤tn

‖∂2
t u‖0

+ Cτ2−αhr̃+1 max
0≤t≤tn

‖∂2
t u‖r+1.

Omitting Cτ2−αhr̃+1 max0≤t≤tn ‖∂2
t u‖r+1, we thus obtain

‖γnu‖0 ≤ Cτ2−α max
0≤t≤tn

‖∂2
t u‖0 + Chr̃+1‖∂αt un‖r+1, (5.11)

and ‖γnu‖0 ∼ ‖γnv ‖0 ∼ ‖γnτ ‖0. Now, on the foregoing discussion, with Lemma 5.2,
(5.11), and ‖e0

h‖0 = 0, we sum up the results as [29], i.e., for n = 1, 2, . . . , N , and
‖∂θt ψ‖2s = ‖∂θt u‖2s + ‖∂θt v‖2s, θ = 2 or α, s = 0 or r + 1, when 0 < α < 1, one has

‖enh‖0 ≤ b−1
n−1Gα max

0≤j≤n
‖γjτ‖0

≤ nαταΓ(2− α)
1− α

max
0≤j≤n

‖γjτ‖0

≤ TαΓ(2− α)
1− α

(
Cτ2−α max

0≤t≤tn
‖∂2
t ψ‖0 + Chr̃+1 max

0≤j≤n
‖∂αt ψj‖r+1

)
≤ C(α, u, v, Tα)(τ2−α + hr̃+1),

and when α is very close to 1, the estimate turns into

‖enh‖0 ≤ nτ max
0≤j≤n

‖γjτ‖0

≤ Cnτ
(
τ max

0≤t≤tn
‖∂2
t ψ‖0 + hr̃+1 max

0≤j≤n
‖∂tψj‖r+1

)
≤ C(u, v, T )(τ + hr̃+1).
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Hence, with Lemma 5.1 and the triangle inequality

‖ψn − ψnh‖0 ≤ ‖ψnh − ψ̃n‖0 + ‖ψn − ψ̃n‖0
≤ ‖enh‖0 + ‖un − Ũn‖0 + ‖vn − Ṽ n‖0,

(5.5), (5.6) can be established. The proof is complete. �

6. Extension to two-dimensional fractional NLS

In this section, we extend the derived method to the two-dimensional time-space-
fractional NLS, which has the following form

i
∂αψ

∂tα
+

∂2βψ

∂|x|2β
+

∂2βψ

∂|y|2β
+ λf(|ψ|2)ψ = 0, (x, y; t) ∈ Ω× (0, T ], (6.1)

with the real factors in (1.1)-(1.3) and the initial and boundary conditions

ψ(x, y, 0) = ϕ(x, y), (x, y) ∈ Ω ∪ ∂Ω, (6.2)

ψ(x, y, t) = 0, (x, y; t) ∈ ∂Ω× (0, T ], (6.3)

where Ω = (a, b)× (c, d), ∂
αψ
∂tα is defined as (1.4), and Riesz derivative is defined by

∂2βψ(x, y, t)
∂|x|2β

=
−1

2 cos(βπ)
(
XD

2β
L ψ(x, y, t) + XD

2β
R ψ(x, y, t)

)
,

XD
2β
L ψ(x, y, t) =

1
Γ(2− 2β)

∂2

∂x2

∫ x

a

(x− ξ)1−2βψ(ξ, y, t)dξ,

XD
2β
R ψ(x, y, t) =

1
Γ(2− 2β)

∂2

∂x2

∫ b

x

(ξ − x)1−2βψ(ξ, y, t)dξ.

∂2βψ
∂|y|2β is similar to ∂2βψ

∂|x|2β . Decompose ψ(x, y, t) into its real and imaginary parts by
ψ(x, y, t) = u(x, y, t) + iv(x, y, t), whence, (6.1) can be rewritten, i.e.,

∂αu

∂tα
+

∂2βv

∂|x|2β
+

∂2βv

∂|y|2β
+ λf(u2 + v2)v = 0,

∂αv

∂tα
− ∂2βu

∂|x|2β
− ∂2βu

∂|y|2β
− λf(u2 + v2)u = 0,

so are the initial and boundary values. Let Σh be a quasi-uniform family of subdi-
visions of Ω and the finite element subspace Xh belong to Hβ0 (Ω), denoted as

Xh = {vh ∈ Hβ0 (Ω) ∩ C0(Ω̄) : vh|D ∈ Pr(D), ∀D ∈ Σh},

where Hβ0 (Ω) is the fractional Sobolev space. Then, the schemes for (6.1)-(6.3) are
constructed, which read: seek Un, V n ∈ Xh, for any χ1, χ2 ∈ Xh, to satisfy

〈Un, χ1〉 −GαΛ(V n, χ1) =
n−1∑
j=1

(bj−1 − bj)〈Un−j , χ1〉+ bn−1〈U0, χ1〉

− λGα〈f((Un)2 + (V n)2)V n, χ1〉,

(6.4)

〈V n, χ2〉+GαΛ(Un, χ2) =
n−1∑
j=1

(bj−1 − bj)〈V n−j , χ2〉+ bn−1〈V 0, χ2〉

+ λGα〈f((Un)2 + (V n)2)Un, χ2〉,

(6.5)
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subjected to the initial conditions

U0 = Re Πhϕ(x, y), V 0 = Im Πhϕ(x, y), (x, y) ∈ Ω ∪ ∂Ω, (6.6)

and zero boundary conditions

U j = 0, V j = 0, 1 ≤ j ≤ N, on ∂Ω, (6.7)

where Πh is an operator like Πh, and Λ(·, ·) in (6.4)-(6.5) takes the form

Λ(u, v) =
1

2 cos(βπ)

{
〈XDβ

Lu,XD
β
Rv〉+ 〈XDβ

Ru,XD
β
Lv〉
}

+
1

2 cos(βπ)

{
〈YDβ

Lu, YD
β
Rv〉+ 〈YDβ

Ru, YD
β
Lv〉
}
.

Theorem 6.1 ([5]). The bilinear form Λ(·, ·) preserves the symmetric, continuous,
and coercive properties, but with the energy norm

‖u‖E =
(
‖u‖20 + |(XDβ

Lu,XD
β
Ru)|+ |(YDβ

Lu, YD
β
Ru)|

)1/2
.

Theorem 6.2. The method (6.4)-(6.7) is stable in sense that, for n = 1, 2, . . . , N ,
there exists ‖Un‖20 + ‖V n‖20 ≤ ‖U0‖20 + ‖V 0‖20.

The above theorem follows from Theorem 6.1 and the proof of Theorem 4.1.

Remark 6.3. Solving (6.1)-(6.3) by (6.4)-(6.7), we confront severe challenge and
computing burden; to cut the costs as much as possible, a feasible linearized strategy
is needed to treat the nonlinear part, where, for n ≥ 2, we employ

f(|ψn|2)ψn = f(|ψ̂n|2)ψ̂n +O(τ2), ψ̂n = 2ψn−1 − ψn−2.

Decompose ψn and inserting it into (6.4)-(6.7), we obtain explicit-implicit schemes

〈Dαt Un, χ1〉 −Λ(V n, χ1) + λ〈f((Ûn)2 + (V̂ n)2)V̂ n, χ1〉 = 0, (6.8)

〈Dαt V n, χ2〉+ Λ(Un, χ2)− λ〈f((Ûn)2 + (V̂ n)2)Ûn, χ2〉 = 0. (6.9)

The first step ought to be remained as itself, because available U1, V 1 are required
to start (6.8)-(6.9). Moreover, if the solution ψ(x, y, t) to (6.1)-(6.3) is sufficiently
regular, (6.4)-(6.7) and (6.8)-(6.9) maintain the optimal accuracy O(τ2−α + hr+1)
in L2-sense. The convergence will be confirmed in the subsequent experiments.

7. Numerical experiments

In this part, several numerical examples are performed to gauge the practical
performance of (4.4)-(4.7) and (6.4)-(6.7), which also suffice to exhibit the accuracy
of those methods. We use the algorithm as in [35] with structured triangular meshes
to assemble the stiffness matrix for the second method. In all the tests, Xh is chosen
to be piecewise linear; the nonlinear system of equations is solved by iteration with
tolerant error 1.0e-012 and the convergent orders are computed as follows

C. Order =


log{e(τ1)/e(τ2)}

log{τ1/τ2} in time,
log{e(h1)/e(h2)}

log{h1/h2} in space,

where e(τ1), e(τ2), e(h1), e(h2) are the global L2-norm errors (abbreviated as “L.
Error”) at stepsizes τ1, τ2, h1, h2, and τ1 6= τ2, h1 6= h2. To obtain more insights,
we discuss the convergence separately by the real and imaginary parts. In accord
with Theorem 5.3 and Remark 6.3, O(τ2−α + h2) are anticipated in the sequel.
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Example 7.1. Consider the one-dimensional Schrödinger type equation

i
∂αψ

∂tα
+

∂2βψ

∂|x|2β
+ |ψ|2ψ = g(x, t),

on the interval (0, 1), 0 < t ≤ 0.5 with the initial condition

ψ(x, 0) = 10x2(1− x)2.

The right-hand g(x, t) is selected as

g(x, t) = i
20t2−α

Γ(3− α)
x2(1− x)2 + 1.0× 103 · (1 + t2)3x6(1− x)6

− 10(1 + t2)x2−2β

cos(βπ)Γ(3− 2β)

(
1− 6x

3− 2β
+

12x2

(3− 2β)(4− 2β)

)
− 10(1 + t2)(1− x)2−2β

cos(βπ)Γ(3− 2β)

(
1− 6(1− x)

3− 2β
+

12(1− x)2

(3− 2β)(4− 2β)

)
,

to enforce the exact solution

ψ(x, t) = 10(1 + t2)x2(1− x)2.

Table 1 shows the convergent results at t = 0.5 in space with α = 0.3, β = 0.6, and
τ = 1.0 × 10−5, whereas Table 2 reports the numerical results at t = 0.5 in time
with h = 1.0× 10−3, where the predicted convergent orders are observed.

Table 1. The spatial numerical results at t = 0.5 for Example 7.1.

h
Real part Imaginary part
L. Error C. Order L. Error C. Order

1/8 1.457861e-002 - 5.242450e-003 -
1/16 3.809748e-003 1.936086 1.309208e-003 2.001547
1/32 9.557528e-004 1.994986 3.117938e-004 2.070030
1/64 2.361702e-004 2.016811 7.234288e-005 2.107669
1/128 5.790022e-005 2.028186 1.649549e-005 2.132780

Table 2. The temporal numerical results at t = 0.5 for Example 7.1.

τ
Real part Imaginary part
L. Error C. Order L. Error C. Order

1/8 5.088096e-004 - 8.277816e-004 -
1/16 1.634896e-004 1.637928 2.747536e-004 1.591112
1/32 5.253915e-005 1.637734 8.933547e-005 1.620833
1/64 1.700971e-005 1.627034 2.858752e-005 1.643848
1/128 5.726426e-006 1.570652 8.980920e-006 1.670450

Example 7.2. Consider the two-dimensional Schrödinger type equation

i
∂αψ

∂tα
+

∂2βψ

∂|x|2β
+

∂2βψ

∂|y|2β
+ |ψ|2ψ = g(x, y, t),

on domain (0, 1)× (0, 1), 0 < t ≤ 1 with the initial condition

ψ(x, y, 0) = 15ix2(1− x)2y2(1− y)2,
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and the forcing term

g(x, y, t) =
(

i
15t1−α

Γ(2− α)
− 30t1−α

Γ(2− α)
− 30t2−α

Γ(3− α)

)
x2(1− x)2y2(1− y)2

+ 3.375× 103 · (t2 + (1 + t)4)(t+ i(1 + t)2)x6(1− x)6y6(1− y)6

− 15(t+ i(1 + t)2)y2(1− y)2

cos(βπ)

(
P(x, β) +Q(x, β)

)
− 15(t+ i(1 + t)2)x2(1− x)2

cos(βπ)

(
P(y, β) +Q(y, β)

)
,

where P(·, ·), Q(·, ·) are as follows

P(s, z) =
s2−2z

Γ(3− 2z)

(
1− 6s

3− 2z
+

12s2

(3− 2z)(4− 2z)

)
,

Q(s, z) =
(1− s)2−2z

Γ(3− 2z)

(
1− 6(1− s)

3− 2z
+

12(1− s)2

(3− 2z)(4− 2z)

)
.

It is verified that the solution is

ψ(x, y, t) = 15(t+ i(1 + t)2)x2(1− x)2y2(1− y)2.

In this example, we reset α = 0.7, β = 0.9 to test the convergent behaviors with
τ ≈ h1.5385 in space and h ≈ τ0.65 in time. Table 3 and Table 4 elaborately
demonstrate the decay of the spatial and temporal global errors as the function of
stepsizes τ and h, respectively, where good convergence is admitted.

Table 3. The spatial numerical results at t = 1 for Example 7.2.

h
Real part Imaginary part
L. Error C. Order L. Error C. Order

1/2 5.010280e-003 - 2.344960e-002 -
1/4 3.663048e-003 0.451846 1.574488e-002 0.574680
1/8 1.019908e-003 1.844606 4.378051e-003 1.846522
1/16 2.457387e-004 2.053242 1.048135e-003 2.062464
1/24 1.045048e-004 2.108777 4.442889e-004 2.116811

Table 4. The temporal numerical results at t = 1 for Example 7.2.

τ
Real part Imaginary part
L. Error C. Order L. Error C. Order

1/36 6.585969e-004 - 2.820447e-003 -
1/64 3.263319e-004 1.220439 1.392862e-003 1.226241
1/100 1.718398e-004 1.437085 7.315002e-004 1.443058
1/144 9.658020e-005 1.580145 4.103992e-004 1.585021
1/196 6.595577e-005 1.237067 2.799499e-004 1.240734

Example 7.3. The last example is devoted to examine the stability and convergent
accuracy of (6.8)-(6.9). The first step, i.e., n = 1, does not need to be changed since
suitable U1, V 1 with optimal truncated errors ought to be contained to start this
system. To make this simpler, the model utilized in the second example is focused
on. We present the global errors and convergent orders when α = 0.6, β = 0.8 in
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space and time, respectively, in Table 5 and Table 6. The starting step is tackled
by a fixed-point iteration terminated by reaching a solution with error 1.0e-012.

Table 5. The spatial numerical results at t = 1 for Example 7.3.

h
Real part Imaginary part
L. Error C. Order L. Error C. Order

1/2 5.110917e-003 - 2.399465e-002 -
1/4 3.462901e-003 0.561601 1.470962e-002 0.705953
1/8 8.711763e-004 1.990945 3.696989e-003 1.992337
1/16 2.003108e-004 2.120724 8.469123e-004 2.126066
1/24 8.481370e-005 2.119574 3.587811e-004 2.118271

Table 6. The temporal numerical results at t = 1 for Example 7.3.

τ
Real part Imaginary part
L. Error C. Order L. Error C. Order

1/36 3.750427e-004 - 1.587011e-003 -
1/64 1.572838e-004 1.510327 6.647428e-004 1.512447
1/100 7.842176e-005 1.559423 3.317944e-004 1.557035
1/144 4.684757e-005 1.412895 1.987468e-004 1.405439
1/196 2.962318e-005 1.486669 1.263056e-004 1.470402

Conclusion. In the present research, we have investigated the finite element ap-
proximation to the Caputo-Riesz time-space-fractional NLS in one- and two-di-
mensions. The stability is conducted and the convergent estimate is analyzed. To
avoid the iterative loop, we sequentially construct a linearized scheme, which is val-
idated to be stable and convergent. A series of computed tests are implemented and
the numerical results are showed to be in agreement with the theoretical assertion.
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