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FIRST-ORDER SELFADJOINT SINGULAR DIFFERENTIAL
OPERATORS IN A HILBERT SPACE OF VECTOR FUNCTIONS

PEMBE IPEK, BÜLENT YILMAZ, ZAMEDDIN I. ISMAILOV

Communicated by Ludmila Pulkina

Abstract. In this article, we give a representation of all selfadjoint extensions

of the minimal operator generated by first-order linear symmetric multipoint

singular differential expression, with operator coefficient in the direct sum of
Hilbert spaces of vector-functions defined at the semi-infinite intervals. To this

end we use the Calkin-Gorbachuk method. Finally, the geometry of spectrum
set of such extensions is researched.

1. Introduction

In the first years of the previous century, von Neumann [11] and Stone [10]
investigated the theory of selfadjoint extensions of linear densely defined closed
symmetric operators in a Hilbert spaces. Applications to scalar linear even or-
der symmetric differential operators and description of all selfadjoint extensions in
terms of boundary conditions due to Glazman in his seminal work [5] and in the
book of Naimark [8]. In this sense the famous Glazman-Krein-Naimark (or Everitt-
Krein-Glazman-Naimark) Theorem in the mathematical literature it is to be noted.
In the mathematical literature there is another method co-called Calkin-Gorbachuk
method. (see [6, 9]).

Our motivation for this article originates from the interesting researches of
Everitt, Markus, Zettl, Sun, O’Regan, Agarwal [2, 3, 4, 12] in scalar cases. Through-
out this paper we consider Zettl and Suns’s view about these topics [12]. A selfad-
joint ordinary differential operator in Hilbert space is generated by two things:

(1) a symmetric (formally selfadjoint) differential expression;
(2) a boundary condition which determined selfadjoint differential operators;

And also for a given selfadjoint differential operator, a basic question is: What is
its spectrum?

In this work in Section 3 the representation of all selfadjoint extensions of a
multipoint symmetric quasi-differential operator, generated by first-order symmet-
ric differential-operator expression (for the definition see [4]) in the direct sum of
Hilbert spaces of vector-functions defined at the semi-infinite intervals in terms of
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boundary conditions are described. In sec. 4 the structure of spectrum of these
selfadjoint extensions is investigated.

2. Statement of the problem

In the direct sumH = L2(H, (−∞, a1))⊕L2(H, (a2,∞)), H is a separable Hilbert
space, and a1, a2 ∈ R will be considered for the multipoint differential-operator
expression in the form

l(u) = (l1(u1), l2(u2)),

lk(uk) = iρku
′
k +

1
2
iρ′kuk +Akuk, k = 1, 2,

where
(1) ρ1 : (−∞, a1)→ (0,∞), ρ2 : (a2,∞)→ (0,∞);
(2) ρ1 ∈ ACloc(−∞, a1) and ρ2 ∈ ACloc(a2,∞);
(3)

∫ a1

−∞
ds
ρ1(s)

=∞,
∫∞
a2

ds
ρ2(s)

=∞;
(4) A∗k = Ak : D(Ak) ⊂ H → H, k = 1, 2.

The minimal operators L1
0 and L2

0 corresponding to differential-operator expres-
sions l1 and l2 in L2(H, (−∞, a1)) and L2(H, (a2,∞)), respectively, can be defined
by a standard processes, see[7]. The operators L1 = (L1

0)∗ and L2 = (L2
0)∗ are max-

imal operators corresponding to l1 and l2 in L2(H, (−∞, a1)) and L2(H, (a2,∞)),
respectively. In this case the operators

L0 = L1
0 ⊕ L2

0 and L = L1 ⊕ L2

will be indicating the minimal and maximal operators corresponding to differential
expression on H, respectively.

It is clear that

D(L1) = {u1 ∈ L2(H, (−∞, a1)) : l1(u1) ∈ L2(H, (−∞, a1)},
D(L1

0) = {u1 ∈ D(L1) : (
√
ρ1u1)(a1) = 0}

and

D(L2) = {u2 ∈ L2(H, (a2,∞)) : l2(u2) ∈ L2(H, (a2,∞)},
D(L2

0) = {u2 ∈ D(L2) : (
√
ρ2u2)(a2) = 0}.

3. Description of Selfadjoint Extensions

In this section using the Calkin-Gorbachuk method will be investigated the gen-
eral representation of selfadjoint extensions of minimal operator L0. Firstly we
prove the following result.

Lemma 3.1. The deficiency indices of the operators L1
0 and L2

0 are of the form

(m(L1
0), n(L1

0)) = (0,dimH), (m(L2
0), n(L2

0)) = (dimH, 0).

Proof. Now for simplicity we assume that A1 = A2 = 0. It is clear that the general
solutions of differential equations

iρ1(t)u′1±(t) +
1
2
iρ′1(t)u1±(t)± iu1±(t) = 0, t < a1,

iρ2(t)u′2±(t) +
1
2
iρ′2(t)u2±(t)± iu2±(t) = 0, t > a2
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in L2(H, (−∞, a1)) and L2(H, (a2,+∞)) are in the form

u1±(t) = exp
(
±
∫ c1

t

2± ρ′1(s)
2ρ1(s)

ds
)
f1, f1 ∈ H, t < a1, c1 < a1

and

u2±(t) = exp
(
∓
∫ t

c2

2± ρ′2(s)
2ρ2(s)

ds
)
f2, f2 ∈ H, t > a2, c2 > a2

respectively. From these representations we have

‖u1+‖2L2(H,(−∞,a1))

=
∫ a1

−∞
‖u1+(t)‖2Hdt

=
∫ a1

−∞
exp

(∫ c1

t

2 + ρ′1(s)
ρ1(s)

ds
)
dt‖f1‖2H

=
∫ a1

−∞

ρ1(c1)
ρ1(t)

exp
(∫ c1

t

2
ρ1(s)

ds
)
dt‖f1‖2H

=
ρ1(c1)

2

∫ a1

−∞
exp

(∫ c1

t

2
ρ1(s)

ds
)
d
(
−
∫ c1

t

2
ρ1(s)

ds
)
‖f1‖2H

= −ρ1(c1)
2

[
exp

(∫ c1

a1

2
ρ1(s)

ds
)
− exp

(∫ c1

−∞

2
ρ1(s)

ds
)]
‖f1‖2H =∞.

Consequently,
dim ker(L1

0 + iE) = 0
On the other hand it is clear that

‖u1−‖2L2(H,(−∞,a1))

=
∫ a1

−∞
‖u1−(t)‖2Hdt

=
∫ a1

−∞
exp

(
−
∫ c1

t

2 + ρ′1(s)
ρ1(s)

ds
)
dt‖f1‖2H

=
∫ a1

−∞

ρ1(c1)
ρ1(t)

exp
(
−
∫ c1

t

2
ρ1(s)

ds
)
dt‖f1‖2H

=
ρ1(c1)

2

∫ a1

−∞
exp

(
−
∫ c1

t

2
ρ1(s)

ds
)
d
(
−
∫ c1

t

2
ρ1(s)

ds
)
‖f1‖2H

=
ρ1(c1)

2

[
exp

(
−
∫ c1

a1

2
ρ1(s)

ds
)
− exp

(
−
∫ c1

−∞

2
ρ1(s)

ds
)]
‖f1‖2H

=
ρ1(c1)

2
exp

(
−
∫ c1

a1

2
ρ1(s)

ds
)
‖f1‖2H <∞.

Therefore,

u1−(t) = exp
(∫ t

a1

2− ρ′1(s)
2ρ1(s)

ds
)
f1 ∈ L2(H, (−∞, a1)).

Hence
dim ker(L1

0 − iE) = dimH

In a similar way it can be shown that

m(L2
0) = dim ker(L2

0 + iE) = dimH and n(L2
0) = dim ker(L2

0 − iE) = 0
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This completes the proof. �

Consequently, the minimal operator L0 has selfadjoint extensions; see [6]. To
describe these extensions we need to obtain the space of boundary values.

Definition 3.2 ([6]). Let H be any Hilbert space and S : D(S) ⊂ H → H be
a closed densely defined symmetric operator in the Hilbert space H having equal
finite or infinite deficiency indices. A triplet (B, γ1, γ2), where B is a Hilbert space,
γ1 and γ2 are linear mappings from D(S∗) into B, is called a space of boundary
values for the operator S if for any f, g ∈ D(S∗)

(S∗f, g)H − (f, S∗g)H = (γ1(f), γ2(g))B − (γ2(f), γ1(g))B

while for any F1, F2 ∈ B, there exists an element f ∈ D(S∗) such that γ1(f) = F1

and γ2(f) = F2.

Lemma 3.3. Let

γ1 : D(L)→ H, γ1(u) =
1
i
√

2

(
(
√
ρ1u1)(a1) + (

√
ρ2u2)(a2)

)
,

γ2 : D(L)→ H, γ2(u) =
1√
2

((
√
ρ1u1)(a1)− (

√
ρ2u2)(a2)) ,

where u = (u1, u2) ∈ D(L). Then the triplet (H, γ1, γ2) is a space of boundary
values of the minimal operator L0 in H.

Proof. For any u = (u1, u2), v = (v1, v2) ∈ D(L)

(Lu, v)H − (u, Lv)H
= (L1u1, v1)L2(H,(−∞,a1)) + (L2u2, v2)L2(H,(a2,∞)) − (u1, L1v1)L2(H,(−∞,a1))

− (u2, L2v2)L2(H,(a2,∞))

=
[
(iρ1u

′
1 +

i

2
ρ′1u1 +A1u1, v1)L2(H,(−∞,a1))

− (u1, iρ1v
′
1 +

i

2
ρ′1v1 +A1v1)L2(H,(−∞,a1))

]
+
[
(iρ2u

′
2 +

i

2
ρ′2u2 +A2u2, v2)L2(H,(a2,∞))

− (u2, iρ2v
′
2 +

i

2
ρ′2v2 +A2v2)L2(H,(a2,∞))

]
= i
[
(ρ1u

′
1, v1)L2(H,(−∞,a1)) + (u1, ρ1v

′
1)L2(H,(−∞,a1))

]
+
i

2
[
(ρ′1u1, v1)L2(H,(−∞,a1)) + (u1, ρ

′
1v1)L2(H,(−∞,a1))

]
+ i
[
(ρ2u

′
2, v2)L2(H,(a2,∞)) + (u2, ρ2v

′
2)L2(H,(a2,∞))

]
+
i

2
[
(ρ′2u2, v2)L2(H,(a2,∞)) + (u2, ρ

′
2v2)L2(H,(a2,∞))

]
= i
[
(ρ1u

′
1, v1)L2(H,(−∞,a1)) + (u1, ρ1v

′
1)L2(H,(−∞,a1))

]
+ i(ρ′1u1, v1)L2(H,(−∞,a1))

+ i
[
(ρ2u

′
2, v2)L2(H,(a2,∞)) + (u2, ρ1v

′
2)L2(H,(a2,∞))

]
+ i(ρ′2u2, v2)L(H,(a2,∞))

= i
[
(ρ1u

′
1 + ρ1u1, v1)L2(H,(−∞,a1)) + (ρ1u1, v

′
1)L2(H,(−∞,a1))

]
+ i
[
(ρ2u

′
2 + ρ2u2, v2)L2(H,(a2,∞)) + (ρ2u2, v

′
2)L2(H,(a2,∞))

]
= i[((ρ1u1), v1)′]L2(H,(−∞,a1)) + i [((ρ2u2), v2)′]L2(H,(a2,∞))
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= i
[

((
√
ρ2u2)(a2), (

√
ρ2v2)(a2))H − ((

√
ρ1u1)(a1), (

√
ρ1v1)(a1))H

]
= (γ1(u), γ2(v))H − (γ2(u), γ1(v))H .

Now for any element f1, f2 ∈ H let us find the function u = (u1, u2) ∈ D(L)
such that

γ1(u) =
1
i
√

2
((
√
ρ1u1)(a1) + (

√
ρ2u2)(a2)) = f1,

γ2(u) =
1√
2

((
√
ρ1u1)(a1)− (

√
ρ2u2)(a2)) = f2

From here the following two expressions are obtained

(
√
ρ1u1)(a1) = (if1 + f2)/

√
2, (

√
ρ2u2)(a2) = (if1 − f2)/

√
2.

If we choose the functions u1(·), u2(·) in the following forms

u1(t) =
1√
ρ1(t)

et−a1(if1 + f2)/
√

2, t < a1,

u2(t) =
1√
ρ2(t)

ea2−t(if1 − f2)/
√

2, t > a2,

then it is clear that u = (
√
ρ1u1,

√
ρ2u2) ∈ D(L) and γ1(u) = f1, γ2(u) = f2. �

Theorem 3.4. If L̃ is a selfadjoint extension of the minimal operator L0 in H
, then it is generated by the differential-operator expression l(·) and the following
boundary condition

(
√
ρ2u2)(a2) = W (

√
ρ1u1)(a1),

where W : H → H is a unitary operator. Moreover, the unitary operator W in H

is determined uniquely by the extension L̃, i.e. L̃ = LW and vice versa.

4. Spectrum of the Selfadjoint Extensions

In this section the structure of the spectrum of the selfadjoint extensions LW of
the minimal operator L0 in H will be investigated. First let us prove the following
results.

Theorem 4.1. The point spectrum of the selfadjoint extension LW is empty, i.e.
σp(LW ) = ∅.

Proof. Consider the eigenvalue problem

l(u) = λu, u = (u1, u2) ∈ H, λ ∈ R

with the boundary condition

(
√
ρ2u2)(a2) = W (

√
ρ1u1)(a1).

From here the following expressions are obtained

iρ1(t)u′1(t) +
1
2
iρ′1(t)u1(t) +A1u1(t) = λu1(t), t < a1,

iρ2(t)u′2(t) +
1
2
iρ′2(t)u2(t) +A2u2(t) = λu2(t), t > a2,

(
√
ρ2u2)(a2) = W (

√
ρ1u1)(a1).
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The general solutions of these equations are in the form

u1(t;λ) =

√
ρ1(c)
ρ1(t)

exp
(
− i(A1 − λ)

∫ c

t

ds

ρ1(s)

)
f1
λ, f1

λ ∈ H, t < a1, c < a1,

u2(t;λ) =

√
ρ2(c)
ρ2(t)

exp
(
i(A2 − λ)

∫ t

c

ds

ρ2(s)

)
f2
λ, f2

λ ∈ H, t > a2, c > a2,

(
√
ρ2u2)(a2) = W (

√
ρ1u1)(a1).

It is clear that for the f1
λ 6= 0 and f2

λ 6= 0 the solutions are u1(·;λ) /∈ L2(H, (−∞, a1))
and u2(·;λ) /∈ L2(H, (a2,∞)). Therefore for every unitary operator W we have
σp(LW ) = ∅. �

Since the residual spectrum for any selfadjoint operator in any Hilbert space is
empty, then we have to investigate the continuous spectrum of selfadjoint extensions
LW of the minimal operator L0 is investigated. On the other hand from the general
theory of linear selfadjoint operators in Hilbert spaces for the resolvent set ρ(LW )
of any selfadjoint extension LW is true

ρ(LW ) ⊃ {λ ∈ C : Imλ 6= 0}.
For the continuous spectrum of selfadjoint extensions we have the following state-
ment.

Theorem 4.2. The continuous spectrum of any selfadjoint extension LW in of the
form

σc(LW ) = R.

Proof. For λ ∈ C, λi = Imλ > 0 and f = (f1, f2) ∈ H the norm of function
Rλ(LW )f(t) in H we have

‖Rλ(LW ))f(t)‖2H

= ‖ 1
ρ1(t)

exp
(
i(λ−A1)

∫ a1

t

ds

ρ1(s)

)
f1
λ

+
i√
ρ1(t)

∫ a1

t

exp
(
i(A1 − λ)

∫ t

s

dτ

ρ1(τ)

) f1(s)√
ρ1(s)

ds‖2L2(H,(−∞,a1))

+ ‖ i√
ρ2(t)

∫ ∞
t

exp
(
i(A2 − λ)

∫ t

s

dτ

ρ2(τ)

) f2(s)√
ρ2(s)

ds‖2L2(H,(a2,∞))

≥ ‖ i√
ρ2(t)

∫ ∞
t

exp
(
i(A2 − λ)

∫ t

s

dτ

ρ2(τ)

) f2(s)√
ρ2(s)

ds‖2L2(H,(a2,∞)).

The vector functions f∗(t;λ) in the form

f∗(t;λ) =
(

0,
1√
ρ2(t)

exp
(
− i(λ−A2)

∫ t

a2

ds

ρ2(s)

)
f
)
,

with λ ∈ C, λi = Imλ > 0, f ∈ H belong to H. Indeed,

‖f∗(t;λ)‖2H =
∫ ∞
a2

1
ρ2(t)

‖ exp
(
− i(λ−A2)

∫ t

a2

ds

ρ2(s)

)
f‖2Hdt

=
∫ ∞
a2

1
ρ2(t)

exp
(
− 2λi

∫ t

a2

ds

ρ2(s)

)
dt‖f‖2H
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=
1

2λi
‖f‖2H <∞.

For such functions f∗(·;λ) we have

‖Rλ(LW )f∗(λ; ·)‖2H

≥ ‖ i√
ρ2(t)

∫ ∞
t

1
ρ2(s)

exp
(
i(A2 − λ)

∫ t

s

dτ

ρ2(τ)

− i(λ−A2)
∫ s

a2

dτ

ρ2(τ)

)
fds‖2L2(H,(a2,∞))

= ‖ 1√
ρ2(t)

exp
(
− iλ

∫ t

a2

dτ

ρ2(τ)
+ iA2

∫ t

a2

dτ

ρ2(τ)
)

×
∫ ∞
t

1
ρ2(s)

exp
(
− 2λi

∫ s

a2

dτ

ρ2(τ)

)
fds‖2L2(H,(a2,∞))

= ‖ 1√
ρ2(t)

exp
(
λi

∫ t

a2

dτ

ρ2(τ)

)∫ ∞
t

1
ρ2(s)

exp
(
− 2λi

∫ s

a2

dτ

ρ2(τ)

)
ds‖2L2(H,(a2,∞))

× ‖f‖2H

= ‖ 1
2λi

exp
(
− λi

∫ t

a2

dτ

ρ2(τ)

)
‖2L2(H,(a2,∞))‖f‖

2
H

=
1

4λ2
i

∫ ∞
a2

1
ρ2(t)

exp
(
− 2λi

∫ t

a2

dτ

ρ2(τ)

)
dt‖f‖2H

=
1

8λ3
i

‖f‖2H .

From this we have

‖Rλ(LW )f∗(·;λ)‖H ≥
‖f‖2H

2
√

2λi
√
λi

=
1

2λi
‖f∗(t;λ)‖H.

Then for λi = Imλ > 0 and f 6= 0 the following inequality is valid

‖Rλ(LW )f∗(·, λ)‖H
‖f∗(λ; t)‖H

≥ 1
2λi

.

On the other hand it is clear that

‖Rλ(LW )‖ ≥ ‖Rλ(LW )f∗(·;λ)‖H
‖f∗(·;λ)‖H

, f 6= 0.

Consequently, for λ ∈ C and λi = Imλ > 0 we have

‖Rλ(LW )‖ ≥ 1
2λi

.

�

Remark 4.3. In the special case ρk = 1, k = 1, 2, similar results have been
obtained in [1].

As an example all selfadjoint extensions Lϕ of the minimal operator L0, gener-
ated by the multipoint differential expression

l(u) = (l1(u1), l2(u2))
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=
(
itu′1(t, x) +

1
2
iu1(t, x)− ∂2u1

∂x2
(t, x), i

√
tu′2(t, x)

+
1

4
√
t
iu2(t, x)− ∂2u2

∂x2
(t, x)

)
,

with boundary conditions

u1(t, 0) = u1(t, 1), u′1(t, 0) = u′1(t, 1), t < −1,

u2(t, 0) = u2(t, 1), u′2(t, 0) = u′2(t, 1), t > 1

in the direct sum L2((−∞,−1)× (0, 1))⊕L2((1,∞)× (0, 1)) in terms of boundary
conditions are described the boundary condition

(t1/4u2(t))(1, x) = eiϕ(
√
tu1(t))(−1, x), ϕ ∈ [0, 2π), x ∈ (0, 1).

Moreover, the spectrum of such extension is

σ(Lϕ) = σc(Lϕ) = R.
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