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Abstract. In this article, we study an inverse source problem of the Poisson
equation with Cauchy data. We want to find iterative algorithms to detect

the hidden source within a body from measurements on the boundary. Our

goal is to reconstruct the location, the size and the shape of the hidden source.
This problem is ill-posed, regularization techniques should be employed to

obtain the regularized solution. Numerical examples show that our proposed

algorithms are valid and effective.

1. Introduction

Inverse source problems are very important for applications in science, engineer-
ing and bioengineering which have attracted great attention of many researchers in
recent years, refer to [6, 10]. In this paper, we consider the problem of determining
a source term of the Poisson equation. The inverse source problem consists of de-
termining the location, the size and the shape of the hidden source from available
measured data on the boundary. This inverse source problem is nonlinear and ill-
posed in the sense that the solution, even if it exists, does not depend continuously
on the measured data. Any small errors in the given data might induce large errors
in the solution. Thus regularization techniques should be employed in our proposed
algorithms.

Inverse source problems of the Poisson equation have been researched exten-
sively [3, 4, 5, 11, 13, 14, 15, 16, 18, 20]. Bubnov, Erokhin and Isakov [5, 16]
presented some theoretical results to reconstruct the unknown source or obstacles
from overdetermined boundary measurements of solutions of the Poisson equation.
Baratchart et al. [4] solved the inverse problem of locating pointwise or small size
conductivity defaults in a plane domain from overdetermined boundary measure-
ments of solutions to the Laplace equation. Hon et al. [15, 20] proposed some
effective numerical algorithms to solve inverse source problems of the Poisson equa-
tion. Hanke and Rundell [11] used the rational approximation method to solve
inverse source problems for determining hidden obstacles. There are some iterative
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algorithms for obtaining source parameters from measurement data on the bound-
ary [13, 14, 18, 22, 23]. Hettlich and Rundell [14] applied iterative algorithms to
solve an inverse potential problem for reconstruction the shape of an obstacle.

In this paper, we propose two reconstruction algorithms to solve an inverse source
problem of the Poisson equation from measurements on the boundary. According
to the fundamental solution of Laplace equation, we can obtain the expression
of solution for inverse boundary value problem with boundary integral equation.
Based on the shape derivative, we apply gradient descent algorithm (GDA) and
trust-region-reflective algorithm (TRA) to detect the location, the size and the
shape of the hidden source within a body. From numerical experiments, we can see
that the proposed iterative algorithms are feasible and stable.

The outline of the paper is as follows. In Section 2, we introduce an inverse
source problem of the Poisson equation. We introduce the shape derivative and
parameterization of boundary in Section 3. We propose both reconstruction al-
gorithms to detect the hidden source within a body in Section 4. In Section 5,
we give some examples to illustrate the efficiency of the proposed reconstruction
algorithms.

2. Formulation of an inverse source problem

The inverse source problem we consider consists in detecting the location, the size
and the shape of the hidden source of the Poisson equation from a single measure-
ment pair of Cauchy data on the boundary. Assume that Ω is a simply connected
bounded domain of R2 with a smooth boundary ∂Ω, and Ω∗ is a subdomain of Ω
whose boundary Γ is piecewise differentiable and star-like. We consider the inverse
source problem in the following

∆u = f, in Ω, (2.1)

u = 0, on ∂Ω, (2.2)
∂u

∂ν
= g on ∂Ω, (2.3)

where ν denotes the outward unit normal to ∂Ω. In this paper, we assume the source
term f ∈ L2(Ω) is piecewise constant which has compact support and satisfies
supp f ⊂ Ω∗.

Note that we have assumed homogeneous Dirichlet values and this can be done
without loss of generality, refer to [11]. The inverse source problem is that of recov-
ering f given g. According to the Green’s function, we can obtain the expression
of the solution of problem (2.1) and (2.2) for f = χ(Ω∗) as follows

u(x, χ(Ω∗)) =
∫

Ω

G(x, y)f(y)dy =
∫

Ω∗
G(x, y)dy, x ∈ Ω, (2.4)

where the Green’s function G : Ω× Ω→ R, is

G(x, y) =

{
1

2π

(
log |x− y| − log | x|x| − |x|y|

)
, y 6= 0,

1
2π log |x|, y = 0,

where x, y ∈ Ω.
The research of uniqueness of the inverse problem (2.1)-(2.3) has attracted a

good deal of attention [16, 14, 17]. From [16], we know that the subdomain domain
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Ω∗ is x1-convex. Therefore we have the uniqueness theorem of the inverse source
problem (2.1)-(2.3) as follows

Theorem 2.1 ([16]). Suppose that either (1) Ω∗1 and Ω∗2 are star-shaped with respect
to their centers of gravity, or (2) Ω∗1 and Ω∗2 are convex in x1. If u(·, χ(Ω∗1)) =
u(·, χ(Ω∗2)) on Ω\Ω∗, then Ω∗1 = Ω∗2.

For the inverse problem (2.1)-(2.3), we want to recover a star-shaped domain
Ω∗ = {x : |x − a| < w((x − a)/|x − a|)} from the modulo of its potential gradient
|∇u(·;χΩ∗)| given on the hypersurface Γ(h) = {y : |y| = 1, 1 − h < y1} where h is
a number from (0, 1). We may assume that these centers of gravity are the origin,
then the star-shaped domain Ω∗j = {x : |x| < wj(x/|x|)} = {r < wj(σ)}. For a
number p, 0 < p < 1, |wj |2+p(Σ) is the usual Hölder norm for a function w on the
unit sphere Σ.For estimating a solution Ω of the inverse domain problem, we have
the following stability theorem from [16].

Theorem 2.2 ([16, Chap.2]). Suppose b < wj < 1 − b on Σ where 0 < b < 1.
There is a constant C depending only on |wj |2+p(Σ), b and h such that if

‖∇u(·;χΩ∗
1
)−∇u(·;χΩ∗

2
)‖L2(Γ(h)) < ε,

then
|w1 − w2| < C| ln ε|−1/C on Σ.

Tikhonov first applied this result to show a stability in the inverse problem of
potential theory, refer to [25] for details. From the above theorems 2.1 and 2.2, we
know that the solution of inverse problem (2.1)-(2.3) is unique and stable.

From (2.4), we can get
∂u(x, χ(Ω∗))

∂ν(x)
=
∫

Ω

∂G(x, y)
∂ν(x)

f(y)dy, x ∈ ∂Ω. (2.5)

Combined (2.3) with (2.5), we can define an operator A : L2(Ω) → L2(∂Ω), satis-
fying

Af = g, (2.6)
where

Af =
∫

Ω

∂G(x, y)
∂ν(x)

f(y)dy, x ∈ ∂Ω, (2.7)

According to (2.7), we know that A is a compact linear operator. The problem of
solving (2.6) is ill-posed, refer to [26] for detail, that is the solution, if exists, does
not depend continuously on the data g. Therefore, it is impossible to solve this
inverse source problem using classical numerical methods.

In this article, we want to determine the location, the size and the shape of the
hidden source within a body. However, we can obtain the measurements gδ in the
real application, i.e.,

‖gδ − g‖L2(∂Ω) ≤ δ, (2.8)
where ‖ · ‖L2(∂Ω) is the L2-norm on the boundary and δ is a noisy level.

Instead of (2.6), one solves the regularized equation

(AA∗ + λ)f = A∗gδ. (2.9)

The equation (2.9) is the Euler equation for the problem of minimization of the
functional

1
2
‖Af − gδ‖2L2(∂Ω) +

λ

2
‖f‖2L2(Ω), (2.10)
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which is the famous Tikhonov regularization method [26].
Thus we can obtain the convergence theorem as follows, refer to [16],

Theorem 2.3. For each λ > 0 there is a solution fλ to the minimization (2.10)
and any such solution satisfies the estimate

‖fλ − f‖L2(Ω) ≤ ωλ(2‖gδ − g‖L2(∂Ω) +
√
λ)

provided A is one-to-one, where ωλ is a function such that ωλ → 0 when λ→ 0.

3. Shape derivative and parameterization

3.1. Eulerian derivative of a shape functional. We want to study the geomet-
ric change of a bounded domain Ω∗ which is though to be a collection of material
particles changing their position in time. The space occupied by them at time
will determine a new configuration Ω∗σ. The change in the geometry of Ω∗ will be
given by a process which deforms the initial configuration Ω∗. To formalize this
mathematically, let domain Ω∗ ⊂ R2 be bounded with Lipschitz boundary Γ, and
transformations Λσ : Ω∗ → R2, σ ∈ [0, ε), i.e.,

y∗ ∈ Ω∗ 7→ y = Λσ(y∗) ≡ y(σ, y∗), (3.1)

where Λσ is bijection and Λσ ∈ C1(Ω∗). Then we can get the transformed geometry
as follows

Ω∗σ = Λσ(Ω∗), (3.2)

i.e., Ω∗σ is the image of Ω∗ with respect to Λσ.

Definition 3.1. [19] For the point y(σ), the Eulerian velocity field ~h(σ, y) is as
follows

~h(σ, y) =
∂y

∂σ
(σ,Λ−1

σ (y)). (3.3)

From the above definition 3.1, it can be seen that y(σ, y∗) satisfies an initial
value problem

d

dσ
y(σ, y∗) = ~h(σ, y(σ, y∗)),

y(0, y∗) = y∗,
(3.4)

conversely, according to transformations Λσ(y;~h), we can obtain the solution of
problem (3.4) for ~h(σ, y).

Based on the Eulerian velocity field ~h, we introduce a directional derivative for
a shape functional.

Definition 3.2 ([19]). Let J be a functional with Ω∗ 7→ J(Ω∗), Ω∗ ⊂ R2. Then
the Eulerian derivative of the functional J at Ω∗ in the direction of a vector field ~h
is given by

dJ(Ω∗;~h) =
d

dσ
J(Ωσ)

∣∣
σ=0

= lim
σ→0

1
σ

(J(Ω∗σ)− J(Ω∗)), (3.5)

where Ω∗σ = Λσ(Ω∗;~h).

From definition 3.2, we know that if dJ(Ω∗;~h) exits for all ~h, then the Eulerian
derivative is said to be a shape derivative.
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3.2. Shape derivatives of a volume integral. Now we consider the shape de-
rivative of a volume integral. The domain function is given by the volume integral
of a function ϕ ∈W 1,1

loc (R2)

J(Ω∗σ) =
∫

Ω∗
σ

ϕdy. (3.6)

We recall from [24, 1] the following transformation Lemmas.

Lemma 3.3. Let ϕ ∈W 1,1
loc (R2), then ϕ ◦ Λσ ∈W 1,1

loc (R2) and

J(Ω∗σ) =
∫

Ω∗
σ

ϕdy =
∫

Ω∗
ϕ ◦ ΛσJσdy, (3.7)

where Jσ = detDΛσ is the volume jacobian.

Lemma 3.4. (1) For σ small enough, the map W 1,1
loc (R2)→W 1,1

loc (R2);ϕ 7→ ϕ ◦Λσ
is locally lipschitz and

∇(ϕ ◦ Λσ) = (DΛσ)T (∇ϕ) ◦ Λσ, (3.8)

(2) If Λσ is the flow of a vector field ~h ∈ C0([0, ε), C1(R2,R2)), then the map
[0, ε)→W 1,1

loc (R2); σ 7→ ϕ ◦ Λσ is well defined and

d

dσ
(ϕ ◦ Λσ) = (∇ϕ · ~h(σ)) ◦ Λσ ∈ L1

loc(R2); (3.9)

the map [0, ε)→ C0
loc(R2); σ 7→ Jσ is differentiable with

d

dσ
Jσ = (div~h(σ)) ◦ ΛσJσ ∈ C0

loc(R2). (3.10)

In terms of definition 3.2 and Lemma 3.3, we can get

dJ(Ω∗;~h) = lim
σ→0

1
σ

∫
Ω∗

((ϕ ◦ Λσ)Jσ − (ϕ ◦ Λ0)J0)dy

=
∫

Ω∗
lim
σ→0

1
σ

((ϕ ◦ Λσ)Jσ − (ϕ ◦ Λ0)J0)dy,
(3.11)

where Λ0(y) = y and J0(y) = 1.
From Lemma 3.4, we apply product rule, chain rule and Gauss theorem to have

dJ(Ω∗;~h) =
∫

Ω∗
((∇ϕ · ~h(0)) ◦ Λ0J0 + (ϕ ◦ Λ0)(div~h(0)) ◦ Λ0J0)dy

=
∫

Ω∗
(∇(ϕ ◦ Λ0) · ~h(0) + (ϕ ◦ Λ0)(div~h(0) ◦ Λ0))dy

=
∫

Ω∗
(∇ϕ · ~h(0) + ϕdiv~h(0))dy

=
∫

Ω∗
div(ϕ~h(0))dy

=
∫

Ω∗
ϕ~h(0) · νdΓ,

(3.12)

where ~h(0) · ν is the Euclidean inner product in R2, Γ is the boundary of Ω∗, ν is
the outward unit normal of the boundary Γ.
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Theorem 3.5. Let ϕ ∈ W 1,1
loc (R2), Λσ be the flow of a vector field ~h in the space

C0([0, ε), C1(R2,R2)), the open subset Ω∗ has a Lipschitz boundary Γ, ν is the
outward unit normal of the boundary Γ, then the shape derivatives of a volume
integral is as follows

dJ(Ω∗;~h) =
∫

Γ

ϕ~h(0) · νdΓ. (3.13)

In terms of Theorem 3.5, we can get the shape derivative of solution for problem
(2.1) and (2.2) from (2.4)

du(x,Ω∗;~h) =
∫

Γ

G(x, y)~h(0, y) · ν(y)dΓ(y), x ∈ Ω∗. (3.14)

3.3. Parameterization. To compute easily, we should parameterize the boundary
Γ of Ω∗. We want to detect the location and the size of the hidden source, and then
reconstruct the shape of the source. Thus we employ two methods to parameterize
the boundary Γ.

Firstly, we apply the polar coordinates to parameterize the boundary Γ given by

Γ : O + r(cos t, sin t), 0 ≤ t ≤ 2π,

for determining the location and the size of the hidden source within a body, where
O = (O1, O2) is the centroid of the domain Ω∗ and r is radius. We take every point
y on the boundary Γ of the domain Ω∗. Let

y =
(
O1

O2

)
+ r

(
cos t
sin t

)
, 0 ≤ t ≤ 2π.

We take three transformations Λσ1 , Λσ2 , Λσ3 for O1, O2 and r, respectively, then
we can get the transformed geometry Ω∗σ. Three transformations Λσ1 , Λσ2 and Λσ3

are given by

Λσ1(y) = y + σ1

(
1
0

)
, Λσ2(y) = y + σ2

(
0
1

)
,Λσ3(y) = y + σ3

(
cos t
sin t

)
.

Thus the vector field ~h(0, y) = (h1, h2, h3) is as follows

h1 =
(

1
0

)
, h2 =

(
0
1

)
, h3 =

(
cos t
sin t

)
. (3.15)

By using a simple calculation, we obtain

dΛσ1(y)
dσ1

∣∣
σ1=0

=
dΛσ1(y)
dO1

= h1,
dΛσ2(y)
dσ2

∣∣
σ2=0

=
dΛσ2(y)
dO2

= h2,

dΛσ3(y)
dσ3

∣∣
σ3=0

=
dΛσ3(y)
dr

= h3.

Let y = (y1, y2), we know that

y′1 =
dy1

dt
= −r sin t, y′2 =

dy2

dt
= r cos t.

So the outward unit normal is

ν =
(y′2,−y′1)√

(y′1)2 + (y′2)2
= (cos t, sin t). (3.16)

We can use β = (O1, O2, r) to describe the location and the size of the hidden
source within a body.
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Secondly, in order to reconstruct the shape of the hidden source, we parameterize
the boundary Γ of Ω∗ as

Γ : O + r(t)(cos t, sin t), 0 ≤ t ≤ 2π,

where O is the centroid of the domain Ω∗ which is fixed, and r(t) is a real-valued
function of 0 ≤ t <≤ 2π which is given by

r(t) = c0 +
l∑

j=1

(cj cos(jt) + cj+l sin(jt)), (3.17)

where 0 ≤ t ≤ 2π, cj ∈ R, l ∈ N.
We take every point y on the boundary Γ of the domain Ω∗. Let

y = O + r(t)
(

cos t
sin t

)
,

We take transformations Λσ0 , . . . ,Λσ2l for c0, . . . , c2l, respectively, then we can get
the transformed geometry Ω∗σ. Transformations Λσ0 , . . . ,Λσ2l are given by

Λσj (y) = y + rσj (t)
(

cos t
sin t

)
, j = 0, 1, . . . , 2l,

where

rσj (t) = (c0, . . . , cj + σj , . . . , c2l)(1, . . . , cos(lt), sin(t), . . . , sin(lt))T ,

0 ≤ t ≤ 2π. The vector field ~h = (h0, h1, . . . , h2l) is given by

hj = cos(jt)
(

cos t
sin t

)
, j = 0, . . . , l,

hj = sin((j − l)t)
(

cos t
sin t

)
, j = l + 1, . . . , 2l,

(3.18)

and we have
dΛσj (y)
dσj

∣∣∣
t=0

=
dΛσj (y)
dcj

= hj , j = 0, . . . , 2l.

Let y = (y1, y2) = O + r(t)(cos t, sin t), we obtain

y′1 =
dy1

dt
= r′(t) cos t− r(t) sin t,

y′2 =
dy2

dt
= r′(t) sin t+ r(t) cos t.

Thus the outward unit normal vector is given by

ν =
(y′2,−y′1)√

(y′1)2 + (y′2)2
. (3.19)

We can use β = (c0, c1, . . . , c2l) to describe the shape of the hidden source within a
body.

According to parameters β and the vector field ~h, Equation (3.14) can be changed
as

∇βu(x, β;~h) =
∫ 2π

0

G(x,O1 + r cos t, O2 + r sin t)~h(0, O1 + r cos t, O2 + r sin t)

× ν(O1 + r cos t, O2 + r sin t)
√

(y′1)2 + (y′2)2dt, x ∈ Ω
(3.20)



8 J.-C. LIU EJDE-2017/119

where ~h = (h1, h2, h3)T or ~h = (h0, . . . , h2l)T .
Denote u(x, χ(Ω∗)) and ∇βu(x, β;~h) as u(x, β) and ∇βu(x, β), respectively. Us-

ing polar coordinate to (2.4), we have

u(x, β) =
∫ 2π

0

dt

∫ r(t)

0

∂G(x, y(O1 + r cos t, O2 + r sin t))rdr, x ∈ Ω, (3.21)

and
∇βu(x, β)

=
∫ 2π

0

G(x,O1 + r(t) cos t, O2 + r(t) sin t)~h(0, O1 + r(t) cos t, O2

r(t) sin t) · ν(O1 + r(t) cos t, O2 + r(t) sin t)
√

(y′1)2 + (y′2)2dt, x ∈ Ω,

(3.22)

then we can get

∂u(x, β)
∂ν(x)

=
∫ 2π

0

dt

∫ r(t)

0

∂G(x, y(O1 + r cos t, O2 + r sin t))
∂ν(x)

rdr

=
∫ 2π

0

dt

∫ 1

0

∂G(x, y(O1 + vr(t) cos t, O2 + vr(t) sin t))
∂ν(x)

vr2(t)dv, x ∈ Ω,

(3.23)

∂∇βu(x, β)
∂ν(x)

=
∫ 2π

0

∂G(x,O1 + r(t) cos t, O2 + r(t) sin t)
∂ν(x)

~h(0, O1 + r(t) cos t, O2

+ r(t) sin t) · ν(O1 + r(t) cos t, O2 + r(t) sin t)
√

(y′1)2 + (y′2)2dt, x ∈ Ω.

(3.24)

4. Reconstruction algorithms for a hidden source

In this section, we want to seek reconstruction algorithms to determine the lo-
cation, the size and the shape of hidden source. In practical applications, we can
only get measured data with errors on the boundary. The inverse source problem is
nonlinear and ill-posed. Therefore, we should employ the regularization technique
to solve this inverse source problem.

We consider the objective function as follows

F (β) =
1
2

∥∥gδ − ∂u(·, β)
∂ν

∥∥2

L2(∂Ω)
, (4.1)

where ‖ · ‖L2(∂Ω) denotes the L2-norm, gδ are the measured data on the boundary
of the domain Ω and

β = (O1, O2, r) ∈ R3, or β = (c0, . . . , c2l) ∈ R(2l+1).

This problem is a nonlinear least squares optimization problem, we propose
reconstruction algorithms to find the minimum of the objective function in (4.1)
by update β. Starting with an initial guess β0, these algorithms proceed by the
iterations

βk+1 = βk +4, k = 0, 1, 2 . . . , (4.2)
where 4 is the increment vector.
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From (4.1), we can obtain the gradient of the objective function

F ′(β) = −
〈
gδ − ∂u(·, β)

∂ν
,
∂∇βu(·, β)

∂ν

〉
, (4.3)

where 〈·, ·〉 denotes the L2(∂D) inner product.
We know that the measured data gδ are discrete data at discrete points {xs}

on the boundary of the domain Ω. In order to compute numerically inner product
(4.3), we apply the collocation method to compute ∂u(x,β)

∂ν(x) and ∂∇βu(x,β)
∂ν(x) on the

collocation points {xs} of the boundary ∂Ω. For each collocation point xs, we
should estimate the integral equations (3.23) and (3.24). We note that the kernels
are smooth in (3.23) and (3.24) so that the well-estimated quadrature rules can be
employed for numerical approximation.

The interval [0, 2π] is partitioned as 0 = t0 < t1 < · · · < tn1 < 2π, where
θi = (i − 1)ht(i = 1, . . . , n1) and ht = 2π

n1
. The interval [0, 1] is partitioned as

0 = v0 < v1 < · · · < vn1 < 1, where vj = (j − 1)hv(j = 1, . . . , n2) and hv = 1
n2

. In
terms of integral equations (3.23) and (3.24), we can obtain the approximate value
of collocation point xs as follows

∂u(xs, β)
∂ν(xs)

=
n2∑
j=1

(
n1∑
i=1

∂G(xs, y(O1 + vjr(ti) cos ti, O2 + vjr(ti) sin ti))
∂ν(xs)

vjr
2(ti)hv)ht,

(4.4)

∂∇βu(xs, β)
∂ν(xs)

=
n1∑
i=1

∂G(xs, O1 + r(ti) cos ti, O2 + r(ti) sin ti)
∂ν(xs)

~h(0, O1

+ r(ti) cos ti, O2 + r(ti) sin ti) · ν(O1 + r(ti) cos ti, O2

+ r(ti) sin ti)
√

(y′1)2
i + (y′2)2

iht.

(4.5)

According to the numerical approximation (4.4) and (4.5), we can compute ∂u(x,β)
∂ν(x)

and ∂∇βu(x,β)
∂ν(x) at the collocation points {xs} on the boundary ∂Ω. Then, the inner

product (4.3) can be computed well along with measurement data gδ.

4.1. Gradient descent algorithm (GDA). GDA is a way to find a local mini-
mum of an objective function. The way it works is we start with an initial guess
of the solution and we take the gradient of the function at that point. We step
the solution in the negative direction of the gradient and we repeat the process.
GDA will eventually converge where the gradient is zero. GDA is a first-order
optimization algorithm which is recognized as a highly convergent algorithm for
finding the minimum of the objective function. We know that this inverse source
problem is ill-posed, we employ the regularization technique for GDA because of
the measurement data gδ(x). The modified objective function is as follows

F̃(β) = F (β) +
λ

2
|β|2, (4.6)

where λ is the regularization parameter. According to Theorem 2.3, we can obtain
the convergence theorem for parameters β by minimizing objective function F̃(β).

For GDA, a key issue is to choose the regularization parameter λ. A wise choice
of regularization parameter is obviously crucial to obtaining useful approximate
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solutions to ill-posed problems, there are well-studied techniques for computing a
good regularization parameter, such as the discrepancy principle [21], the general-
ized cross-validation (GCV) [9], the L-curve [12] and so on. In this paper, we are
interested in a-posteriori rules λ for choosing the regularization parameter when
minimizing F̃ (β). Based on discrepancy principle, we apply sequential discrepancy
principle [2] to choose the regularization parameter. For prescribed 0 < q < 1 and
λ0 > 0, let

Λq := {λj |λj = qjλ0, j ∈ Z}. (4.7)

Given any δ > 0, measured data gδ and τ > 1, we say that an element λ ∈ Λq is
chosen according to the sequential discrepancy principle, if

F (βδλ) < τδ < F (βδλ/q) (4.8)

The gradient of F̃(β) is

F̃ ′(β) = F ′(β) + λβ. (4.9)

The increment vector 4 of (4.1) is given by

4 = −αF̃ ′(β), (4.10)

where α is the step size of iteration.
The final iteration relationship is as follows

βk+1 = βk − αF̃ ′(βk), k = 0, 1, 2 . . . . (4.11)

4.2. Trust-region-reflective optimization algorithm (TRA). TRA is a sub-
space trust-region method and is based on the interior-reflective Newton method
described in [7, 8] for the detail. Each iteration involves the approximate solution
of a large linear system using method of preconditioned conjugate gradient. TRA
is used to minimize a nonlinear function subject to simple bound. TRA exhibits
strong convergence properties and global and second-order convergence.

According to the objective function F (β), the shape derivative to β is as follows

F̃ ′(β) =
∂∇βu(·, β)

∂ν
. (4.12)

Assume the increment 4∗ is a solution of a subproblem as follows

min
4∗∈Rn

{ψ(4∗) = F̃ ′(β)T4∗ +
1
2
4T∗M4∗ : |B4∗| ≤ w}, (4.13)

where B is a positive diagonal scaling matrix refer to [7, 8], and w > 0 is the trust
region size, and

M(β) = F̃ ′(β)T F̃ ′(β) +B diag(F̃ ′(β)) diag(sign(F̃ ′(β)))B.

We take the initial descent direction4∗ as a new starting guess, and then determine
the piecewise linear reflective path p(α). Moreover, we obtain an acceptable stepsize
α by an approximate piecewise line minimization F (βk + p(αk)), refer to [7] for
details.

The final iteration relationship is as follows

βk+1 = βk + p(αk), k = 0, 1, 2 . . . . (4.14)
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5. Numerical experiments

In this section, we show that the results of some numerical experiments that
illustrate the reconstruction algorithms of the previous section. The measured data
are given by

gδ = g(1 + δ · rand(size(g)),
where g is the exact data, rand(size(g)) is a random number uniformly distributed
in [−1, 1] and δ is a relative noise level. In order to calculate conveniently, we take
a unit circle as the boundary ∂Ω of the solution domain Ω.

5.1. Sensitivity analysis on the chosen parameter. As we know, the param-
eter has an important role in our numerical computation. To analyze the sen-
sitivity of the chosen parameter, we suppose the source is circle, the center is
located in origin and the radius is 0.3. We parameterize the boundary Γ of Ω as
Γ : O+r(cos t, sin t), 0 ≤ t ≤ 2π, along with β = (O1, O2, r), choose (0.71, 0.23, 0.02)
as a test for starting guess and the error is given by error =

√
O2

1 +O2
2 + (r − 0.3)2.
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Figure 1. Sensitivity of the regularization parameter λ for GDA
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Figure 2. Sensitivity of the step size parameter α for GDA
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According to the parameter of GDA, the regularization parameter and the step
size should be analyzed, the results are shown in Figures 1 and 2. Figure 1 is the
sensitivity of the regularization parameter. In this case, we choose α = 0.25, λ0 = 2,
q = 0.02, τ = 2.46 and take |F̃(βk+1)− F̃(βk)| < 10−6 as a stopping criterion. we
apply the sequential discrepancy principle [2] to obtain the regularization parameter
λ = 1.6e− 5 as in Figure 1 shown.

Figure 2 is the sensitivity of the step size. The step size has a consistent increase
or decrease effect on the error and the elapsed time of CPU in general. That
means, as the error decrease, the elapsed time decrease, at the same time, as the
error increase, the elapsed time increase along with the step size increase. In our
computation, we want to find the balance between the error and the elapsed time.
That means, for fixed the step size α, the error is smaller and the elapsed time of
CPU is fewer. Therefore, we choose the step size in the stability interval [0.2, 0.6]
from Figures 2(a) and 2(b).

5.2. Numerical stability and convergence of the proposed algorithms. To
show the numerical stability and convergence of GDA, we suppose the hidden source
is a circle which is located in origin O(0, 0) and the radius is 0.3. We parameterize
the boundary Γ of Ω as Γ : O+r(cos t, sin t), 0 ≤ t ≤ 2π, along with β = (O1, O2, r),
choose (0.71, 0.23, 0.02) as a test for starting guess and the error is given by

error =
√
O2

1 +O2
2 + (r − 0.3)2.

In this case, we choose α = 0.25, λ0 = 2, q = 0.02, τ = 2.46 and take |F̃(βk+1) −
F̃(βk)| < 10−6 as a stopping criterion.
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Figure 3. The numerical stability of GDA for different noise levels

In Figures 3 and 4, we use GDA to reconstruct the approximation location and
the size of hidden source within a body. In Figure 3(a), we investigate the numerical
stability of GDA with a fixed number of collocation points and four different levels
of noise added to the data, e.g. 3%, 9%, 15% and 21%. Figure 3(b) shows the error
of the location and the size between the exact source and the reconstructed source
for different noise levels δ. In Figure 4(a), we investigate the numerical convergence
of GDA with a fixed level of noise added to the data and four different values of
the number of collocation points, e.g. 20, 25, 30, 35, 40. Figure 4(b) shows the error
of the location and the size between the exact source and the reconstructed source
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Figure 4. The numerical convergence of GDA for different values
of the number of collocation points

for the different number of collocation points. From Figures 3 and 4, we can see
that our proposed method is stable and effective to detect the hidden source.

5.3. Estimation of the location and the size of the hidden source. To esti-
mate the location and the size of the hidden source within a body, we parameterize
the boundary Γ of Ω as O + ρ(cos t, sin t), 0 ≤ t ≤ 2π, along with β = (O1, O2, r),
that is, we use the circle to approximate the source for every iteration.

For simplification, we assume the source is located in origin (0, 0).
Algorithm 1 for GDA Estimate the location and the size of the hidden source.

Let ε, δ, τ , q, λ0, α and gδ be given.
(1) Input β0 = (O1, O2, r): the location and the size of starting guess

(2) Compute the values of collocation points ∂u(·,βk)
∂ν and

∂∇
βk
u(·,βk)

∂ν from (4.4)and
(4.5)
(3) Choose λ by the sequential discrepancy principle from (4.8)
(4) Compute F ′(βk) and F̃ ′(βk) from (4.3) and (4.9)
(5) Update βk+1 from (4.11)
(6) If ‖F̃(βk+1) − F̃(βk)‖ ≤ ε, stop, β = βk+1; otherwise, set βk = βk+1, return
to( 4)

Algorithm 2 for TRA Estimate the location and the size of the hidden source.
Let gδ be given.
(1) Input β0 = (O1, O2, r): the location and the size of starting guess

(2) Compute the values of collocation points ∂u(·,βk)
∂ν and

∂∇
βk
u(·,βk)

∂ν from (4.4)and
(4.5)
(3) Compute R = ‖gδ − ∂u(·,βk)

∂ν ‖ and J = F̃ ′(βk) from (4.12)
(4) In terms of R and J , call Matlab programs ’lsqnonlin’ to update βk+1

(5) From the updated βk+1, obtain the approximation location (Ok+1
1 , Ok+1

2 ) and
the size rk+1 of the hidden source

Example 5.1. In this case, we suppose the source is a peanut or a peach or a pear
or a “L” type. Polar radius of the peanut is given by

rpt = 0.4
√

(cos t)2 + 0.25(sin t)2, 0 ≤ t ≤ 2π,
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polar radius of the peach is given by

rph = 3/10− 1/12 sin t− 1/28 sin(3t), 0 ≤ t ≤ 2π,

polar radius of the pear is given by

rpr = 3/10 + 1/16 cos(3t), 0 ≤ t ≤ 2π,

and the longest length of the “L” type is 0.25.
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(a) x(−0.0069, 0.0095), r = 0.3170 (b) x(0.0079,−0.0819), r = 0.3086
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(c) x(0.0029,−0.0073), r = 0.3033 (d) x(−0.0454, 0.0362), r = 0.2439

Figure 5. (a) Peanut; (b) peach; (c) pear; (d) ”L” shape. Esti-
mate the location and the size of the source with 10% noise data
along with exact solution (red), initial guess (black) and recovered
solution (blue), respectively for Example 5.1.

In Figure 5, we can get the approximate centroid location and the size of the
source using GDA along with 30 measured data. We choose ε = 10−7, δ = 0.1,
α = 0.25, λ0 = 1.5, q = 0.02 and τ = 2.71. In fact, we can use any point and
any radius as a starting guess in the domain of the solution for these four cases.
In Figure 5, we choose (0.71, 0.23, 0.02) as a test for starting guess. From Figure 5
and Table 1, it can be seen that we obtain the more accurate approximation of the
location and the size for four different cases by GDA. We can get the same result
with TRA.
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Table 1. The approximate location and the size of the hidden
source for four different cases using GDA along with 10% noise
data for Example 5.1

Location Size

Exact (0,0) r

Guess (0.71,0.23) 0.02

peanut (-0.0069,0.0095) 0.3170

peach (0.0079,-0.0819) 0.3086

pear (0.0029,-0.0073) 0.3033

“L” shape (-0.0454,0.0362) 0.2439

5.4. Estimation of the shape of the hidden source. From the previous sub-
section, we know that the location and the size of the hidden source can be deter-
mined. In this sub-section, we try to reconstruct the shape of the hidden source
along with the location and the size of the source given a prior. Therefore, we can
parameterize the boundary Γ of Ω as O + r(t)(cos t, sin t) with r(t) a real-valued
function of 0 ≤ t ≤ 2π, and O is fixed which is the center of the sub-domain Ω. We
apply GDA and TRA to reconstruct the shape of the source.

Algorithm 3 for GDA Reconstruct the shape of the hidden source. Let ε, δ,
τ , q, λ0, α , O, c00 and gδ be given.
(1) Input β0 = (c00, 0, . . . , 0): the shape of starting guess

(2) Compute the values of collocation points ∂u(·,βk)
∂ν and

∂∇
βk
u(·,βk)

∂ν from (4.4)and
(4.5)
(3) Choose λ by the sequential discrepancy principle from (4.8)
(4) Compute F ′(βk) and F̃ ′(βk) from (4.3) and (4.9)
(5) Update βk+1 from (4.11)
(6) If ‖F̃(βk+1)− F̃(βk)‖ ≤ ε, stop, β = βk+1; otherwise, set βk = βk+1, return to
(4)

Algorithm 4 for TRA Reconstruct the shape of the hidden source. Let O, ρ
and gδ be given.
(1) Input β0 = (c00, 0, . . . , 0): the shape of starting guess

(2) Compute the values of collocation points ∂u(·,βk)
∂ν and

∂∇
βk
u(·,βk)

∂ν from (4.4)and
(4.5)
(3) Compute R = ‖gδ − ∂u(·,βk)

∂ν ‖ and J = F̃ ′(βk) from (4.12)
(4) In terms of R and J , call Matlab programs ’lsqnonlin’ to update βk+1

(5) From (3.17), obtain the shape of the hidden source base on the update βk+1

Example 5.2. In this case, we also assume the hidden source is a peanut or a
peach or a pear or a “L” type with the approximate location and the size given by
Table 1 in Example 5.1.

In Figures 6 and 7, we apply two iterative algorithms to recover the shape of the
hidden source for four different cases within a body. We choose ε = 10−7, δ = 0.1,
τ = 2.71, q = 0.02, λ0 = 1.5, α = 0.25 and c00 = ρ for GDA. We take a circle as a
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(a) l = 2; c00 = 0.3170 (b) l = 3, c00 = 0.3086

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

(c) l = 3, c00 = 0.3033 (d) l = 3, c00 = 0.2439

Figure 6. (a) Peanut; (b) peach; (c) pear; (d) “L” shape. Recon-
structed the shape of the hidden source with 10% noise data using
GDA along with exact shape (red) and recovered shape (blue),
respectively for Example 5.2.

starting guess for the source, thus we can use the size of the source as the radius
of a circle from Table 1, or reset it.

In this example, we use the approximate location given by Table 1 in Example 5.1
as the fix center of the sub-domain Ω and reset the initial value β0 = (c00, 0, . . . , 0)
as a starting guess. Compared with these two algorithms, the convergence speed
of TRA is much faster than GDA. The run time of CPU for TRA (about 0.5sec) is
far less than GDA (about 100sec). From Figures 6 and 7, we can see that these two
algorithms work well with noisy data to reconstruct the shape of the source within
a body.

Example 5.3. In this case, we consider the hidden source is a kite or a hypocycloid.
Polar radius of the kite is given by

rkt = 0.3(1 + 0.9 cos t+ 0.15 sin(2t))/(1 + 0.7 cos t), 0 ≤ t ≤ 2π, (5.1)

and polar radius of the hypocycloid is given by

rhy = 0.3
√

10/9 + 2/3 cos(4t), 0 ≤ t ≤ 2π. (5.2)

In Figure 8, we apply GDA and TRA to recover the shape of the hidden source
along with 10% noise. The centroid of the source is origin. We choose ε = 10−7,
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(a) l = 2, c00 = 0.02 (b) l = 3, c00 = 0.02
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Figure 7. (a) Peanut; (b) peach; (c) pear; (d) “L” shape. Recon-
structed the shape of the hidden source with 10% noise data using
TRA along with exact shape (red) and recovered shape (blue),
respectively for Example 5.2.

δ = 0.1, τ = 2.12, q = 0.02, λ0 = 1.2 and α = 0.25 for GDA. GDA is employed to
recover the shape of the source in Figures 8(a) and 8(c). The shape of the source in
Figures 8(b) and 8(d) is reconstructed by TRA. From Figure 8 we know that TRA
is much less sensitive to the noise level, it works with much less prior information.
However, the shape of the recovered hidden source agrees well with that of the true
one for both iterative algorithms.

Conclusions. In this paper, we consider the inverse source problem within a body
from the measured data . We want to detect the salient features of the hidden
source, such as the location, the size and the shape. We transform this problem
into an optimization problem for finding a minimum of an objective function. This
inverse source problem is nonlinear and ill-posed, thus regularization technique of
our proposed algorithms should be considered. We apply GDA and TRA to solve
this inverse source problem. Our proposed algorithms are robust in the presence
of noise, and less sensitive to the noise level and an initial guess. Another nice
feature of TRA is that it is self-adaptive, that is, at each iteration it can remedy
the possible errors from the previous iterations. Numerical results show that our
proposed algorithms are feasible and stable.
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(a) l = 3, c00 = 0.01 (b) l = 2, c00 = 0.02
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Figure 8. Reconstructed the shape of the hidden source with
10% noise data using GDA and TRA along with exact shape (red)
and recovered shape (blue), respectively for Example 5.3.
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