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Abstract. By using variational methods and critical point theory, we es-

tablish the existence of infinitely many classical solutions for a fourth-order
differential equation. This equation has nonlinear boundary conditions and

depends on two real parameters.

1. Introduction

The aim of this article is to study the fourth-order problem

u(iv)(x) = λf(x, u(x)) in [0, 1],

u(0) = u′(0) = 0,

u′′(1) = 0, u′′′(1) = µg(u(1)),

(1.1)

where f : [0, 1] × R → R is an L1-Caratéodory function, g : R → R is a continu-
ous function and λ, µ are positive parameters. Problem (1.1) describes the static
equilibrium of a flexible elastic beam of length 1 when, along its length, a load f is
added to cause deformation. Precisely, conditions u(0) = u′(0) = 0 mean that the
left end of the beam is fixed and conditions u′′(1) = 0, u′′′(1) = µg(u(1)) mean that
the right end of the beam is attached to a bearing device, given by the function g.

Existence and multiplicity of solutions for fourth-order boundary value problems
has been discussed by several authors in the last decades; see for example [1, 3, 4,
8, 9, 11, 12, 20, 21, 22] and references therein.

Yang et al. [22], used Ricceri’s variational principle [19] to establish the existence
of at least two classical solutions generated from g for problem (1.1), with µ = 1.

The authors in [8], using a multiplicity result by Cabada and Iannizzotto [7],
ensured the existence of at least two nontrivial classical solutions for the problem

u(4)(x) + λf(x, u(x)) = 0, 0 < x < 1,

u(0) = u′(0) = u′′(1) = 0,

u′′′(1) = λg(u(1)),
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where the functions f : [0, 1]× R → R and g : R → R are continuous and λ ≥ 0 is
a real parameter.

More recently, Bonanno et al. [3], by means of an abstract critical points result
of Bonanno [2], studied the existence of at least one non-zero classical solution for
problem (1.1).

Our goal in this article is to obtain sufficient conditions to guarantee that prob-
lem (1.1) has infinitely many classical solutions. To this end, we require that the
primitive F of f satisfy a suitable oscillatory behavior either at infinity (for obtain-
ing unbounded solutions) or at the origin (for finding arbitrarily small solutions),
while G, the primitive of g, have an appropriate growth (see Theorems 3.1 and 3.6).
Our analysis is mainly based on a general critical point theorem (see Lemma 2.1
below) contained in [5]; see also [18].

We just point out that Song [20, Theorem 3.1], using the same variational setting
but different technical arguments, ensured the existence of infinitely many classical
solutions for the problem

u(4) = λf(x, u) + µh(x, u), 0 < x < 1,

u(0) = u′(0) = 0,

u′′(1) = 0, u′′′(1) = g(u(1)),

where λ, µ are two positive parameters, f, h are two L1-Carathéodory functions,
and g ∈ C(R) is a real function. A special case of our main result reads as follows.

Theorem 1.1. Let f : R → R be a nonnegative continuous function. Put F (ξ) =∫ ξ
0
f(t)dt for all ξ ∈ R and assume that

lim inf
ξ→+∞

F (ξ)
ξ2

= 0 and 0 < B? := lim sup
ξ→+∞

F (ξ)
ξ2
≤ +∞.

Then, for each λ > 27π4

27B? , for every nonpositive continuous function g : R → R
satisfying the condition

g∞ := lim sup
ξ→+∞

−
∫ ξ

0
g(t)dt
ξ2

< +∞,

and for each µ ∈
]
0, 1

2g∞

[
, the problem

u(iv)(x) = λf(u(x)) in [0, 1],

u(0) = u′(0) = 0,

u′′(1) = 0, u′′′(1) = µg(u(1)),

(1.2)

admits infinitely many classical solutions.

The plan of the article is as follows. In Section 2 we introduce our notation and a
suitable abstract setting (see Lemma 2.1). In Section 3 we present our main result
(see Theorems 3.1 and 3.6) and some significative consequences (see Theorem 3.8
as well as Corollaries 3.4, 3.5 and 3.9). A concrete example of an application is
exhibited in Example 3.3.

In the conclusion, we cite a recent monograph by Kristály, Rădulescu and Varga
[10] as a general reference on variational methods adopted here.
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2. Preliminaries

We shall prove our results applying the following smooth version of [5, Theorem
2.1], which is a more precise version of Ricceri’s variational principle [18, Theorem
2.5]. We point out that Ricceri’s variational principle generalizes the celebrated
three critical point theorem of Pucci and Serrin [16, 17] and is an useful result
that gives alternatives for the multiplicity of critical points of certain functions
depending on a parameter.

Lemma 2.1. Let X be a reflexive real Banach space, let Φ,Ψ : X → R be two
Gâteaux differentiable functionals such that Φ is sequentially weakly lower semi-
continuous, strongly continuous and coercive, and Ψ is sequentially weakly upper
semicontinuous. For every r > infX Φ, let

ϕ(r) := inf
u∈Φ−1(−∞,r)

(
supv∈Φ−1(−∞,r) Ψ(v)

)
−Ψ(u)

r − Φ(u)
,

γ := lim inf
r→+∞

ϕ(r), δ := lim inf
r→(infX Φ)+

ϕ(r).

Then the following properties hold:
(a) If γ < +∞, then for each λ ∈]0, 1/γ[, the following alternative holds: either

(a1) Iλ := Φ− λΨ possesses a global minimum, or
(a2) there is a sequence {un} of critical points (local minima) of Iλ such

that
lim

n→+∞
Φ(un) = +∞.

(b) If δ < +∞, then for each λ ∈]0, 1/δ[, the following alternative holds: either
(b1) there is a global minimum of Φ which is a local minimum of Iλ, or
(b2) there is a sequence {un} of pairwise distinct critical points (local min-

ima) of Iλ that converges weakly to a global minimum of Φ.

We also refer the interested reader to [6, 13, 14, 15] and the references therein,
in which Ricceri’s variational principle and its variants have been successfully used
to obtain the existence of multiple solutions for different boundary value problems.

Let f : [0, 1] × R → R be an L1-Caratéodory function and g : R → R be a
continuous function. We recall that f : [0, 1] × R → R is an L1-Carathéodory
function if

(a) the mapping x 7→ f(x, ξ) is measurable for every ξ ∈ R;
(b) the mapping ξ 7→ f(x, ξ) is continuous for almost every x ∈ [0, 1];
(c) for every ρ > 0 there exists a function lρ ∈ L1([0, 1]) such that

sup
|ξ|≤ρ

|f(x, ξ)| ≤ lρ(x)

for almost every x ∈ [0, 1].
Corresponding to f, g we introduce the functions F,G as follows

F (x, ξ) :=
∫ ξ

0

f(x, t)dt, G(ξ) := −
∫ ξ

0

g(t)dt,

for all x ∈ [0, 1] and ξ ∈ R.
We consider the space

X := {u ∈ H2([0, 1]) : u(0) = u′(0) = 0},
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where H2([0, 1]) is the Sobolev space of all function u : [0, 1]→ R such that u and its
distributional derivative u′ are absolutely continuous and u′′ belongs to L2([0, 1]).
X is a Hilbert space with the inner product

〈u, v〉 :=
∫ 1

0

u′′(t)v′′(t)dt

and the corresponding norm

‖u‖ :=
(∫ 1

0

(u′′(t))2dt
)1/2

.

It is easy to see that the norm ‖ · ‖ on X is equivalent to the usual norm∫ 1

0

(
|u(t)|2 + |u′(t)|2 + |u′′(t)|2

)
dt.

It is well known that the embedding X ↪→ C1([0, 1]) is compact and

‖u‖C1([0,1]) := max{‖u‖∞, ‖u′‖∞} ≤ ‖u‖ (2.1)

for all u ∈ X (see [22]).
We say that u ∈ X is a weak solution of problem (1.1) if∫ 1

0

u′′(x)v′′(x)dt− λ
∫ 1

0

f(x, u(x))v(x)dx+ µg(u(1))v(1) = 0

for all v ∈ X. By a classical solution of problem (1.1) we mean a function
u ∈ C1([0, 1]) such that u(iv)(x) ∈ C([0, 1]) and the boundary conditions and the
equation are satisfied in [0, 1]. In [22, Lemma 2.1] it has been shown that the weak
solutions are classical solutions of problem (1.1).

3. Main results

Before introducing the main result, we define some notation. We put

A := lim inf
ξ→+∞

∫ 1

0
max|t|≤ξ F (x, t)dx

ξ2
, B := lim sup

ξ→+∞

∫ 1

3/4
F (x, ξ)dx

ξ2
.

Theorem 3.1. Let f : [0, 1]×R→ R be an L1-Caratéodory function. Assume that

(A1) F (x, ξ) ≥ 0 for all (x, ξ) ∈ [0, 3/4]× R;
(A2) A < 27

64π4B.

Then, for every λ ∈ Λ :=] 32π4

27B ,
1

2A [ and for every continuous function g : R → R,
whose potential G satisfying the conditions infξ>0G(ξ) = 0 and

G∞ := lim sup
ξ→+∞

max|t|≤ξ G(t)
ξ2

< +∞, (3.1)

if we put

µG,λ :=
1

2G∞
(1− 2Aλ),

where µG,λ = +∞ when G∞ = 0, problem (1.1) has an unbounded sequence of
classical solutions for every µ ∈]0, µG,λ[ in X.
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Proof. Our aim is to apply Lemma 2.1(a) to problem (1.1). To this end, fix λ̄ ∈ Λ
and g satisfying our assumptions. Since λ̄ < 1

2A , we have

µG,λ̄ :=
1

2G∞

(
1− 2Aλ̄

)
> 0.

Now fix µ̄ ∈]0, µG,λ̄[. For each u ∈ X, let the functionals Φ,Ψλ̄,µ̄ : X → R be
defined by

Φ(u) :=
1
2
‖u‖2,

Ψλ̄,µ̄(u) :=
∫ 1

0

F (x, u(x))dx+
µ̄

λ̄
G(u(1))

and put
Iλ̄,µ̄(u) := Φ(u)− λ̄Ψ(u), u ∈ X.

By standard arguments, it follows that Φ is sequentially weakly lower semicontin-
uous, strongly continuous and coercive. Moreover, Φ,Ψλ̄,µ̄ ∈ C1(X,R) and for any
u, v ∈ X, we have

Φ′(u)(v) =
∫ 1

0

u′′(x)v′′(x)dx,

Ψ′λ̄,µ̄(u)(v) =
∫ 1

0

f(x, u(x))v(x)dx− µ̄

λ̄
g(u(1))v(1).

In [22] the authors proved that Ψ′
λ̄,µ̄

is compact. Hence Ψλ̄,µ̄ is sequentially weakly
(upper) continuous (see [23, Corollary 41.9]).

First of all, we show that λ̄ < 1/γ. Hence, let {ξn} be a sequence of positive
numbers such that limn→+∞ ξn = +∞ and

lim
n→+∞

∫ 1

0
max|t|≤ξn

F (x, t)dx
ξ2
n

= A.

Put rn := ξ2
n/2 for all n ∈ N. Then, for all v ∈ X with Φ(v) < rn, taking (2.1) into

account, one has ‖v‖∞ < ξn. Note that Φ(0) = Ψλ̄,µ̄(0) = 0. Then, for all n ∈ N,

ϕ(rn) = inf
u∈Φ−1(−∞,rn)

(
supv∈Φ−1(−∞,rn) Ψλ̄,µ̄(v)

)
−Ψλ̄,µ̄(u)

rn − Φ(u)

≤
supv∈Φ−1(−∞,rn) Ψλ̄,µ̄(v)

rn

≤ 2
[∫ 1

0
max|t|≤ξn

F (x, t)dx
ξ2
n

+
µ̄

λ̄

max|t|≤ξn
G(t)

ξ2
n

]
.

Therefore, from assumption (A2) and condition (3.1), we obtain

γ ≤ lim inf
n→+∞

ϕ(rn) ≤ 2
(
A+

µ̄

λ̄
G∞

)
< +∞.

It follows from µ̄ ∈]0, µG,λ̄[ that γ < 2A+ 1−2λ̄A
λ̄

. Hence λ̄ < 1/γ.
Let λ̄ be fixed. We claim that the functional Iλ̄,µ̄ is unbounded from below.

Since 1
λ̄
< 27

32π4B, there exist a sequence {dn} of positive numbers and τ > 0 such
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that limn→+∞ dn = +∞ and

1
λ̄
< τ <

27
32π4

∫ 1

3/4
F (x, dn)dx

d2
n

(3.2)

for all n ∈ N large enough. For n ∈ N we define

wn(x) :=


0, x ∈ [0, 3/8],
dn cos2(4πx/3), x ∈]3/8, 3/4[,
dn, x ∈ [3/4, 1].

(3.3)

For any fixed n ∈ N, it is easy to see that wn ∈ X and, in particular, one has

Φ(wn) =
32
27
π4d2

n. (3.4)

On the other hand, bearing (A1) and infξ>0G(ξ) = 0 in mind, from the definition
of Ψλ̄,µ̄ and (3.2), we infer that

Ψλ̄,µ̄(wn) ≥
∫ 1

3/4

F (x, dn)dx+
µ̄

λ̄
G(dn) ≥ 32

27
π4τd2

n. (3.5)

It follows from (3.4) and (3.5) that

Iλ̄,µ̄(wn) ≤ 32
27
π4d2

n −
32
27
π4λ̄τd2

n =
32
27
π4(1− λ̄τ)d2

n

for all n ∈ N large enough. Since λ̄τ > 1 and dn → +∞ as n→ +∞, we have

lim
n→+∞

Iλ̄,µ̄(wn) = −∞.

Hence, our claim is proved. It follows that Iλ̄,µ̄ has no global minimum. Therefore,
by Lemma 2.1(a), there exists a sequence {un} of critical points of Iλ̄,µ̄ such that
limn→+∞ ‖un‖ = +∞, and the proof is complete. �

Remark 3.2. Under the conditions A = 0 and B = +∞, from Theorem 3.1 we see
that for every λ > 0 and for each µ ∈]0, 1

2G∞
[, problem (1.1) admits a sequence of

classical solutions which is unbounded in X. Moreover, if G∞ = 0, the result holds
for every λ > 0 and µ > 0.

Here, we present a concrete application of Theorem 3.1.

Example 3.3. Let f : [0, 1]× R→ R be a function defined by

f(x, t) =

{
0, (x, t) ∈ [0, 1]× {0},
x2t (2− 2 sin(ln |t|)− cos(ln |t|)) , (x, t) ∈ [0, 1]× (R− {0}).

A direct calculation yields

F (x, t) =

{
0, (x, t) ∈ [0, 1]× {0},
x2t2

(
1− sin(ln |t|)

)
, (x, t) ∈ [0, 1]× (R− {0}).

It is easy to see that A = 0 and B = 37/96. Hence, denoting u+ := max{u, 0}, by
taking Remark 3.2 into account, we have that for every (λ, µ) ∈]0, 210π4

333 [×]0, 1[ the
problem

u(iv)(x) = λf(x, u(x)) in [0, 1],

u(0) = u′(0) = 0,
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u′′(1) = 0, u′′′(1) = µ
(
u+(1) + 1

)
has a sequence of classical solutions which is unbounded in X.

The following corollary is a direct consequence of Theorem 3.1.

Corollary 3.4. Let f : [0, 1] × R → R be an L1-Caratéodory function. Assume
that hypothesis (A1) holds, and

A <
1
2
, B >

32π4

27
.

Then, for every continuous function g : R → R, whose potential G satisfying the
conditions infξ>0G(ξ) = 0 and (3.1), if we put

µG :=
1

2G∞
(1− 2A) ,

where µG = +∞ when G∞ = 0, the problem

u(iv)(x) = f(x, u(x)) in [0, 1],

u(0) = u′(0) = 0,

u′′(1) = 0, u′′′(1) = µg(u(1))

has an unbounded sequence of classical solutions for every µ ∈]0, µG[ in X.

We remark that Theorem 1.1 follows immediately from Theorem 3.1. Now,
we point out a special situation of our main result when the nonlinear term has
separated variables. To be precise, let h ∈ L1([0, 1]) such that h(x) ≥ 0 a.e.
x ∈ [0, 1], h 6≡ 0, and let k : R→ R be a nonnegative continuous function. Consider
the fourth-order problem

u(iv)(x) = λh(x)k(u(x)) in [0, 1],

u(0) = u′(0) = 0,

u′′(1) = 0, u′′′(1) = µg(u(1)).

(3.6)

Put K(ξ) :=
∫ ξ

0
k(t)dt for all ξ ∈ R, and set ‖h‖1 :=

∫ 1

0
h(x)dx and h0 :=

∫ 1
3
4
h(x)dx.

Corollary 3.5. Suppose that

lim inf
ξ→+∞

K(ξ)
ξ2

<
27h0

64π4‖h‖1
lim sup
ξ→+∞

K(ξ)
ξ2

.

Then, for each

λ ∈
] 32π4

(27h0) lim supξ→+∞
K(ξ)
ξ2

,
1

(2‖h‖1) lim infξ→+∞
K(ξ)
ξ2

[
,

and every continuous function g : R→ R, whose potential G satisfies the conditions
infξ>0G(ξ) = 0 and (3.1), if we put

µ′G,λ :=
1

2G∞

(
1− (2λ‖h‖1) lim inf

ξ→+∞

K(ξ)
ξ2

)
,

where µ′G,λ = +∞ when G∞ = 0, problem (3.6) has an unbounded sequence of
classical solutions for every µ ∈]0, µ′G,λ[ in X.
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Put

A′ := lim inf
ξ→0+

∫ 1

0
max|t|≤ξ F (x, t)dx

ξ2
, B′ := lim sup

ξ→0+

∫ 1

3/4
F (x, ξ)dx

ξ2
.

Using Lemma 2.1(b) and arguing as in the proof of Theorem 3.1, we can obtain the
following multiplicity result.

Theorem 3.6. Let f : [0, 1]×R→ R be an L1-Caratéodory function. Assume that
(A1) and

(A3) A′ < 27
64π4B

′,

are satisfied. Then, for every λ ∈ Λ :=] 32π4

27B′ ,
1

2A′ [ and for every continuous function
g : R→ R, whose potential G satisfying the conditions infξ>0G(ξ) = 0 and

G0 := lim sup
ξ→0+

max|t|≤ξ G(t)
ξ2

< +∞,

if we put

µ̃G,λ :=
1

2G0
(1− 2A′λ),

where µ̃G,λ = +∞ when G0 = 0, for every µ ∈ [0, µ̃G,λ) problem (1.1) has a
sequence of classical solutions, which converges strongly to zero in X.

Remark 3.7. Applying Theorem 3.6, results similar to Theorem 1.1 and Corollar-
ies 3.4 and 3.5 can be obtained. We omit the discussions here.

Now, we put

A′′ := lim inf
ξ→+∞

max|t|≤ξ G(t)
ξ2

, B′′ := lim sup
ξ→+∞

G(ξ)
ξ2

.

By reversing the roles of λ and µ, we can obtain the following result.

Theorem 3.8. Let g : R→ R be a continuous function. Assume that
(A4) A′′ < 27

64π4 B
′′.

Then, for every µ ∈ Γ :=] 32π4

27B′′ ,
1

2A′′ [ and for every L1-Caratéodory function f :
[0, 1]×R→ R, whose potential F is a nonnegative function satisfying the condition

F∞ := lim sup
ξ→+∞

∫ 1

0
max|t|≤ξ F (x, t)dx

ξ2
< +∞, (3.7)

there exists λF,µ, where

λF,µ :=
1

2F∞
(1− 2A′′µ),

such that for every λ ∈]0, λF,µ[, problem (1.1) has an unbounded sequence of clas-
sical solutions in X.

Proof. Fix µ̄ ∈ Γ and f satisfying our assumptions. Since µ̄ < 1
2A′′ , we have

λF,µ̄ > 0. Now fix λ̄ ∈ ]0, λF,µ̄[. Set

Ψ̃λ̄,µ̄(u) :=
λ̄

µ̄

∫ 1

0

F (x, u(x))dx+G(u(1)),

Ĩλ̄,µ̄(u) := Φ(u)− µ̄Ψ̃λ̄,µ̄(u),

for all u ∈ X. Clearly, Ĩλ̄,µ̄ = Iλ̄,µ̄.
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Let ξn be a sequence of positive numbers such that limn→+∞ ξn = +∞ and

lim
n→+∞

max|t|≤ξn
G(t)

ξ2
n

= A′′.

Let rn = ξ2
n/2 for all n ∈ N. Arguing as in the proof of Theorem 3.1 and from the

conditions (A4) and (3.7) we obtain

γ ≤ lim inf
n→+∞

ϕ(rn) ≤ 2
λ̄

µ̄
F∞ + 2A′′ < +∞.

Therefore, from λ̄ ∈]0, λF,µ̄[ we obtain µ̄ < 1/γ.
Let µ̄ be fixed. We claim that the functional Ĩλ̄,µ̄ is unbounded from below. Since

1/µ̄ < 27
32π4B

′′, there exist a sequence {dn} and θ > 0 such that limn→+∞ dn = +∞
and

1
µ̄
< θ <

27
32π4

G(dn)
d2
n

(3.8)

for all n ∈ N large enough. Now, for every n ∈ N, let wn ∈ X the function as given
in (3.3). Since F is nonnegative, from (3.8) we have

Ψ̃λ̄,µ̄(wn) ≥ G(dn) >
32
27
π4θd2

n.

It follows that

Ĩλ̄,µ̄(wn) = Φ(wn)− µ̄Ψ̃λ̄,µ̄(wn) ≤ 32
27
π4(1− µ̄θ)d2

n < 0

for all n ∈ N large enough. Therefore, limn→+∞ Ĩλ̄,µ̄(wn) = −∞, and the proof is
complete. �

Corollary 3.9. Assume that g : R→ R be a nonpositive continuous function such
that

lim inf
ξ→+∞

−
∫ ξ

0
g(t)dt
ξ2

= 0, lim sup
ξ→+∞

−
∫ ξ

0
g(t)dt
ξ2

= +∞.

Then, for each µ > 0 and for every nonnegative continuous function f : R → R
satisfying the condition

f∞ := lim sup
ξ→+∞

∫ ξ
0
f(t)dt
ξ2

< +∞,

and for each λ ∈
]
0, 1

2f∞

[
, problem (1.2) admits infinitely many classical solutions.
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