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GROUND STATES OF LINEARLY COUPLED
SCHRÖDINGER SYSTEMS

HAIDONG LIU

Abstract. This article concerns the standing waves of a linearly coupled

Schrödinger system which arises from nonlinear optics and condensed mat-
ter physics. The coefficients of the system are spatially dependent and have

a mixed behavior: they are periodic in some directions and tend to positive
constants in other directions. Under suitable assumptions, we prove that the

system has a positive ground state. In addition, when the L∞-norm of the

coupling coefficient tends to zero, the asymptotic behavior of the ground states
is also obtained.

1. Introduction and statement of main results

Nonlinear Schrödinger systems of the form

−i ∂
∂t

Ψ1 = ∆Ψ1 − V1(x)Ψ1 + µ1|Ψ1|2Ψ1 + β|Ψ2|2Ψ1 + γΨ2

−i ∂
∂t

Ψ2 = ∆Ψ2 − V2(x)Ψ2 + µ2|Ψ2|2Ψ2 + β|Ψ1|2Ψ2 + γΨ1

x ∈ RN , t > 0,

Ψj = Ψj(x, t) ∈ C, t > 0, j = 1, 2

(1.1)

model several interesting phenomena in physics. Physically, Ψj are two components
of a quantum system, µj and β are the intraspecies and interspecies scattering
lengths, γ is the Rabi frequency related to the external electric field. The sign of
the scattering length β determines whether the interaction is repulsive or attractive.
We refer to [1, 16, 17, 18, 29] and references therein for more information on the
physical background of (1.1).

To study standing waves of the system (1.1), we set Ψj(x, t) = eiλtuj(x) for
j = 1, 2. Then (1.1) is reduced to the following elliptic system

−∆u1 + (V1(x) + λ)u1 = µ1u
3
1 + βu1u

2
2 + γu2 in RN ,

−∆u2 + (V2(x) + λ)u2 = µ2u
3
2 + βu2

1u2 + γu1 in RN ,
uj(x)→ 0 as |x| → ∞, j = 1, 2.

(1.2)

In the presence of only nonlinearly coupling terms (i.e., γ = 0), (1.2) has been
studied extensively in recent years for the existence, multiplicity and asymptotic
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behavior of nontrivial solutions. We make no attempt here to give a complete survey
of all related results and only refer the reader to [4, 7, 8, 21, 23, 24, 27, 28, 30] and
references therein. However, In the presence of only linearly coupling terms (i.e.,
β = 0), (1.2) has not been much studied and we are only aware of a few papers in
this direction ([2, 3, 5, 11, 12, 20]).

On the other hand, the single elliptic equation

−∆u+ V (x)u = µ(x)|u|p−2u, (1.3)

has been deeply studied in the literature. Among other solutions, ground states are
physically and mathematically of particular interest. We refer the reader to [6, 9, 10,
13, 14, 15, 19, 22, 25, 26, 31, 32] for related results. Here we only mention that (1.3)
has a positive ground state if 0 < V (x) ≤ lim|x|→∞ V (x) <∞, 0 < lim|x|→∞ µ(x) ≤
µ(x) ([14, 19, 22, 31]) or if V, µ are positive and periodic in each variable ([13,
19]). The potentials considered in [10] have a mixed behavior. More precisely, the
potentials are periodic in some directions and tend to positive constants in other
directions.

Partially motivated by [3, 10], we deal with in this paper ground states of linearly
coupled Schrödinger equations in which all of the physical parameters are spatially
dependent, i.e., we will consider the system

−∆u1 + V1(x)u1 = µ1(x)|u1|p−2u1 + γ(x)u2 in RN ,

−∆u2 + V2(x)u2 = µ2(x)|u2|p−2u2 + γ(x)u1 in RN ,

uj ∈ H1(RN ), j = 1, 2,

(1.4)

where N ≥ 2, 2 < p < 2∗, 2∗ = 2N/(N − 2) for N > 2 and 2∗ = +∞ for N = 2,
and the coefficients Vj , µj , γ are continuous functions on RN .

For system (1.4), a nontrivial solution is a solution (u1, u2) with (u1, u2) 6= (0, 0).
A nontrivial solution of (1.4) will be called a ground state if it has the least energy
among all nontrivial solutions. A positive ground state means a ground state with
each component being positive. We remark that each component of a nontrivial
solution of (1.4) must be nonzero. Write N = k + l with 1 ≤ k ≤ N − 1 and
x = (x′, x′′) ∈ Rk × Rl = RN . We study (1.4) under the following assumptions.

(H1) The five functions Vj , µj , γ are τi-periodic in xi, τi > 0, i = 1, . . . , k.
(H2) 0 < Vj(x) ≤ Vj∞ := lim|x′′|→∞ Vj(x) <∞ for all x ∈ RN , j = 1, 2;

0 < µj∞ := lim|x′′|→∞ µj(x) ≤ µj(x) for all x ∈ RN , j = 1, 2;

0 < γ∞ := lim|x′′|→∞ γ(x) ≤ γ(x) for all x ∈ RN .
(H3)

∣∣γ(V1V2)−1/2
∣∣
∞ < 1, where | · |∞ is the usual norm in L∞(RN ).

The first main result in our paper is as follows and is for the existence of ground
states of (1.4).

Theorem 1.1. If (H1)–(H3) hold, then (1.4) has a positive ground state.

We assume (H3) to guarantee that the Nehari manifold is bounded away from
zero, see Lemma 2.1 for details.

The second aim of our paper is to describe the asymptotic behavior of ground
states when L∞-norm of the linearly coupling coefficient of (1.4) tends to zero. For
this purpose, we replace (H1), (H2) and (H3) with

(H1’) The functions Vj , µj , γn are τi-periodic in xi, τi > 0, i = 1, . . . , k.
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(H2’) 0 < Vj(x) ≤ Vj∞ := lim|x′′|→∞ Vj(x) <∞ for all x ∈ RN , j = 1, 2;

0 < µj∞ := lim|x′′|→∞ µj(x) ≤ µj(x) for all x ∈ RN , j = 1, 2;

0 < γn∞ := lim|x′′|→∞ γn(x) ≤ γn(x) for all x ∈ RN , n = 1, 2, . . . .
(H3’) |γn|∞ → 0 as n→∞.

Under the assumptions (H1’), (H2’) and (H3’), we see from Theorem 1.1 that,
for n sufficiently large, (1.4) with γ = γn has a positive ground state (un1, un2).
Next we show that one component of (un1, un2) converges to zero in H1(RN ).

Theorem 1.2. Assume (H1’)–(H3’) are satisfied. Let (un1, un2) be the positive
ground state of (1.4) with γ = γn, then we have either un1 → 0 in H1(RN ) or
un2 → 0 in H1(RN ).

This article is organized as follows. In Section 2, we prove some preliminary
results including basic properties of the Nehari manifold. Section 3 is devoted to
the existence of ground states for (1.4), while Section 4 concerns the asymptotic
behavior of ground states when L∞-norm of the coupling coefficient tends to zero.

2. Preliminaries

By (H1) and (H2),

‖u‖j =
(∫

RN

(
|∇u|2 + Vju

2
))1/2

, j = 1, 2

are equivalent norms in H1(RN ). Set H = H1(RN ) × H1(RN ) and, for ~u =
(u1, u2) ∈ H, denote

‖~u‖ =
(
‖u1‖21 + ‖u2‖22

)1/2

.

Then ‖ · ‖ is equivalent to the standard norm in H. Throughout this paper, the
notation ‖ · ‖ will always refer to this norm.

It is well known that solutions of (1.4) correspond to critical points of the energy
functional I : H → R defined by

I(~u) =
1
2
‖~u‖2 − 1

p

∫
RN

(µ1|u1|p + µ2|u2|p)−
∫

RN
γu1u2.

Denote by N the so-called Nehari manifold associated with I, namely,

N =
{
~u ∈ H \ {(0, 0)} : J(~u) := 〈I ′(~u), ~u〉 = 0

}
.

Some useful properties of the Nehari manifold are given next.

Lemma 2.1. There exists δ > 0 such that, for ~u ∈ N , ‖~u‖ ≥ δ.

Proof. For ~u ∈ N , we use the Hölder inequality and Sobolev inequality to deduce(
1−

∣∣γ(V1V2)−1/2
∣∣
∞

)
‖~u‖2 ≤ ‖~u‖2 − 2

∫
RN

γu1u2

=
∫

RN
(µ1|u1|p + µ2|u2|p) ≤ C‖~u‖p,

which implies the desired result. �
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Note that for ~u ∈ N ,

I(~u) =
(1

2
− 1
p

)(
‖~u‖2 − 2

∫
RN

γu1u2

)
≥
(1

2
− 1
p

)(
1−

∣∣γ(V1V2)−1/2
∣∣
∞

)
‖~u‖2.

Therefore, as a consequence of Lemma 2.1, we have

Lemma 2.2. c = inf~u∈N I(~u) > 0.

Lemma 2.3. If c is achieved, then (1.4) has a positive ground state.

Proof. We first claim that any minimizer of c is a ground state of (1.4). Indeed, if
~u = (u1, u2) ∈ N is a minimizer of c, then there exists λ ∈ R such that

I ′(~u) = λJ ′(~u).

From 〈I ′(~u), ~u〉 = 0 and

〈J ′(~u), ~u〉 = 2
(
‖~u‖2 − 2

∫
RN

γu1u2

)
− p

∫
RN

(µ1|u1|p + µ2|u2|p)

= −(p− 2)(‖~u‖2 − 2
∫

RN
γu1u2)

≤ −(p− 2)
(

1−
∣∣γ(V1V2)−1/2

∣∣
∞

)
‖~u‖2

≤ −(p− 2)
(

1−
∣∣γ(V1V2)−1/2

∣∣
∞

)
δ2 < 0

it follows that λ = 0. Then I ′(~u) = 0 and so ~u is a ground state of (1.4).
Next we prove that (1.4) has a positive ground state. Assume ~u = (u1, u2) ∈ N

is a minimizer of c and let t > 0 be such that (t|u1|, t|u2|) ∈ N . Then

tp−2 =
‖~u‖2 − 2

∫
RN γ|u1||u2|∫

RN (µ1|u1|p + µ2|u2|p)
≤

‖~u‖2 − 2
∫

RN γu1u2∫
RN (µ1|u1|p + µ2|u2|p)

= 1,

which implies

c ≤ I(t|u1|, t|u2|) =
(1

2
− 1
p

)
tp
∫

RN
(µ1|u1|p + µ2|u2|p)

≤
(1

2
− 1
p

) ∫
RN

(µ1|u1|p + µ2|u2|p)

= I(~u) = c.

This means t = 1 and (|u1|, |u2|) is also a minimizer of c. From the above claim,
(|u1|, |u2|) is a ground state of (1.4). Note that none of |u1| and |u2| can be iden-
tically zero. Using the strong maximum principle, we have |u1| > 0 and |u2| > 0.
Therefore (|u1|, |u2|) is a positive ground state of (1.4). The proof is complete. �

3. Proof of Theorem 1.1

In this section we prove the existence of ground states of (1.4). From Lemma
2.3, it suffices to prove that c is achieved. For this purpose, we need to compare
the value of c with

c∞ = inf
~u∈N∞

I∞(~u),

where the functional I∞ : H → R is defined by

I∞(~u) =
1
2

∫
RN

(
|∇u1|2 + V1∞u

2
1 + |∇u2|2 + V2∞u

2
2

)
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− 1
p

∫
RN

(µ1∞|u1|p + µ2∞|u2|p)−
∫

RN
γ∞u1u2,

and
N∞ = {~u ∈ H \ {(0, 0)} : 〈I ′∞(~u), ~u〉 = 0}

is the Nehari manifold associated with I∞.

Lemma 3.1. Assume that (H1)–(H3) are satisfied and suppose in addition that at
least one of the five functions Vj , µj , γ is not a constant, then c < c∞.

Proof. By [3, Lemma 3.2], c∞ is achieved at some ~u∞ = (u1∞, u2∞) with each
component being positive. Let t > 0 be such that t~u∞ ∈ N . Then

c∞ = I∞(~u∞) ≥ I∞(t~u∞)

= I(t~u∞) +
t2

2

∫
RN

[
(V1∞ − V1)u2

1∞ + (V2∞ − V2)u2
2∞
]

+
tp

p

∫
RN

[(µ1 − µ1∞) |u1∞|p + (µ2 − µ2∞) |u2∞|p]

+ t2
∫

RN
(γ − γ∞)u1∞u2∞

> I(t~u∞) ≥ c.
The proof is complete. �

Now we are in a position to prove the first main result.

Proof of Theorem 1.1. By Lemma 2.3, it suffices to prove that the infimum

c = inf
~u∈N

I(~u)

is achieved. If the five functions Vj , µj , γ are all constants, then the result has been
proved in [3, Lemma 3.2]. In what follows we always assume that at least one of the
five functions Vj , µj , γ is not a constant. By Ekeland’s variational principle, there
exists {~um} ⊂ N with ~um = (um1, um2) such that

I(~um)→ c and (I|N )′(~um)→ 0 as m→∞.
Then there exists a sequence {λm} of real numbers such that

I ′(~um)− λmJ ′(~um)→ 0 as m→∞.
From (H3) and

I(~um) =
(1

2
− 1
p

)(
‖~um‖2 − 2

∫
RN

γum1um2

)
= c+ o(1),

we see that {~um} is bounded in H. Then

o(1) = 〈I ′(~um)− λmJ ′(~um), ~um〉

= λm(p− 2)
(
‖~um‖2 − 2

∫
RN

γum1um2

)
= λm(2pc+ o(1)),

which implies that λm = o(1) and so I ′(~um)→ 0 as m→∞.
Since {~um} ⊂ H is bounded, up to a subsequence, it can be assumed that

(um1, um2) ⇀ (u1, u2) in H,
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(um1, um2)→ (u1, u2) in Lploc(R
N )× Lploc(R

N ),

(um1, um2)→ (u1, u2) a.e. in RN .

Then ~u = (u1, u2) is a critical point of I. We have the following two cases.
Case 1. ~u 6= (0, 0). In this case, ~u ∈ N and

c ≤ I(~u) =
(1

2
− 1
p

) ∫
RN

(µ1|u1|p + µ2|u2|p)

≤ lim
m→∞

(1
2
− 1
p

) ∫
RN

(µ1|um1|p + µ2|um2|p)

= lim
m→∞

I(~um) = c.

Then c is achieved by ~u.
Case 2. ~u = (0, 0). In this case, we decompose RN into N -dimensional intervals
{Qj}j∈N∪{0} with each of them having sides of size (τ1, . . . , τk, 1, . . . , 1) and chosen
in such a way that 0 is the center of Q0. For each m, we set

dm = sup
j∈N∪{0}

[ ∫
Qj

(µ1|um1|p + µ2|um2|p)
]1/p

.

Then there exists η > 0 such that

dm ≥ η > 0 (3.1)

for all m. Indeed, using the Sobolev embeddings H1(Qj) ↪→ Lp(Qj) and the bound-
edness of {~um} ⊂ H leads to

2p
p− 2

(c+ o(1)) =
∫

RN
(µ1|um1|p + µ2|um2|p)

=
∞∑
j=0

∫
Qj

(µ1|um1|p + µ2|um2|p)

≤ dp−2
m

∞∑
j=0

[ ∫
Qj

(µ1|um1|p + µ2|um2|p)
]2/p

≤ Cdp−2
m ‖~um‖2

≤ Cdp−2
m ,

which implies (3.1).
From

∞∑
j=0

∫
Qj

(µ1|um1|p + µ2|um2|p) ≤ C,

we see that dm is achieved. Let ym ∈ RN be the center of the interval Q∗m satisfying

dm =
[ ∫

Q∗m

(µ1|um1|p + µ2|um2|p)
]1/p

.

It follows from (3.1) and (um1, um2) ⇀ (0, 0) inH that {ym} is unbounded. Without
loss of generality, we assume |ym| → ∞ as m → ∞. Set ũmj = umj(· + ym) for
j = 1, 2 and assume that

(ũm1, ũm2) ⇀ (ũ1, ũ2) in H,
(ũm1, ũm2)→ (ũ1, ũ2) in Lploc(R

N )× Lploc(R
N ),
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(ũm1, ũm2)→ (ũ1, ũ2) a.e. in RN .

Then (ũ1, ũ2) 6= (0, 0) as showed by

0 < η ≤ lim
m→∞

[ ∫
Q∗m

(µ1|um1|p + µ2|um2|p)
]1/p

≤ C lim
m→∞

[ ∫
Q∗m

(|um1|p + |um2|p)
]1/p

= C lim
m→∞

[ ∫
Q0

(|ũm1|p + |ũm2|p)
]1/p

= C
[ ∫

Q0

(|ũ1|p + |ũ2|p)
]1/p

.

Next we claim that {|y′′m|} is bounded. Suppose by contradiction that |y′′m| → ∞
as m→∞. Then, using (H2), we deduce from I ′(um1, um2)→ 0 that

I ′∞(ũ1, ũ2) = 0.

Therefore, since (ũ1, ũ2) 6= (0, 0), (ũ1, ũ2) ∈ N∞ and we have

c∞ ≤ I∞(ũ1, ũ2) =
(1

2
− 1
p

) ∫
RN

(µ1∞|ũ1|p + µ2∞|ũ2|p)

≤ lim
m→∞

(1
2
− 1
p

) ∫
RN

(µ1∞|ũm1|p + µ2∞|ũm2|p)

≤ lim
m→∞

I(~um) = c,

a contradiction to Lemma 3.1.
Decompose RN into bigger N -dimensional intervals {Q̂j}j∈N∪{0} and assume

that Q∗m ⊂ Q̂∗m with (y′m, 0) being the center of Q̂∗m. Setting ûmj = umj(·+(y′m, 0))
for j = 1, 2, we see from the assumption (H1) that

I(ûm1, ûm2)→ c and I ′(ûm1, ûm2)→ 0 as m→∞.
Since {(ûm1, ûm2)} is bounded in H, we may assume that

(ûm1, ûm2) ⇀ (û1, û2) in H,
(ûm1, ûm2)→ (û1, û2) in Lploc(R

N )× Lploc(R
N ),

(ûm1, ûm2)→ (û1, û2) a.e. in RN .

Then (û1, û2) is a critical point of I. Furthermore,

0 < η ≤ lim
m→∞

[ ∫
Q∗m

(µ1|um1|p + µ2|um2|p)
]1/p

≤ C lim
m→∞

[ ∫
Q̂∗m

(|um1|p + |um2|p)
]1/p

= C lim
m→∞

[ ∫
Q̂0

(|ûm1|p + |ûm2|p)
]1/p

= C
[ ∫

Q̂0

(|û1|p + |û2|p)
]1/p

,

which implies (û1, û2) 6= (0, 0). Using the same arguments as in Case 1, we see that
c is achieved by (û1, û2).
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In both cases we reach the conclusion. The proof is complete. �

4. Proof of Theorem 1.2

In this section, we describe the asymptotic behavior of the ground states of (1.4)
when the L∞-norm of the coupling coefficient tends to zero. To underline the
dependence on the coupling coefficient, for (1.4) with γ = γn, the corresponding
functional and the Nehari manifold will be denoted by Iγn and Nγn respectively.
Then we see from Theorem 1.1 that, for n sufficiently large, the infimum

cγn = inf
~u∈Nγn

Iγn(~u)

is achieved at (un1, un2). We also use the functional I0 : H → R defined by

I0(~u) =
1
2
‖~u‖2 − 1

p

∫
RN

(µ1|u1|p + µ2|u2|p)

and its corresponding Nehari manifold

N0 = {~u ∈ H \ {(0, 0)} : 〈I ′0(~u), ~u〉 = 0} .
Define c0 = inf~u∈N0 I0(~u), then we have

c0 = min
j∈{1,2}

Φj(wj),

where
Φj(u) =

1
2
‖u‖2j −

1
p

∫
RN

µj |u|p

and wj is the positive ground state of the single elliptic equation

−∆u+ Vju = µj |u|p−2u in RN .

Lemma 4.1. cγn → c0 as n→∞.

Proof. Since (w1, 0) and (0, w2) are contained in Nγn , we have

cγn ≤ min{Iγn(w1, 0), Iγn(0, w2)} = min
j∈{1,2}

Φj(wj) = c0. (4.1)

Then it is easy to see that {(un1, un2)} is bounded in H.
We define a sequence {tn} of positive numbers by

tp−2
n =

‖(un1, un2)‖2∫
RN (µ1|un1|p + µ2|un2|p)

.

Then (tnun1, tnun2) ∈ N0. We claim that tn = 1 + o(1) as n → ∞. Indeed, since
(un1, un2) is a positive ground state of (1.4) with γ = γn, we have(

1−
∣∣γn(V1V2)−1/2

∣∣
∞

)
‖(un1, un2)‖2

≤ ‖(un1, un2)‖2 − 2
∫

RN
γnun1un2

=
∫

RN
(µ1|un1|p + µ2|un2|p) ≤ C‖(un1, un2)‖p.

Then, since |γn|∞ → 0, we see that ‖(un1, un2)‖2 and
∫

RN (µ1|un1|p + µ2|un2|p)
have a positive lower bound. From this, it can be seen that tn = 1 + o(1) as
n→∞. Therefore,

c0 ≤ I0(tnun1, tnun2) =
(1

2
− 1
p

)
tpn

∫
RN

(µ1|un1|p + µ2|un2|p)
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=
(1

2
− 1
p

) ∫
RN

(µ1|un1|p + µ2|un2|p) + o(1)

= cγn + o(1),

which combined with (4.1) completes the proof. �

Proof of Theorem 1.2. We use an argument of contradiction and, up to a subse-
quence, suppose that

‖unj‖j ≥ α > 0 (4.2)
for j = 1, 2. Define two sequences {sn} and {tn} of positive numbers by

sp−2
n =

‖un1‖21∫
RN µ1|un1|p

, tp−2
n =

‖un2‖22∫
RN µ2|un2|p

.

Since (un1, un2) is a positive ground state of (1.4) with γ = γn and |γn|∞ → 0, we
have

‖un1‖21 =
∫

RN
µ1|un1|p +

∫
RN

γnun1un2 =
∫

RN
µ1|un1|p + o(1),

‖un2‖22 =
∫

RN
µ2|un2|p +

∫
RN

γnun1un2 =
∫

RN
µ2|un2|p + o(1),

which combined with (4.2) implies that sn = 1 + o(1) and tn = 1 + o(1) as n→∞.
Then we have

2c0 ≤ Φ1(snun1) + Φ2(tnun2)

=
(1

2
− 1
p

)
spn

∫
RN

µ1|un1|p +
(1

2
− 1
p

)
tpn

∫
RN

µ2|un2|p

=
(1

2
− 1
p

) ∫
RN

(µ1|un1|p + µ2|un2|p) + o(1)

= cγn + o(1),

which contradicts the result in Lemma 4.1. This contradiction implies that either
un1 → 0 in H1(RN ) or un2 → 0 in H1(RN ). �

Acknowledgments. This research was supported by the ZJNSF (LQ15A010011).

References

[1] N. Akhmediev, A. Ankiewicz; Partially coherent solitons on a finite background, Phys. Rev.
Lett., 82 (1999), 2661–2664.

[2] A. Ambrosetti; Remarks on some systems of nonlinear Schrödinger equations, J. Fixed Point

Theory Appl., 4 (2008), 35–46.
[3] A. Ambrosetti, G. Cerami, D. Ruiz; Solitons of linearly coupled system of semilinear non-

autonomous equations on Rn, J. Funct. Anal., 254(2008), 2816–2845.

[4] A. Ambrosetti, E. Colorado; Standing waves of some coupled nonlinear Schrödinger equa-
tions, J. London Math. Soc., 75 (2007), 67–82.

[5] A. Ambrosetti, E. Colorado, D. Ruiz; Multi-bump solutions to linearly coupled systems of

nonlinear Schrödinger equations, Calc. Var. Partial Differential Equations, 30 (2007), 85–112.
[6] A. Ambrosetti, V. Felli, A. Malchiodi; Ground states of nonlinear Schrödinger equations with

potentials vanishing at infinity, J. Eur. Math. Soc., 7 (2005), 117–144.
[7] T. Bartsch, E. N. Dancer, Z.-Q. Wang; A Liouville theorem, a-priori bounds, and bifurcating

branches of positive solutions for a nonlinear elliptic system, Calc. Var. Partial Differential

Equations, 37 (2010), 345–361.
[8] S. Bhattarai; Stability of solitary-wave solutions of coupled NLS equations with power-type

nonlinearities, Adv. Nonlinear Anal., 4 (2015), 73–90.



10 H. LIU EJDE-2017/05

[9] M. Cencelj, D. Repovs, Z. Virk; Multiple perturbations of a singular eigenvalue problem,

Nonlinear Anal., 119 (2015), 37–45.

[10] G. Cerami, R. Molle; Positive solutions for some Schrödinger equations having partially
periodic potentials, J. Math. Anal. App., 359 (2009), 15–27.

[11] Z. J. Chen, W. M. Zou; Standing waves for linearly coupled Schrödinger equations with

critical exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 429–447.
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