\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2016 (2016), No. 99, pp. 1--5.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2016 Texas State University.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2016/99\hfil Global regularity criteria] {Global regularity criteria for the $n$-dimensional Boussinesq equations with fractional dissipation} \author[Z. Zhang \hfil EJDE-2016/99\hfilneg] {Zujin Zhang} \address{Zujin Zhang \newline School of Mathematics and Computer Sciences, Gannan Normal University, Ganzhou 341000, Jiangxi, China} \email{zhangzujin361@163.com, phone (86) 07978393663} \thanks{Submitted February 23, 2016. Published April 19, 2016.} \subjclass[2010]{35B65, 35Q30, 76D03} \keywords{Regularity criteria; Generalized Boussinesq equations; \hfill\break\indent fractional diffusion} \begin{abstract} We consider the $n$-dimensional Boussinesq equations with fractional dissipation, and establish a regularity criterion in terms of the velocity gradient in Besov spaces with negative order. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}[theorem]{Remark} \allowdisplaybreaks \section{Introduction}\label{sect:intro} In this article, we study the $n$-dimensional Boussinesq equations with fractional dissipation, \begin{equation}\label{GB} \begin{gathered} \partial_t\mathbf{u}+(\mathbf{u}\cdot\nabla)\mathbf{u} + \varLambda^{2\alpha}\mathbf{u} +\nabla \varPi=\vartheta \mathbf{e}_n,\\ \partial_t\vartheta+(\mathbf{u}\cdot\nabla)\vartheta=0,\\ \nabla\cdot\mathbf{u}=0,\\ \mathbf{u}(0)=\mathbf{u}_0,\quad \vartheta(0)=\vartheta_0, \end{gathered} \end{equation} where $\mathbf{u}: \mathbb{R}^+\times \mathbb{R}^n\to \mathbb{R}^n$ is the velocity field; $\vartheta: \mathbb{R}^+\times \mathbb{R}^n\to \mathbb{R}$ is a scalar function representing the temperature in the content of thermal convection (see \cite{m1}) and the density in the modeling of geophysical fluids (see \cite{p1}); $\varPi$ is the the fluid pressure; $\mathbf{e}_n$ is the unit vector in the $x_n$ direction; and $\varLambda:=(-\Delta)^\frac{1}{2}$, $\alpha\geq 0$ is a real number. When $\alpha=1$, Equation \eqref{GB} reduces to the classical Boussinesq equations, which are frequently used in the atmospheric sciences and oceanographic turbulence where rotation and stratification are important (see \cite{m1,p1}). If $\vartheta=0$, then \eqref{GB} becomes the generalized Navier-Stokes equation, which was first considered by Lions \cite{l1}, where he showed the global regularity once $\alpha\geq \frac{1}{2}+\frac{n}{4}$. One may refer the reader to \cite{k2,t1} for recent advances. Xiang-Yan \cite{x2}, Yamazaki \cite{y1} and Ye \cite{y2} were able to extend Lions's result to system \eqref{GB}, where there is no diffusion in the $\vartheta$ equation. And it remains an open problem for the global-in-time smooth for \eqref{GB} with $0<\alpha<\frac{1}{2}+\frac{n}{4}$. The purpose of the present paper is to establish a blow-up criterion as follows. \begin{theorem}\label{thm1} Let $0<\alpha<\frac{1}{2}+\frac{n}{4}$, $(\mathbf{u}_0,\vartheta_0)\in H^s(\mathbb{R}^n)$ with $s>1+\frac{n}{2}$ and $\nabla\cdot\mathbf{u}_0=0$. Assume that $(\mathbf{u},\vartheta)$ be the smooth local unique solution pair to \eqref{GB} with initial data $(\mathbf{u}_0,\vartheta_0)$. If additionally, \begin{equation} \label{thm:reg} \nabla\mathbf{u}\in L^\frac{2\alpha}{2\alpha-\gamma}(0,T;\dot B^{-\gamma}_{\infty,\infty}(\mathbb{R}^n)) \end{equation} for some $0<\gamma<2\alpha$, then the solution $(\mathbf{u},\vartheta)$ can be extended smoothly beyond $T$. \end{theorem} Here, $\dot B^{-\gamma}_{\infty,\infty}(\mathbb{R}^n)$ is the homogeneous Besov space with negative order, which contains classical Lebesgue space $L^\frac{n}{\gamma}(\mathbb{R}^n)$, see \cite[Chapter 2]{b1}. In the proof of Theorem \ref{thm1} in Section \ref{sect:proof}, we shall frequently use the following refined Gagliardo-Nirenberg inequality. \begin{lemma}[{\cite[Theorem 2.42]{b1}}] Let $20$ and a unique smooth solution $(\mathbf{u},\vartheta)$ to \eqref{GB} on $[0,T_0]$. We only need to establish the a priori estimates. Therefore, in the following calculations, we assume that the solution $(\mathbf{u},\vartheta)$ is sufficiently smooth on $[0,T]$. First, taking the inner product of \eqref{GB}$_1$ and \eqref{GB}$_2$ with $\mathbf{u},\vartheta$ in $L^2(\mathbb{R}^n)$ respectively, we obtain \[ \frac{1}{2}\frac{\,\mathrm{d}}{\,\mathrm{d} t}\|(\mathbf{u},\vartheta)\|_{L^2}^2 +\|\varLambda^\alpha\mathbf{u}\|_{L^2}^2 =\int_{\mathbb{R}^n} \vartheta\mathbf{e}_n\cdot\mathbf{u}\,\mathrm{d} x \leq \frac{1}{2}\|(\mathbf{u},\vartheta)\|_{L^2}^2. \] Applying Gronwall inequality, we deduce \begin{equation} \label{zero-order} \|(\mathbf{u},\vartheta)\|_{L^\infty(0,t;L^2(\mathbb{R}^n))} +\|\varLambda^\alpha\mathbf{u}\|_{L^2(0,t;L^2(\mathbb{R}^n))}\leq C. \end{equation} For $k>0$, applying $\varLambda^k$ to $\eqref{GB}_1$, and testing the resulting equations by $\varLambda^k \mathbf{u}$ respectively, we obtain \begin{equation} \label{I} \begin{aligned} &\frac{1}{2}\frac{\,\mathrm{d}}{\,\mathrm{d} t} \|\varLambda^k\mathbf{u}\|_{L^2}^2 +\|\varLambda^{k+\alpha}\mathbf{u}\|_{L^2}^2\\ &= -\int_{\mathbb{R}^n} \varLambda^k[(\mathbf{u}\cdot\nabla)\mathbf{u}]\cdot \varLambda^k\mathbf{u}\,\mathrm{d} x +\int_{\mathbb{R}^n}\varLambda^k(\vartheta \mathbf{e}_n)\cdot \varLambda^k \mathbf{u}\,\mathrm{d} x\\ &= -\int_{\mathbb{R}^3} \big\{\varLambda^k[(\mathbf{u}\cdot\nabla)\mathbf{u}]-(\mathbf{u}\cdot\nabla)(\varLambda^k\mathbf{u})\big\} \cdot \varLambda^k\mathbf{u}\,\mathrm{d} x +\int_{\mathbb{R}^n}\varLambda^k(\vartheta \mathbf{e}_n)\cdot \varLambda^k \mathbf{u}\,\mathrm{d} x\\ &\equiv I_1^k+I_2^k. \end{aligned} \end{equation} We may use the following commutator estimates of Kato-Ponce \cite{k1}: \begin{equation} \label{Kao-Ponce} \|\varLambda^k(fg)-f\varLambda^kg\|_{L^p} \leq C \big[ \|\nabla f\|_{L^{p_1}} \|\varLambda^{k-1}g\|_{L^{p_2}} +\|\varLambda^kf\|_{L^{p_3}} \|g\|_{L^{p_4}} \big] \end{equation} with \[ 1