\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2016 (2016), No. 80, pp. 1--14.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2016 Texas State University.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2016/80\hfil Uniform convergence of spectral expansions] {Uniform convergence of the spectral expansions in terms of root functions for a spectral problem} \author[N. B. Kerimov, S. Goktas, E. A. Maris \hfil EJDE-2016/80\hfilneg] {Nazim B. Kerimov, Sertac Goktas, Emir A. Maris} \address{Nazim B. Kerimov \newline Department of Mathematics, Mersin University, 33343, Mersin, Turkey} \email{nazimkerimov@yahoo.com} \address{Sertac Goktas \newline Department of Mathematics, Mersin University, 33343, Mersin, Turkey} \email{srtcgoktas@gmail.com} \address{Emir A. Maris \newline Department of Mathematics, Mersin University, 33343, Mersin, Turkey} \email{ealimaris@gmail.com} \thanks{Submitted February 22, 2016. Published March 18, 2016.} \subjclass[2010]{34B05, 34B24, 34L10, 34L20} \keywords{Differential Operator; eigenvalues; root functions; \hfill\break\indent uniform convergence of spectral expansion} \begin{abstract} In this article, we consider the spectral problem \begin{gather*} -y''+q(x)y=\lambda y,\quad 00 \end{gather*} appears in a model of transrelaxation heat process and in the mathematical description of vibrations of a loaded string (see \cite{Kapustin2}), and the problems on vibrations of a homogeneous loaded string, torsional vibrations of a rod with a pulley at one end, heat propagation in a rod with lumped heat capacity at one end, the current in a cable ground at one end through a concentrated capacitance or inductance lead to the spectral problem \begin{gather*} u''(x)+\lambda u(x)=0 \, (00 \end{gather*} (see \cite{Kapustin2,Kapustin3}). In \cite{Kerimov2}, it has been investigated the uniform convergence of the Fourier series expansions in terms of eigenfunctions for the spectral problem \begin{gather}\label{e0.1} -y''+q(x)y=\lambda y, \quad 00. \end{equation} Note that all the eigenvalues of problem \eqref{e0.1}, \eqref{e0.2} are real and simple, hence the root functions system of this problem consists of only eigenfunctions. Problem \eqref{e1}--\eqref{e3} does not satisfy the condition \eqref{e0.3}, because $ \sigma =a<0 $. It was proved \cite{Binding} that the eigenvalues of \eqref{e1}--\eqref{e3} form an infinite sequence $ {{\lambda }_n}$, ($n=0,1,2,\dots$) without finite limit points and only the following cases are possible: \begin{itemize} \item[(i)] all the eigenvalues are real and simple. \item[(ii)] all the eigenvalues are real and all, except one double, are simple. \item[(iii)] all the eigenvalues are real and all, except one triple, are simple. \item[(iv)] all the eigenvalues are simple and all, except a conjugate pair of non-real, are real. \end{itemize} Note that the eigenvalues $ {{\lambda }_n}$ ($n=0,1,2,\dots$) were considered to be listed according to non-decreasing real part and repeated according to algebraic multiplicity. Therefore, the results of the article \cite{Kerimov2} cannot be applied directly to the problem \eqref{e1}--\eqref{e3}. We need some properties of eigenvalues, eigenfunctions and associated functions of problem \eqref{e1}--\eqref{e3}, for the uniform convergence of the spectral expansions in terms of root functions of this problem. Let $ \varphi (x,\lambda ) $ and $ \psi (x,\lambda ) $ denote the solutions of \eqref{e1} which satisfy the initial conditions \begin{gather}\label{e1'} \varphi (0,\lambda )=1, \quad {\varphi }'(0,\lambda )=h, \\ \label{e2'} \psi (0,\lambda )=0, \quad {\psi }'(0,\lambda )=1, \end{gather} where $ h=\cot \beta$, $(0<\beta <\pi )$. It is easy to see by the same method as in \cite[theorem 2.1]{Kerimov2} that the following asymptotic formulae are valid for sufficiently large $n$: \begin{itemize} \item[(i)] If $ \beta =0 $ and $ {{\lambda }_n}=\mu _n^2$, ($\operatorname{Re} \mu _n\ge 0$), then \begin{gather}\label{e4} {\mu }_n=n\pi +\frac{{{A}_1}}{n\pi }+O\big(\frac{\delta _n^{(1)}}{n} \big), \\ \label{e5} \begin{aligned} y_n(x)& =\psi (x,\lambda _n) \\ &=\frac{\sin n\pi x}{n\pi }+\frac{\cos n\pi x}{{{( n\pi )}^2}} \big[{{A}_1}x-\frac{1}{2}\int_0^{x}{q(\tau )d\tau } +\frac{1}{2}\int_0^{x}{q(\tau )\cos 2n\pi \tau d\tau }\big]\\ &\quad+\frac{\sin n\pi x}{2{{( n\pi )}^2}} \int_0^{x}{q(\tau )\sin (2n\pi \tau) d\tau } +O( \frac{\delta _n^{(1)}}{{{n}^2}} ), \end{aligned} \end{gather} where \[ {{A}_1}=\frac{1}{a}+\frac{1}{2}\int_0^{1}{q(\tau )d\tau } , \quad \delta _n^{(1)}=| \int_0^{1}{q(\tau )\cos (2n\pi \tau )d\tau } |+\frac{1}{n}. \] \item[(ii)] If $ 0<\beta <\pi $ and $ {{\lambda }_n}=\mu _n^2 (\operatorname{Re}{{\mu }_n}\ge 0) $ then \begin{gather}\label{e6} {{\mu }_n}=\big( n-\frac{1}{2} \big)\pi +\frac{{{A}_{2}}}{( n-\frac{1}{2} )\pi }+O\big(\frac{\delta _n^{(2)}}{n} \big), \\ \label{e7} \begin{aligned} y_n(x)&=\varphi (x,{{\lambda }_n})\\ &=\cos ( n-\frac{1}{2} )\pi x+\frac{\sin ( n-\frac{1}{2} )\pi x} {( n-\frac{1}{2} )\pi } \Big[h-{{A}_{2}}x+\frac{1}{2}\int_0^{x}{q(\tau )d\tau }\\ &\quad +\frac{1}{2}\int_0^{x}{q(\tau )\cos ( 2n-1 )\pi \tau d\tau }\Big]\\ &\quad -\frac{\cos ( n-\frac{1}{2} )\pi x}{( 2n-1 )\pi } \int_0^{x}{q(\tau )\sin( 2n-1 )\pi \tau d\tau } +O\big( \frac{\delta _n^{(2)}}{n} \big), \end{aligned} \end{gather} where \[ {{A}_{2}}=h+\frac{1}{a}+\frac{1}{2}\int_0^{1}{q(\tau )d\tau } ,\quad \delta _n^{(2)}=\big| \int_0^{1}{q(\tau )\cos ( 2n-1 )\pi \tau d\tau } \big|+\frac{1}{n}. \] \end{itemize} Let $ {{\lambda }_{k}} $ be a multiple eigenvalue $ ( {{\lambda }_{k}}={{\lambda }_{k+1}} ) $. Then for the first order associated function $y_{k+1}$ corresponding to the eigenfunction $y_k$, the following relations hold \cite[p. 28]{Naimark} \begin{gather*} -{{y''}_{k+1}}+q(x){{y}_{k+1}}={{\lambda }_{k}}{{y}_{k+1}}+{{y}_{k}},\\ {{y'}_{k+1}}(0)\sin \beta ={{y}_{k+1}}(0)\cos \beta ,\\ {{y'}_{k+1}}(1)=(a{{\lambda }_{k}}+b){{y}_{k+1}}(1)+a{{y}_{k}}(1). \end{gather*} Let $ {{\lambda }_{k}} $ be a triple eigenvalue $ ( {{\lambda }_{k}}={{\lambda }_{k+1}}={{\lambda }_{k+2}} ) $. Then for the first order associated function $ {{y}_{k+1}} $ there exist the second order associated function $ {{y}_{k+2}} $ for which the following relations hold \begin{gather*} -{{y''}_{k+2}}+q(x){{y}_{k+2}}={{\lambda }_{k}}{{y}_{k+2}}+{{y}_{k+1}},\\ {{y'}_{k+2}}(0)\sin \beta ={{y}_{k+2}}(0)\cos \beta ,\\ {{y'}_{k+2}}(1)=(a{{\lambda }_{k}}+b){{y}_{k+2}}(1)+a{{y}_{k+1}}(1). \end{gather*} Note that the functions $ {{y}_{k+1}}+c{{y}_{k}} $ and $ {{y}_{k+2}}+d{{y}_{k}} $, where $c$ and $d$ are arbitrary constants, are also associated functions of the first and second order respectively. Let $ y(x,\lambda ) $ denote the solution of the equation \eqref{e1} which satisfy the initial condition \eqref{e1'} if $ 0<\beta <\pi $ or \eqref{e2'} if $ \beta =0 $. Then, the eigenvalues of \eqref{e1}--\eqref{e3} are the roots of the characteristic equation \begin{equation}\label{e8} \omega (\lambda )=y'(1,\lambda )-(a\lambda +b)y(1,\lambda ). \end{equation} It was proven in \cite{Aliyev} that if $ {{\lambda }_{k}} $ is a multiple (double or triple) eigenvalue of \eqref{e1}--\eqref{e3}, then \begin{equation}\label{e0.8} \begin{gathered} y(x,\lambda )\to {{y}_{k}}(x), \quad y'(x,\lambda )\to {{y'}_{k}}(x),\\ {{y}_{\lambda }}(x,\lambda )\to {{\tilde{y}}_{k+1}}(x),\quad {{y'}_{\lambda }}(x,\lambda )\to {{{\tilde{y}}'}_{k+1}}(x) \end{gathered} \end{equation} uniformly according to $ x\in [0,1] $, as $ \lambda \to {{\lambda }_{k}} $ (see also \cite{Ince}), where $ {{\tilde{y}}_{k+1}} $ is one of the associated functions of the first order. It is obvious that $ {{\tilde{y}}_{k+1}}={{y}_{k+1}}+\tilde{c}{{y}_{k}}$. Furthermore, if $ {{\lambda }_{k}} $ is a triple eigenvalue of \eqref{e1}--\eqref{e3}, then \begin{equation}\label{e0.9} {{y}_{\lambda \lambda }}(x,\lambda )\to 2{{\tilde{y}}_{k+2}}(x),\quad {{y'}_{\lambda \lambda }}(x,\lambda )\to 2{{{\tilde{y}}'}_{k+2}}(x) \end{equation} uniformly according to $ x\in [0,1] $, as $ \lambda \to {{\lambda }_{k}} $, where $ {{\tilde{y}}_{k+2}} $ is one of the associated functions of the second order corresponding to the first associated function $ {{\tilde{y}}_{k+1}} $. It is obvious that $ {{\tilde{y}}_{k+2}}={{y}_{k+2}}+\tilde{c}{{y}_{k+1}}+\tilde{d}{{y}_{k}} $ \cite{Aliyev,Ince}. It is easily seen from \eqref{e0.8} and \eqref{e0.9} that \begin{gather}\label{e8'} \tilde{c}= \begin{cases} -{{{y'}}_{k+1}}(0), & \text{if } \beta =0,\\ -{{y}_{k+1}}(0), & \text{if } 0<\beta <\pi, \end{cases}\\ \label{e9'} \tilde{d}=\begin{cases} {{( {{{y'}}_{k+1}}(0) )}^2}-{{{y'}}_{k+2}}(0), & \text{if } \beta =0 , \\ y_{k+1}^2(0)-{{y}_{k+2}}(0), & \text{if } 0<\beta <\pi. \end{cases} \end{gather} The following systems were investigated in \cite{Aliyev}: \begin{itemize} \item[(a)] $ {{y}_n}(x)$ $(n=0,1,\dots;n\ne l) $, if all of eigenvalues of \eqref{e1}--\eqref{e3} are real and simple, where $l$ is an arbitrary non-negative integer. \item[(b)] $ {{y}_n}(x)$ $(n=0,1,\dots;n\ne k+1) $, if $ {{\lambda }_{k}} $ is double eigenvalue $ ( {{\lambda }_{k}}={{\lambda }_{k+1}} ) $ of the problem \eqref{e1}--\eqref{e3}. \item[(c)] $ {{y}_n}(x)$ $(n=0,1,\dots;n\ne k) $, if $ {{\lambda }_{k}} $ is double eigenvalue $ ( {{\lambda }_{k}}={{\lambda }_{k+1}} ) $ of \eqref{e1}--\eqref{e3} and \begin{equation}\label{e10'} {\omega }'''({{\lambda }_{k}})\ne 3\tilde{c}{\omega }''({{\lambda }_{k}}). \end{equation} \item[(d)] $ {{y}_n}(x)$ $(n=0,1,\dots;n\ne l) $, if $ {{\lambda }_{k}} $ is double eigenvalue $ ( {{\lambda }_{k}}={{\lambda }_{k+1}} ) $ of \eqref{e1}--\eqref{e3}, where $ l\ne k,k+1 $ is an arbitrary non-negative integer. \item[(e)] $ {{y}_n}(x)$ $(n=0,1,\dots;n\ne k+2) $, if $ {{\lambda }_{k}} $ is triple eigenvalues $ ( {{\lambda }_{k}}={{\lambda }_{k+1}}={{\lambda }_{k+2}} ) $ of \eqref{e1}--\eqref{e3}. \item[(f)] $ {{y}_n}(x)$ $(n=0,1,\dots;n\ne k+1) $, if $ {{\lambda }_{k}} $ is triple eigenvalues $ ( {{\lambda }_{k}}={{\lambda }_{k+1}}={{\lambda }_{k+2}} ) $ of \eqref{e1}--\eqref{e3} and \begin{equation}\label{e11'} {{\omega }^{IV}}({{\lambda }_{k}})\ne 4\tilde{c}{\omega }'''({{\lambda }_{k}}). \end{equation} \item[(h)] $ {{y}_n}(x)$ $(n=0,1,\dots;n\ne k) $, if $ {{\lambda }_{k}} $ is triple eigenvalues $ ( {{\lambda }_{k}}={{\lambda }_{k+1}}={{\lambda }_{k+2}} ) $ of \eqref{e1}--\eqref{e3} and \begin{equation}\label{e12'} \frac{{{\omega }^{IV}}({{\lambda }_{k}})}{4!} \Big(\frac{{{\omega }^{IV}}({{\lambda }_{k}})}{4!} -\tilde{c}\frac{{\omega }'''({{\lambda }_{k}})}{3!} \Big) \neq \frac{{\omega }'''({{\lambda }_{k}})}{3!} \big(\frac{{{\omega }^{V}}({{\lambda }_{k}})}{5!}-\tilde{d} \frac{{\omega }'''({{\lambda }_{k}})}{3!} \Big). \end{equation} \item[(h)] $ {{y}_n}(x)$ $(n=0,1,\dots;n\ne l) $, if $ {{\lambda }_{k}} $ is triple eigenvalues $ ( {{\lambda }_{k}}={{\lambda }_{k+1}}={{\lambda }_{k+2}} ) $ of \eqref{e1}--\eqref{e3}, where $ l\ne k,k+1,k+2 $ is an arbitrary non-negative integer. \item[(i)] $ {{y}_n}(x)$ $(n=0,1,\dots;n\ne r) $, if $ {{\lambda }_{r}} $ and $ {{\lambda }_{s}} $ are conjugate of non-real eigenvalues $ ( {{\lambda }_{s}}={{\overline{\lambda }}_{r}} ) $ of \eqref{e1}--\eqref{e3}. \item[(j)] $ {{y}_n}(x)$ $(n=0,1,\dots;n\ne l) $, if $ {{\lambda }_{r}} $ and $ {{\lambda }_{s}} $ are conjugate of non-real eigenvalues $ ( {{\lambda }_{s}}={{\overline{\lambda }}_{r}} ) $ of \eqref{e1}--\eqref{e3}, where $l\ne r,s$ is an arbitrary non-negative integer. \end{itemize} It was proven in \cite{Aliyev} that each of the systems (a)-(j) is a basis of $ {{L}_{p}}( 0,1 ),1