\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2016 (2016), No. 76, pp. 1--4.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2016 Texas State University.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2016/76\hfil Quasi-spectral decomposition] {Quasi-spectral decomposition of the heat potential} \author[T. Sh. Kal'menov, G. D. Arepova \hfil EJDE-2016/76\hfilneg] {Tynysbek Sh. Kal'menov, Gaukhar D. Arepova} \address{Tynysbek Sh. Kal'menov \newline Institute of Mathematics and Mathematical Modeling, 125 Pushkin str., 050010 Almaty, Kazakhstan} \email{kalmenov@math.kz} \address{Gaukhar D. Arepova \newline Institute of Mathematics and Mathematical Modeling, 125 Pushkin str., 050010 Almaty, Kazakhstan and Al-Farabi Kazakh national university, 71 Al-Farabi ave., 050040 Almaty, Kazakhstan} \email{arepova@math.kz} \thanks{Submitted January 25, 2016. Published March 17, 2016.} \subjclass[2010]{35K05, 47F05} \keywords{Heat potential; quasi-spectral decomposition; \hfill\break\indent self-adjoint operator; unitary operator; the fundamental solution} \begin{abstract} In this article, by multiplying of the unitary operator $$ (Pf)(x,t)=f(x,T-t),\quad 0\leq t\leq T, $$ the heat potential turns into a self-adjoint operator. From the spectral decomposition of this completely continuous self-adjoint operator we obtain a quasi-spectral decomposition of the heat potential operator. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \allowdisplaybreaks \section{Introduction} In the works of Gohberg and Krein \cite{GK}, it is proven that for any linear completely-continuous operator $A$, in a Hilbert space $H$, has a triangular representation $A=U(A^{*}A)^{1/2}$, where $A^{*}$ is an adjoint operator to $A$, and $U$ a unitary operator. When the operator $A$ is a completely-continuous Volterra operator generated by a mixed solution of the Cauchy problem for parabolic and hyperbolic equations proposes, it is of great interest. In this article we give a new analogue of a triangular representation of multi-dimensional heat potential and its quasi-spectral expansion. \section{Main results} Let $\Omega\subset R^{n}$ be a finite domain with a smooth boundary $\partial\Omega\in C^{1}$, and $D=\Omega\times(0,T)$. In the domain $D$ we define the heat potential (see e.g. \cite{Biz1,Bla}) by the formula \begin{equation} u=\lozenge^{-1}f\equiv \int_{0}^{t}d\tau\int_{\Omega }\varepsilon_{n}(x-\xi,t-\tau)f(\xi,\tau)d\xi \label{e2.1} \end{equation} where \begin{equation} \varepsilon_{n}(x,t)=\frac{\theta(t)}{(2\sqrt{\pi t})^n}e^{-\frac{|x|^{2}}{4t}} \label{e2.2} \end{equation} is the fundamental solution of the heat equation \begin{gather} \lozenge \varepsilon_{n}(x,t)\equiv(\frac{\partial}{\partial t}-\Delta_{x})\varepsilon_{n}(x,t)=\delta(x,t), \label{e2.3} \\ \varepsilon_{n}(x,t)|_{t=0}=0. \label{e2.4} \end{gather} For $f\in L_2(\Omega)$ it is easy to verify that \begin{equation} \lozenge u=\lozenge \lozenge^{-1}f =\lozenge \int_{0}^{t}d\tau\int_{\Omega }\varepsilon_{n}(x-\xi,t-\tau)f(\xi,\tau)d\xi=f(x,t), \quad u|_{t=0}=0.\label{e2.5} \end{equation} In the work by Kalmenov, Tokmagambetov \cite{K5} (see also \cite{K1,K2,K3,K4,ST}), it is shown that the heat potential $u=\lozenge^{-1}f$ at any $f\in L_2(\Omega)$ satisfies the following boundary conditions \begin{equation} \begin{aligned} &\frac{u(x,t)}{2}-\int_{0}^{t}d\tau \int_{\partial \Omega}\Big(\frac{\partial\varepsilon_{n}}{\partial n_{\xi}}(x-\xi,t-\tau)u(\xi,\tau) \\ & -\varepsilon_{n}(x-\xi,\tau-t)\frac{\partial u}{\partial n_{\xi}}(\xi,\tau)\Big)d\xi=0, \quad x\in\partial\Omega,\; t\in[0,T]. \end{aligned} \label{e2.6} \end{equation} Conversely, for any $f\in L_2(D)$, solution of \eqref{e2.5} defines the heat potential by formula \eqref{e2.1}. Here, $\frac{\partial }{\partial n_{\xi}}$ is unit normal derivative at $\partial\Omega$. Note that the operator $\lozenge^{-1}$ is completely-continuous on $L_2$ for any $f\in L_2(\Omega)$, $u=\lozenge^{-1}f\in W_2^{2,1}(D)$. The operator $\lozenge^{-1}$ is a Volterra operator, i.e. it has no nontrivial eigenvectors. Let us define the operator $P$ by \begin{equation} (Pf)(x,t)=f(x,T-t),\quad 0\leq t\leq T. \label{e2.7} \end{equation} It is clear that $P$ is a bounded self-adjoint operator satisfying \begin{equation} P=P^{*},\quad P^{2}=I. \label{e2.8} \end{equation} \begin{lemma} \label{lem2.1} The operator $P\lozenge^{-1}$ is a completely-continuous self-adjoint operator. \end{lemma} \begin{proof} Let us rewrite the operator $P\lozenge^{-1}$ in the form \begin{equation} \begin{aligned} P\lozenge^{-1}f &=P\Big(\int_{0}^{T}\theta(t-\tau)d\tau \int_{\Omega}\varepsilon_{n}(x-\xi,t-\tau)f(\xi,\tau)d\xi\Big)\\ &=\int_{0}^{T}\theta(T-t-\tau)d\tau\int_{\Omega}\varepsilon_{n}(x-\xi,T-t-\tau) f(\xi,\tau)d\xi. \end{aligned} \label{e2.9} \end{equation} By using a direct computation for any $f,g\in L_2(D)$ it can be shown that \begin{equation} \begin{aligned} &(P\lozenge^{-1}f,g)_{L_2(D)}\\ &=\int_{0}^{T}dt\int_{\Omega}(P\lozenge^{-1}f)(x,t)g(x,t)dx \\ &=\int_{0}^{T}dt\int_{\Omega}\int_{0}^{T}\theta(T-t-\tau) \int_{\Omega}\varepsilon_{n}(x-\xi,T-t-\tau)f(\xi,\tau)d\xi g(x,t)dx \\ &=\int_{0}^{T}\int_{\Omega}f(\xi,t)dx\int_{0}^{T}\theta(T-t-\tau) \int_{\Omega}\varepsilon_{n}(x-\xi,T-t-\tau)g(x,t)dxd\xi \\ &=\int_{0}^{T}d\tau\int_{\Omega}f(\xi,\tau)P \Big(\int_{0}^{T}\theta(\tau-t)dt\int_{\Omega}\varepsilon_{n}(x-\xi, \tau-t)g(x,t)dx\Big)d\xi\\ &=(f,P\lozenge^{-1}g)_{L_2(D)}. \end{aligned} \label{e2.10} \end{equation} On the other hand, \begin{equation} (P\lozenge^{-1}f,g)_{L_2(D)}=(f,(P\lozenge^{-1})^{*}g)_{L_2(D)}.\label{e2.11} \end{equation} Because of the arbitrariness of $f,g\in L_2(D)$ we obtain $$ (P\lozenge^{-1})^{*}=P\lozenge^{-1}. $$ This completes the proof. \end{proof} According to the theory of regular extensions of the linear operator (Otelbaev \cite{Otel} and Vishik \cite{Bish}) self-adjoint differential operators are generated only by boundary conditions. \begin{lemma} \label{lem2.2} For $f\in L_2(D)$ the function $u=P\lozenge^{-1}f \in W_2^{1,2}(D)\cap W_2^1(\partial D)$ satisfies the equation \begin{equation} \lozenge Pu=f,\label{e2.12} \end{equation} the initial condition \begin{equation} u|_{t=T}=0,\label{e2.13} \end{equation} and the lateral boundary condition \begin{equation} \begin{aligned} &-\frac{(Pu)(x,t)}{2}+\int_{0}^{t}d\tau \int_{\partial\Omega}(\frac{\partial\varepsilon_{n}}{\partial n_{\xi}}(x-\xi,\tau-t)Pu(\xi,\tau)d\xi) \\ &-\int_{0}^{t}d\tau \int_{\Omega}(\varepsilon_{n}(x-\xi,\tau-t)P\frac{\partial u}{\partial n_{\xi}}(\xi,\tau)d\tau)=0,\quad x\in\partial\Omega, t\in[0,T]. \end{aligned} \label{e2.14} \end{equation} Conversely, if $u\in W_2^{1,2}(D)\cap W_2^1(\partial D)$ satisfies \eqref{e2.12}, the initial condition \eqref{e2.13} and the lateral boundary condition \eqref{e2.14}, then $u=P\lozenge^{-1}f$. \end{lemma} \begin{proof} In view of $\lozenge Pu=f$, where $u\in W_2^{1,2}(D)\cap W_2^1(\partial D)$ satisfies the initial condition \eqref{e2.13} and the lateral boundary condition \eqref{e2.14}, it is easy to prove (see \cite{K5}) that $v=Pu=\diamondsuit^-1f$, where \begin{equation} v=\lozenge^{-1}\lozenge\vartheta=\int_{0}^{t}d\tau\int_{\Omega }\varepsilon_{n}(x-\xi,\tau-t)(\frac{\partial}{\partial\tau}- \Delta_{\xi})\vartheta(\xi,\tau)d\xi.\label{e2.16} \end{equation} It is easy to check as in \cite{K5} that \begin{gather} \begin{aligned} &-\frac{\vartheta(x,t)}{2}+\int_{0}^{t}d\tau \int_{\partial \Omega}(\frac{\partial\varepsilon_{n}}{\partial n_{\xi}}(x-\xi,t-\tau)\vartheta(\xi,\tau)\\ &-\varepsilon_{n}(x-\xi,\tau-t)\frac{\partial u}{\partial n_{\xi}}(\xi,\tau))d\xi=0, \quad x\in\partial\Omega, \; t\in[0,T]. \end{aligned} \label{e2.17} \\ v\big{|}_{t=0}=0 \label{e2.17*} \end{gather} By taking into account $v=Pu$ we will rewrite \eqref{e2.17}--\eqref{e2.17*} in the form \begin{gather} \begin{aligned} &-\frac{(Pu)(x,t)}{2}+\int_{0}^{t}d\tau \int_{\partial \Omega}(\frac{\partial\varepsilon_{n}}{\partial n_{\xi}}(x-\xi,t-\tau)(Pu)(\xi,\tau)\\ &-\varepsilon_{n}(x-\xi,\tau-t)\frac{\partial Pu}{\partial n_{\xi}}(\xi,\tau))d\xi=0, \quad x\in\partial\Omega,\; t\in[0,T]. \end{aligned} \label{e2.19} \\ u\big{|}_{t=T}=0 \label{e2.19*} \end{gather} This completes the proof. \end{proof} Since the operator $P\lozenge^{-1}$ is completely-continuous and self-adjoint throughout $L_2(\Omega)$, then it has a complete orthonormal system of eigenvectors $e_{k}(x,t)$ associated with real eigenvalues $\lambda_{k}$, \begin{equation} \lambda_{k}(P\lozenge^{-1})e_{k}=e_{k}. \label{e2.20} \end{equation} Then \begin{equation} \begin{aligned} P\lozenge^{-1}f &=\sum_{k}(P\lozenge^{-1}f,e_{k})_{0}e_{k} =\sum_{k}(f,(P\lozenge^{-1})e_{k})_{0}e_{k}\\ &= \sum_{k}(f,\frac{e_{k}}{\lambda_{k}})e_{k} =\sum_{k}\frac{1}{\lambda_{k}}(f,e_{k})e_{k}. \end{aligned} \label{e2.21} \end{equation} Applying the operator $P$ to both sides of \eqref{e2.21}, we obtain \begin{equation} \lozenge^{-1}f=\sum_{k}\frac{1}{\lambda_{k}}(f,e_{k})Pe_{k}.\label{e2.22} \end{equation} The decomposition of $\lozenge^{-1}f$ through orthonormal system $Pe_{k}$ is called a quasi-spectral expansion of the heat potential $\lozenge^{-1}$. This proves the following theorem. \begin{theorem} \label{thm2.1} Let $e_{k}$ be a complete orthonormal system of eigenvectors of the self-adjoint operator $\lambda_{k}(P\lozenge^{-1})e_{k}=e_{k}$. Then, for any $f\in L_2(D)$, $\lozenge^{-1}f$ has quasi-spectral expansion in the form \begin{equation} \lozenge^{-1}f=\sum_{k}\frac{1}{\lambda_{k}}(f,e_{k})Pe_{k}.\label{e2.23} \end{equation} \end{theorem} \begin{thebibliography}{00} \bibitem{Biz1} A. V. Bitsadze; \emph{Equations of Mathematical Physics [in russian]}. Moscow: Nauka (1982). \bibitem{GK} I.~C. Gohberg and M.~G. Krein. \newblock {\em Introduction to the theory of linear nonselfadjoint operators}. \newblock Translated from the Russian by A. Feinstein. Translations of Mathematical Monographs, Vol. 18. American Mathematical Society, Providence, R.I., 1969. \bibitem{K1} T. Sh. Kal'menov, D. Suragan; \emph{To spectral problems for the volume potential}. Doklady Mathematics, 80 (2) (2009), pp. 646-649. \bibitem{K2} T. Sh. Kal'menov, D. Suragan; \emph{A boundary condition and Spectral Problems for the Newton Potentials}. Operator Theory: Advances and Applications, 216 (2011), pp. 187-210. \bibitem{K3} T. Sh. Kal'menov, D. Suragan; \emph{Transfer of Sommerfeld radiation conditions to the boundary of a bounded domain}. Zh.Vychisl.Mat. Mat. Fiz., 52 (6) (2012), pp. 1063-1068. \bibitem{K4} T. Sh. Kal'menov, D. Suragan; \emph{Boundary conditions for the volume potential for the polyharmonic equation}. Differential Equations, 48 (4) (2012), pp. 595-599. \bibitem{K5} T. Sh. Kal'menov, N. E. Tokmagambetov; \emph{On a nonlocal boundary value problem for the multidimensional heat equation in a noncylindrical domain}. Siberian Mathematical Journal, 54 (6) (2013), pp. 1024-1029. \bibitem{Otel} B. K. Kokebaev, M. Otelbaev, and A.N. Shynybekov; \emph{On questions of extension and restriction of operators [in russian]}. Dokl. Akad. Nauk SSSR, 271 (6) (1983), pp. 1307-1310. \bibitem{ST} D. Suragan, N. E. Tokmagambetov; \emph{On transparent boundary conditions for the high-order heat equation}. Siberian Electronic Mathematical Reports, 10(1) (2013), pp. 141-149. \bibitem{Bish} M. I. Vishik; \emph{Boundary problems for elliptic equations degenerating on the boundary of a region [in russian]}. Mat.Sb.(N.S.), 35(77) (3) (1954), pp. 513-568. \bibitem{Bla} V. S. Vladimirov; \emph{Equations of mathematical physics [in russian]}. Moscow: Nauka (1981). \end{thebibliography} \end{document}