Electronic Journal of Differential Equations, Vol. 2016 (2016), No. 39, pp. 1-11.
ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu
ftp ejde.math.txstate.edu

EXISTENCE OF NON-OSCILLATORY SOLUTIONS TO
FIRST-ORDER NEUTRAL DIFFERENTIAL EQUATIONS

TUNCAY CANDAN

ABSTRACT. This article presents sufficient conditions for the existence of non-
oscillatory solutions to first-order differential equations having both delay and
advance terms, known as mixed equations. Our main tool is the Banach con-
traction principle.

1. INTRODUCTION

In this article, we consider a first-order neutral differential equation

%[x(t) + Pzt —71) + Pe(t)z(t + 72)]

+ Ql (t).%‘(t — 0'1) — Qg(t)l‘(t + 0’2) =0,

where P; € C([tg,),R), Q; € C([ty,0),[0,00)), 7; > 0 and o; > 0 for ¢ = 1,2.
We give some new criteria for the existence of non-oscillatory solutions of .

Recently, the existence of non-oscillatory solutions of first-order neutral func-
tional differential equations has been investigated by many authors. Yu and Wang
[16] showed that the equation

(1.1)

% [(t) + px(t— )]+ Q#)x(t—0) =0, t>1

has a non-oscillatory solution for p > 0. Later, in 1993, Chen et al [9] studied the
same equation and they extended the results to the case p € R\{—1}. Zhang et al
[T7] investigated the existence of non-oscillatory solutions of the first-order neutral
delay differential equation with variable coefficients

%[z(t) +Pt)x(t— 7))+ Q1(t)x(t —o1) — Q2(t)x(t —0o2) =0, t>tp.

They obtained sufficient conditions for the existence of non-oscillatory solutions
depending on the four different ranges of P(t). In [10], existence of non-oscillatory
solutions of first-order neutral differential equations

L e(t) ~ a)att — 1) = p(0) S (a(t — o))

was studied.
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On the other hand, there has been research activities about the oscillatory be-
havior of first and higher order neutral differential equations with advanced terms.
For instance, in [I] and [5], n-th order neutral differential equations with advanced
term of the form

[2(t) + az(t — 7) + ba(t +7)]™ 4 6 (¢(t)z(t — g) + p(t)z(t + h)) =0

and

d d
0)+az(t—r)+ bt +0( [ a(t.ale-)de+ [ ottt +€)de) = o,

c
were studied, respectively.

This article was motivated by the above studies. To the best of our knowledge,
this current paper is the only paper regarding to the existence of non-oscillatory
solutions of neutral differential equation with advanced term. Some other papers for
the existence of non-oscillatory solutions of first, second and higher order neutral
functional differential and difference equations; see [13| 18, [6l [7, [8, I5] and the
references contained therein. We refer the reader to the books [14] [12] 14, [1T] [2] [3]
on the subject of neutral differential equations.

Let m = max{m,o01}. By a solution of we mean a function x € C([t; —
m,o0),R), for some t; > tg, such that z(¢t) + Pi(¢t)x(t — 1) + Pa(t)x(t + m2) is
continuously differentiable on [¢1, 00) and is satisfied for ¢ > ¢;.

As it is customary, a solution of is said to be oscillatory if it has arbitrarily
large zeros. Otherwise the solution is called non-oscillatory.

The following theorem will be used to prove the theorems.

Theorem 1.1 (Banach’s Contraction Mapping Principle). A contraction mapping
on a complete metric space has exactly one fized point.

2. MAIN RESULTS

To show that an operator S satisfies the conditions for the contraction mapping
principle, we consider different cases for the ranges of the coefficients P;(t) and

Py(t).
Theorem 2.1. Assume that 0 < Pi(t) <p1 <1, 0< Py(t) <py <1—1py and
/ Q1(s)ds < o0, / Q2(s)ds < o0, (2.1)
to to

then (1.1) has a bounded non-oscillatory solution.
Proof. Because of (2.1)), we can choose a t; > tg,

t1 > to + max{r, o1} (2.2)
sufficiently large such that
> M2 —
ds < t>t 2.3
\ Ql(s> S S M2 3 = U1, ( )
> — My — M
Qa(s)ds < & (P + p2) M5 Lo ot>t, (2.4)
t M,

where M, and My are positive constants such that

(p1+p2)My+ My < My and  a € ((p1 + p2) M2 + My, Ms).
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Let A be the set of all continuous and bounded functions on [tg, c0) with the supre-
mum norm. Set

Q:{$€A2M1§Z(t)SM2,tZtQ}.

It is clear that € is a bounded, closed and convex subset of A. Define an operator
S :Q — A as follows:

a = Pi(t)a(t — ) — Pa(t)a(t + 1)
(Sz)(t) = & + [ [Q1(5)z(s — 01) — Q2(s)x(s + 02)|ds, t>t,
(Sx)(t1)7 t() Stﬁtl.

Obviously, Sz is continuous. For t > t; and x € €, from and (| ., respec-
tively, it follows that

(Sz)(t) <a+ /OO Q1(s)z(s —o1)ds < o+ Mo /OO Q1(s)ds < My
t t
and
(5202 @~ At)olt = m) = Pa0att+ )~ [ Qa(ohals + oz)ds
Za—leg—pQMg—Mg/ QQ(S)dSZMl.
t

This means that SQ C €. To apply the contraction mapping principle, the re-
maining is to show that S is a contraction mapping on 2. Thus, if z1,z5 € Q and
t>t,

| (t) = (Sz2)(1)]

(Sz1)
< Pu(t)|aa(t = 71) — w2t — )| + Po(t) |z (t + 72) — 22(t + 72)]
+/t (Q1(s)|z1(s — 01) — w2(s — 01)| + Q2(s)|z1(s + 02) — @2(s + 02)|) ds

|(S21)(t) — (Sz2)(1)]
<l —aal(prt e [ (Quls)+ Quls)) ds)

Mg*Oé Oé*(p1+p2)M27M1)
<
< <p1 +p2 + M, + M |

= )\1||$1 - C172||7

|1 — 2|

where A\; = (1 — —) This implies that
1521 — Swall < Aiflzy — 22,

where the supremum norm is used. Since \; < 1, S is a contraction mapping on (2.
Thus S has a unique fixed point which is a positive and bounded solution of (1.1).
This completes the proof. (I

Theorem 2.2. Assume that 0 < Pi(t) <p;1 <1, p1 —1 < pas < Py(t) <0 and
(2.1) hold, then (1.1} has a bounded non-oscillatory solution.
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Proof. Because of (2.1), we can choose a t; > to sufficiently large satisfying (2.2))
such that

> 1 Ny —
/ Qus)ds < PRI sy, (2.5)
& —p1No — N
[ utoas < 2= E R (2.6)
t

where N7 and N, are positive constants such that
Ni+piNa < (1+p2)No and a € (Ny + piNa, (14 p2)Na).

Let A be the set of all continuous and bounded functions on [tg, 00) with the supre-
mum norm. Set

QZ{$€AZN1§$(t>§N2, tZto}.
It is clear that € is a bounded, closed and convex subset of A. Define an operator
S :Q — A as follows:

a—Pi()x(t—m7)— P(t)z(t + 72)
(Sz)(t) =« + [ 1Q1(9)x(s — 01) — Qa(s)z(s + 02)] ds, t > 1,
(Sz)(t1), to <t <t.
Obviously, Sx is continuous. For ¢t > ¢; and = € €2, from and 7 respec-
tively, it follows that

(S2)(t) < & — palNa + Ny / ~ Ou(s)ds < N,
t

(Sz)(t) > a —p1N2 — N /OO Q2(s)ds > Nj.

This proves that S C 2. To apply the contraction mapping principle, it remains
to show that S is a contraction mapping on 2. Thus, if x1,25 € Q and t > ¢4,

[(S21)(8) = (Sz2)(1)] < 121 — o]l (p1 — p2 + / " (Qu(s) + Qals)) ds)

< Agllzy — @2l
where Ay = (1 — %) This implies
[Sz1 — Sza| < Aaflzy — 22,

where the supremum norm is used. Since Ay < 1, S is a contraction mapping on ).
Thus S has a unique fixed point which is a positive and bounded solution of (1.1).
This completes the proof. O

Theorem 2.3. Assume that 1 < p; < Pi(t) < p1, <00, 0 < Py(t) <pa <p1 —1
and (2.1) hold, then (1.1)) has a bounded non-oscillatory solution.

Proof. In view of ([2.1), we can choose a t1 > to,

ti+71 >ty + 01, (2.7)
sufficiently large such that
o0 M _
/ Qu(s)ds < LA 4>y (2.8)
t M,

e —p1,Ms — (1 M,
/t Qz(s)dsga D1y 3M4( + p2) 47 t> 1, (2.9)
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where M3 and M, are positive constants such that
p1oMs + (1 +p2)My <p1My and «a € (p1,Ms+ (1 + p2) My, p1My) .

Let A be the set of all continuous and bounded functions on [tg, c0) with the supre-
mum norm. Set
QZ{ZEEASMgS.T(t)SM;;, tZto}.

It is clear that €2 is a bounded, closed and convex subset of A. Define a mapping
S :Q — A as follows:

m{a —a(t+711) = Pa(t +m)a(t + 71+ 72)
(Sz)(t) =<4+ ftofﬁ [Q1(s)x(s — 1) — Q2(s)x(s + 02)] ds}, t>t,
(Sz)(t1), to <t <ty.

Clearly, Sz is continuous. For ¢t > ¢; and x € Q, from (2.8) and ([2.9)), respectively,
it follows that

(Sz)(1) < ﬁ (a + M, /too Ql(s)ds> < pil(a + M, /too Ql(s)ds) < My
and
(Sz)(t) = P+ (04 — (1 +p2) My — My /too Q2(3)d3)
> i(a — (14 p2) My — My /too QQ(S)dS) > Ms.

This means that SQ C Q. To apply the contraction mapping principle it remains
to show that S is a contraction mapping on . Thus, if x1,22 € Q and t > ¢4,

1 oo
(520)(0) — (S52)(0)] < llor — a2l (14 52+ [ (Qa(5) + Qa(o)) ds)
< Azllzy — w2

where A3 = (1 — %). This implies

[Sz1 — Sxo| < Asllzy — a2,
where the supremum norm is used. Since A3 < 1, S is a contraction mapping on ).

Thus S has a unique fixed point which is a positive and bounded solution of (1.1).
This completes the proof. (I

Theorem 2.4. Assume that 1 <p; < Pi(t) < p1, <00, 1 —p1 <p2 < Pa(t) <0
and (2.1) hold, then (1.1)) has a bounded non-oscillatory solution.

Proof. In view of (2.1, we can choose a t; > ¢, sufficiently large satisfying (2.7)
such that

o0
N _
/ Qi(s)ds < (pl“?fv#, = (2.10)
t 4
0 —p1, N3 — N.
/ Qs(s)ds < %, t>t, (2.11)
t 4

where N3 and N are positive constants such that

p1oN3 + Ny < (p1 +p2)Ny and o € (p1,N3 + Ny, (p1 + p2)Ny) .
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Let A be the set of all continuous and bounded functions on [tg, c0) with the supre-
mum norm. Set

Q={zeA:Ns<a(t) <Ny t >t}
It is clear that §2 is a bounded, closed and convex subset of A. Define a mapping
S :Q — A as follows:
m{a —xz(t+m7)— P(t+71)x(t+711 + 72)
(Sz)(t) =< + ftofﬁ [Qi(s)x(s — 01) — Q2(s)x(s + 02)] ds}, t>t,
(Sz)(t1), to <t <ty.

Clearly, Sz is continuous. For ¢t > ¢; and € Q, from (2.10) and (2.11]), respectively,
it follows that

1
Pl(t+7'1)

1 o0
— (04 —palNy + N4/ Ql(S)d8> <Ny
D1 ¢

(Sz)(t)

(Oé —paNg+ Ny /too Q1<3>d5)

IN

and

I
Pl(t+T1)
1 oo

_ _ _ > .
™ (a N, N4/t Qg(s)ds) > N,

This proves that SQ C €. To apply the contraction mapping principle it remains
to show that S is a contraction mapping on 2. Thus, if x1,z5 € Q and t > ¢4,

1 o0
(S20)(6) = (S22)(0] < -l =2l (1=p2+ | (Qa(s) + Qus) ds)

< M|z — 22|

(Sz)(t) (a ~ Ny— Ny /t h Qg(S)dS)

Y

where \y = (1 — ’;:JTA?). This implies

[Sz1 — Sxa| < Adljwy — a2,
where the supremum norm is used. Since Ay < 1, S is a contraction mapping on €.

Thus S has a unique fixed point which is a positive and bounded solution of (1.1).
This completes the proof. (Il

Theorem 2.5. Assume that —1 < p; < Pi(t) <0, 0 < Pa(t) < ps <1+ p; and
(2.1) hold, then (1.1} has a bounded non-oscillatory solution.

Proof. Because of (2.1)), we can choose a t; > to sufficiently large satisfying (2.2))
such that

o0 1+ p1) Mg —
/ Ql(s)dsgw—ﬁﬁa, t> 1, (2.12)
t
and
o0 — poMg — M,
/ Qz(s)dss%sf’, >t (2.13)
t

where M5 and Mg are positive constants such that

M5 +p2M6 < (1 +p1)M6 and « € (M5 +p2M6, (1 +p1)M6) .
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Let A be the set of all continuous and bounded functions on [tg, c0) with the supre-
mum norm. Set

Q={£6A5M5Sx(t)§Ms,tZto}.

It is clear that € is a bounded, closed and convex subset of A. Define an operator
S :Q — A as follows:

o — Pl(t)l’(t — T1) — Pg(t)l’(t + 7'2)
(Sz)(t) = + [ 1Q1(s)x(s — 01) — Qa(s)z(s + 02)] ds, t > ty,
(Sz)(t1), to <t <t.

Obviously, Sz is continuous. For ¢t > t; and x € , from (2.12)) and (2.13)), respec-
tively, it follows that

(Sa)(t) < a — pi Mg + Mﬁ/ Qu(s)ds < Mg,
t

(S2)(t) > a — po Mg — Mﬁ/ Qs(s)ds > Ms.

This proves that SQ C Q. To apply the contraction mapping principle it remains
to show that S is a contraction mapping on Q. Thus, if 1,29 € Q, t > 1,

(820)(0) = (S2)(0) < o1 —aall( = pa-+ 22t [ (Qulo) + Qals)) ds)

< Xsllz1 — 22|

where A5 = (1 — ]\I‘;II; ). This implies

[Sz1 — Swa|| < Aslr — 22|,
where the supremum norm is used. Since A5 < 1, S is a contraction mapping on Q.

Thus S has a unique fixed point which is a positive and bounded solution of (1.1)).
This completes the proof. ([l

Theorem 2.6. Assume that —1 < p; < Pi(t) <0, =1 —p; <ps < Pa(t) <0 and
(2.1) hold, then (1.1) has a bounded non-oscillatory solution.

Proof. Because of (2.1)), we can choose a t; > tg sufficiently large satisfying (2.2
such that

o0 1 Ng —
/ Ql(s)dsg( + b1t p2) N >, (2.14)
¢ Ns
and
oo ~ N
/ Qo(s)ds < 220 1> ¢y, (2.15)
¢ Ng

where N5 and Ng are positive constants such that
N5 < (1+p1 +p2)Ne and a € (N5, (1 +p1+p2)Ne).

Let A be the set of continuous and bounded functions on [tg, c0) with the supremum
norm. Set

Q:{$6A2N5§Z(t)§N6,tZto}.
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It is clear that € is a bounded, closed and convex subset of A. Define an operator
S :Q — A as follows:

a—Pi(t)z(t —m1) — P(t)x(t + 72)
(Sz)(t) = + [ 1Q1(s)x(s — 01) — Qa(s)z(s + 02)]ds, > 1,
(Sz)(t1), to <t <t
Obviously, Sz is continuous. For ¢ > t; and x € Q, from (2.14) and (2.15)), respec-
tively, it follows that

(Sz)(t) < a —p1Ng — p2Ne + Ne/ Q1(s)ds < Ng,
¢

(Sz)(t) > a — Ng /too Q2(s)ds > Ns.

This proves that SQ C €. To apply the contraction mapping principle it remains
to show that S is a contraction mapping on 2. Thus, if x1,z5 € Q and t > ¢4,

(820)(0) = (S2)(0) < s~ aall( = p1 = pa+ [ (Qulo) + Qals)) )

< Xellw1 — @2,

where Ag = (1 — %Z ). This implies

[Sz1 — Sza| < Agllz1 — 22l

where the supremum norm is used. Since A\g < 1, S is a contraction mapping on ).
Thus S has a unique fixed point which is a positive and bounded solution of (1.1J).
This completes the proof. ([l

Theorem 2.7. Assume that —co < p1, < Pi(t) < p1 < =1, 0 < Py(t) < pa <
—p1 — 1 and (2.1) hold, then (1.1)) has a bounded non-oscillatory solution.

Proof. In view of (2.1)), we can choose a t; > ¢, sufficiently large satisfying (2.7)
such that
> M
/ Qu(s)ds < P27 T2 T s, (2.16)
t Mg

and

o0 1 —1— o) Mg —
/ Oa(s)ds < 11 M?) ST >, (2.17)
t

where M, and Mg are positive constants such that

—p1oM7 < (=p1 —1—p2)Ms and « € (=p1,M7,(—p1 — 1 —p2)Ms).

Let A be the set of all continuous and bounded functions on [tg, 00) with the supre-
mum norm. Set

Q:{$€A:M7§Z‘(t)§Mg,tZto}.

It is clear that Q is a bounded, closed and convex subset of A. Define a mapping
S :Q — A as follows:

Win){a +a(t+ 1)+ Po(t + 1)zt + 71+ 72)
(Sz)(t) =q — \/;O:Tl [Q1(s)z(s —01) — Qa2(s)x(s + 02)] ds}, t>t
(Sz)(t1), to <t <t
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Clearly, Sz is continuous. For ¢t > ¢; and x € Q, from (2.17)) and (2.16]), respectively,
it follows that

71 S

(Sz)(t) < o <04 + Mg + pa Mg + M8/ Qz(s)d5> < Mg
1 ¢

and

(Sa)(t) > —* <a = N Ql(S)ds> > My,

P1,
This implies that SQ C Q. To apply the contraction mapping principle it remains
to show that S is a contraction mapping on 2. Thus, if x1,22 € Q and t > ¢4,

-1 oo
(S2)(0) = (Sa2) (0] < —llos = wall (1472 [ (Quls) + Qa(s)) ds)

< Arllzy — @,

1— p1g M7

where A7 = ( DT

). This implies
|Sxy — Saa| < Arl|z1 — 22,

where the supremum norm is used. Since A7 < 1, S is a contraction mapping on €.
Thus S has a unique fixed point which is a positive and bounded solution of (1.1)).
This completes the proof. O

Theorem 2.8. Assume that —o0o < p1, < Pi(t) <p1 < —1,p1+1 <pa < Pa(t) <0
and (2.1) hold, then (1.1) has a bounded non-oscillatory solution.

Proof. In view of (2.1), we can choose a t; > tg sufficiently large satisfying (2.7

such that - N N
| @usyas < RISy (2.18)
t 8

and - e
/ Qﬂ@@g(ﬂ“7; ST >, (2.19)
t 8

where Ny and Ng are positive constants such that
—p10N7 —pgNg < (—p1 — 1)Ng and o€ (—p10N7 —p2N87 (_pl — 1)Ng)

Let A be the set of continuous and bounded functions on [tg, 00) with the supremum
norm. Set

Q:{JZGA:]\HSZ‘(t)SNg, th,o}.
It is clear that €2 is a bounded, closed and convex subset of A. Define a mapping
S :Q — A as follows:
—1
itttz +m) + Bt +7)x(t + 71+ 72)
(Sz)(t) = = [, [Q1(8)2(s — 01) — Qa(s)x(s + 0a)] ds}, >t
(Sz)(t1), to <t <t.

Clearly, Sz is continuous. For ¢t > ¢; and x € Q, from (2.19)) and (2.18]), respectively,
it follows that

(Sz)(t) < ;—11 (a + Ng + Ng /too Qg(S)dS) < N
and

(Sx)(t) > ;1<04 + p2Ng — N3 /too Q1(S)d8) > Ny.

P1,
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These prove that SQ C Q. To apply the contraction mapping principle it remains
to show that S is a contraction mapping on 2. Thus, if x1,25 € Q, t > ¢4,

—1 oo
(80)(0) ~ (522001 < s~ wal(1 =+ [ (@1(6) + Qalo) ds)
¢
< Agllz1 — 2|
where \g = (1 — };11071\[]\;7). This implies

[Sz1 — Sza| < Agllzy — 22l

where the supremum norm is used. Since Ag < 1, S is a contraction mapping on €.
Thus S has a unique fixed point which is a positive and bounded solution of (1.1)).
This completes the proof. ([

Example 2.9. Consider the equation

[at) %x(t —om) + [% - exp(—%)]x(t + 577)}’

1 t t o (2.20)
+ 3 exp(—§)x(t —4m) — exp(—i)x(t + 7) =0, t>-2In(1/2)
and note that
1

P(t)= 5, Plt) =5 —ep(—2), Qi(t)=gexp(~3), Qalt) = exp(—).

A straightforward verification yields that the conditions of Theorem are valid.
We note that x(t) = 2 + sint is a non-oscillatory solution of (2.20).

Example 2.10. Consider the equation

1 .3 1 1.7
[x(t) — (D) [i — exp(—t)]x(t — 11) — exp(11/4) [Z + exp(3—t)]x(t + Z)} )
+exp(—t — Dt — 1) — exp(—t + Z)as(t + Z) =0, t> B
and note that
Pu(t) =~ o5 3 —exp(=0]. Palt) = —exp() [ +exp(—0)]
Qilt) = exp(~t = 1), Qa(t) = exp(~t + ).

It is easy to verify that the conditions of Theorem are valid. We note that
z(t) = 1 + exp(—t) is a non-oscillatory solution of (2.21)).
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