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EXISTENCE OF NON-OSCILLATORY SOLUTIONS TO
FIRST-ORDER NEUTRAL DIFFERENTIAL EQUATIONS

TUNCAY CANDAN

Abstract. This article presents sufficient conditions for the existence of non-
oscillatory solutions to first-order differential equations having both delay and

advance terms, known as mixed equations. Our main tool is the Banach con-

traction principle.

1. Introduction

In this article, we consider a first-order neutral differential equation
d

dt
[x(t) + P1(t)x(t− τ1) + P2(t)x(t+ τ2)]

+Q1(t)x(t− σ1)−Q2(t)x(t+ σ2) = 0,
(1.1)

where Pi ∈ C([t0,∞),R), Qi ∈ C([t0,∞), [0,∞)), τi > 0 and σi ≥ 0 for i = 1, 2.
We give some new criteria for the existence of non-oscillatory solutions of (1.1).

Recently, the existence of non-oscillatory solutions of first-order neutral func-
tional differential equations has been investigated by many authors. Yu and Wang
[16] showed that the equation

d

dt
[x(t) + px(t− c)] +Q(t)x(t− σ) = 0, t ≥ t0

has a non-oscillatory solution for p ≥ 0. Later, in 1993, Chen et al [9] studied the
same equation and they extended the results to the case p ∈ R\{−1}. Zhang et al
[17] investigated the existence of non-oscillatory solutions of the first-order neutral
delay differential equation with variable coefficients

d

dt
[x(t) + P (t)x(t− τ)] +Q1(t)x(t− σ1)−Q2(t)x(t− σ2) = 0, t ≥ t0 .

They obtained sufficient conditions for the existence of non-oscillatory solutions
depending on the four different ranges of P (t). In [10], existence of non-oscillatory
solutions of first-order neutral differential equations

d

dt
[x(t)− a(t)x(t− τ)] = p(t)f(x(t− σ))

was studied.
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On the other hand, there has been research activities about the oscillatory be-
havior of first and higher order neutral differential equations with advanced terms.
For instance, in [1] and [5], n-th order neutral differential equations with advanced
term of the form

[x(t) + ax(t− τ) + bx(t+ τ)](n) + δ (q(t)x(t− g) + p(t)x(t+ h)) = 0

and

[x(t)+λax(t−τ)+µbx(t+τ)](n)+δ
(∫ d

c

q(t, ξ)x(t−ξ)dξ+
∫ d

c

p(t, ξ)x(t+ξ)dξ
)

= 0,

were studied, respectively.
This article was motivated by the above studies. To the best of our knowledge,

this current paper is the only paper regarding to the existence of non-oscillatory
solutions of neutral differential equation with advanced term. Some other papers for
the existence of non-oscillatory solutions of first, second and higher order neutral
functional differential and difference equations; see [13, 18, 6, 7, 8, 15] and the
references contained therein. We refer the reader to the books [14, 12, 4, 11, 2, 3]
on the subject of neutral differential equations.

Let m = max{τ1, σ1}. By a solution of (1.1) we mean a function x ∈ C([t1 −
m,∞),R), for some t1 ≥ t0, such that x(t) + P1(t)x(t − τ1) + P2(t)x(t + τ2) is
continuously differentiable on [t1,∞) and (1.1) is satisfied for t ≥ t1.

As it is customary, a solution of (1.1) is said to be oscillatory if it has arbitrarily
large zeros. Otherwise the solution is called non-oscillatory.

The following theorem will be used to prove the theorems.

Theorem 1.1 (Banach’s Contraction Mapping Principle). A contraction mapping
on a complete metric space has exactly one fixed point.

2. Main Results

To show that an operator S satisfies the conditions for the contraction mapping
principle, we consider different cases for the ranges of the coefficients P1(t) and
P2(t).

Theorem 2.1. Assume that 0 ≤ P1(t) ≤ p1 < 1, 0 ≤ P2(t) ≤ p2 < 1− p1 and∫ ∞
t0

Q1(s)ds <∞,
∫ ∞
t0

Q2(s)ds <∞, (2.1)

then (1.1) has a bounded non-oscillatory solution.

Proof. Because of (2.1), we can choose a t1 > t0,

t1 ≥ t0 + max{τ1, σ1} (2.2)

sufficiently large such that∫ ∞
t

Q1(s)ds ≤ M2 − α
M2

, t ≥ t1, (2.3)∫ ∞
t

Q2(s)ds ≤ α− (p1 + p2)M2 −M1

M2
, t ≥ t1, (2.4)

where M1 and M2 are positive constants such that

(p1 + p2)M2 +M1 < M2 and α ∈
(
(p1 + p2)M2 +M1,M2

)
.
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Let Λ be the set of all continuous and bounded functions on [t0,∞) with the supre-
mum norm. Set

Ω = {x ∈ Λ : M1 ≤ x(t) ≤M2, t ≥ t0}.
It is clear that Ω is a bounded, closed and convex subset of Λ. Define an operator
S : Ω→ Λ as follows:

(Sx)(t) =


α− P1(t)x(t− τ1)− P2(t)x(t+ τ2)
+
∫∞
t

[Q1(s)x(s− σ1)−Q2(s)x(s+ σ2)]ds, t ≥ t1,

(Sx)(t1), t0 ≤ t ≤ t1.

Obviously, Sx is continuous. For t ≥ t1 and x ∈ Ω, from (2.3) and (2.4), respec-
tively, it follows that

(Sx)(t) ≤ α+
∫ ∞
t

Q1(s)x(s− σ1)ds ≤ α+M2

∫ ∞
t

Q1(s)ds ≤M2

and

(Sx)(t) ≥ α− P1(t)x(t− τ1)− P2(t)x(t+ τ2)−
∫ ∞
t

Q2(s)x(s+ σ2)ds

≥ α− p1M2 − p2M2 −M2

∫ ∞
t

Q2(s)ds ≥M1.

This means that SΩ ⊂ Ω. To apply the contraction mapping principle, the re-
maining is to show that S is a contraction mapping on Ω. Thus, if x1, x2 ∈ Ω and
t ≥ t1,

|(Sx1)(t)− (Sx2)(t)|
≤ P1(t)|x1(t− τ1)− x2(t− τ1)|+ P2(t)|x1(t+ τ2)− x2(t+ τ2)|

+
∫ ∞
t

(Q1(s)|x1(s− σ1)− x2(s− σ1)|+Q2(s)|x1(s+ σ2)− x2(s+ σ2)|) ds

or

|(Sx1)(t)− (Sx2)(t)|

≤ ‖x1 − x2‖
(
p1 + p2 +

∫ ∞
t

(Q1(s) +Q2(s)) ds
)

≤
(
p1 + p2 +

M2 − α
M2

+
α− (p1 + p2)M2 −M1

M2

)
‖x1 − x2‖

= λ1‖x1 − x2‖,

where λ1 = (1− M1
M2

). This implies that

‖Sx1 − Sx2‖ ≤ λ1‖x1 − x2‖,

where the supremum norm is used. Since λ1 < 1, S is a contraction mapping on Ω.
Thus S has a unique fixed point which is a positive and bounded solution of (1.1).
This completes the proof. �

Theorem 2.2. Assume that 0 ≤ P1(t) ≤ p1 < 1, p1 − 1 < p2 ≤ P2(t) ≤ 0 and
(2.1) hold, then (1.1) has a bounded non-oscillatory solution.
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Proof. Because of (2.1), we can choose a t1 > t0 sufficiently large satisfying (2.2)
such that ∫ ∞

t

Q1(s)ds ≤ (1 + p2)N2 − α
N2

, t ≥ t1, (2.5)∫ ∞
t

Q2(s)ds ≤ α− p1N2 −N1

N2
, t ≥ t1, (2.6)

where N1 and N2 are positive constants such that

N1 + p1N2 < (1 + p2)N2 and α ∈ (N1 + p1N2, (1 + p2)N2).

Let Λ be the set of all continuous and bounded functions on [t0,∞) with the supre-
mum norm. Set

Ω = {x ∈ Λ : N1 ≤ x(t) ≤ N2, t ≥ t0}.
It is clear that Ω is a bounded, closed and convex subset of Λ. Define an operator
S : Ω→ Λ as follows:

(Sx)(t) =


α− P1(t)x(t− τ1)− P2(t)x(t+ τ2)
+
∫∞
t

[Q1(s)x(s− σ1)−Q2(s)x(s+ σ2)] ds, t ≥ t1,

(Sx)(t1), t0 ≤ t ≤ t1.

Obviously, Sx is continuous. For t ≥ t1 and x ∈ Ω, from (2.5) and (2.6), respec-
tively, it follows that

(Sx)(t) ≤ α− p2N2 +N2

∫ ∞
t

Q1(s)ds ≤ N2,

(Sx)(t) ≥ α− p1N2 −N2

∫ ∞
t

Q2(s)ds ≥ N1.

This proves that SΩ ⊂ Ω. To apply the contraction mapping principle, it remains
to show that S is a contraction mapping on Ω. Thus, if x1, x2 ∈ Ω and t ≥ t1,

|(Sx1)(t)− (Sx2)(t)| ≤ ‖x1 − x2‖
(
p1 − p2 +

∫ ∞
t

(Q1(s) +Q2(s)) ds
)

≤ λ2‖x1 − x2‖,

where λ2 = (1− N1
N2

). This implies

‖Sx1 − Sx2‖ ≤ λ2‖x1 − x2‖,
where the supremum norm is used. Since λ2 < 1, S is a contraction mapping on Ω.
Thus S has a unique fixed point which is a positive and bounded solution of (1.1).
This completes the proof. �

Theorem 2.3. Assume that 1 < p1 ≤ P1(t) ≤ p10 < ∞, 0 ≤ P2(t) ≤ p2 < p1 − 1
and (2.1) hold, then (1.1) has a bounded non-oscillatory solution.

Proof. In view of (2.1), we can choose a t1 > t0,

t1 + τ1 ≥ t0 + σ1, (2.7)

sufficiently large such that∫ ∞
t

Q1(s)ds ≤ p1M4 − α
M4

, t ≥ t1, (2.8)∫ ∞
t

Q2(s)ds ≤ α− p10M3 − (1 + p2)M4

M4
, t ≥ t1, (2.9)
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where M3 and M4 are positive constants such that

p10M3 + (1 + p2)M4 < p1M4 and α ∈
(
p10M3 + (1 + p2)M4, p1M4

)
.

Let Λ be the set of all continuous and bounded functions on [t0,∞) with the supre-
mum norm. Set

Ω = {x ∈ Λ : M3 ≤ x(t) ≤M4, t ≥ t0}.
It is clear that Ω is a bounded, closed and convex subset of Λ. Define a mapping
S : Ω→ Λ as follows:

(Sx)(t) =


1

P1(t+τ1)
{α− x(t+ τ1)− P2(t+ τ1)x(t+ τ1 + τ2)

+
∫∞
t+τ1

[Q1(s)x(s− σ1)−Q2(s)x(s+ σ2)] ds}, t ≥ t1,

(Sx)(t1), t0 ≤ t ≤ t1.

Clearly, Sx is continuous. For t ≥ t1 and x ∈ Ω, from (2.8) and (2.9), respectively,
it follows that

(Sx)(t) ≤ 1
P1(t+ τ1)

(
α+M4

∫ ∞
t

Q1(s)ds
)
≤ 1
p1

(
α+M4

∫ ∞
t

Q1(s)ds
)
≤M4

and

(Sx)(t) ≥ 1
P1(t+ τ1)

(
α− (1 + p2)M4 −M4

∫ ∞
t

Q2(s)ds
)

≥ 1
p10

(
α− (1 + p2)M4 −M4

∫ ∞
t

Q2(s)ds
)
≥M3.

This means that SΩ ⊂ Ω. To apply the contraction mapping principle it remains
to show that S is a contraction mapping on Ω. Thus, if x1, x2 ∈ Ω and t ≥ t1,

|(Sx1)(t)− (Sx2)(t)| ≤ 1
p1
‖x1 − x2‖

(
1 + p2 +

∫ ∞
t

(Q1(s) +Q2(s)) ds
)

≤ λ3‖x1 − x2‖,

where λ3 = (1− p10M3

p1M4
). This implies

‖Sx1 − Sx2‖ ≤ λ3‖x1 − x2‖,

where the supremum norm is used. Since λ3 < 1, S is a contraction mapping on Ω.
Thus S has a unique fixed point which is a positive and bounded solution of (1.1).
This completes the proof. �

Theorem 2.4. Assume that 1 < p1 ≤ P1(t) ≤ p10 < ∞, 1 − p1 < p2 ≤ P2(t) ≤ 0
and (2.1) hold, then (1.1) has a bounded non-oscillatory solution.

Proof. In view of (2.1), we can choose a t1 > t0 sufficiently large satisfying (2.7)
such that ∫ ∞

t

Q1(s)ds ≤ (p1 + p2)N4 − α
N4

, t ≥ t1, (2.10)∫ ∞
t

Q2(s)ds ≤ α− p10N3 −N4

N4
, t ≥ t1, (2.11)

where N3 and N4 are positive constants such that

p10N3 +N4 < (p1 + p2)N4 and α ∈
(
p10N3 +N4, (p1 + p2)N4

)
.
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Let Λ be the set of all continuous and bounded functions on [t0,∞) with the supre-
mum norm. Set

Ω = {x ∈ Λ : N3 ≤ x(t) ≤ N4, t ≥ t0}.
It is clear that Ω is a bounded, closed and convex subset of Λ. Define a mapping
S : Ω→ Λ as follows:

(Sx)(t) =


1

P1(t+τ1)
{α− x(t+ τ1)− P2(t+ τ1)x(t+ τ1 + τ2)

+
∫∞
t+τ1

[Q1(s)x(s− σ1)−Q2(s)x(s+ σ2)] ds}, t ≥ t1,

(Sx)(t1), t0 ≤ t ≤ t1.

Clearly, Sx is continuous. For t ≥ t1 and x ∈ Ω, from (2.10) and (2.11), respectively,
it follows that

(Sx)(t) ≤ 1
P1(t+ τ1)

(
α− p2N4 +N4

∫ ∞
t

Q1(s)ds
)

≤ 1
p1

(
α− p2N4 +N4

∫ ∞
t

Q1(s)ds
)
≤ N4

and

(Sx)(t) ≥ 1
P1(t+ τ1)

(
α−N4 −N4

∫ ∞
t

Q2(s)ds
)

≥ 1
p10

(
α−N4 −N4

∫ ∞
t

Q2(s)ds
)
≥ N3.

This proves that SΩ ⊂ Ω. To apply the contraction mapping principle it remains
to show that S is a contraction mapping on Ω. Thus, if x1, x2 ∈ Ω and t ≥ t1,

|(Sx1)(t)− (Sx2)(t)| ≤ 1
p1
‖x1 − x2‖

(
1− p2 +

∫ ∞
t

(Q1(s) +Q2(s)) ds
)

≤ λ4‖x1 − x2‖,

where λ4 = (1− p10N3

p1N4
). This implies

‖Sx1 − Sx2‖ ≤ λ4‖x1 − x2‖,

where the supremum norm is used. Since λ4 < 1, S is a contraction mapping on Ω.
Thus S has a unique fixed point which is a positive and bounded solution of (1.1).
This completes the proof. �

Theorem 2.5. Assume that −1 < p1 ≤ P1(t) ≤ 0, 0 ≤ P2(t) ≤ p2 < 1 + p1 and
(2.1) hold, then (1.1) has a bounded non-oscillatory solution.

Proof. Because of (2.1), we can choose a t1 > t0 sufficiently large satisfying (2.2)
such that ∫ ∞

t

Q1(s)ds ≤ (1 + p1)M6 − α
M6

, t ≥ t1, (2.12)

and ∫ ∞
t

Q2(s)ds ≤ α− p2M6 −M5

M6
, t ≥ t1 , (2.13)

where M5 and M6 are positive constants such that

M5 + p2M6 < (1 + p1)M6 and α ∈ (M5 + p2M6, (1 + p1)M6) .
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Let Λ be the set of all continuous and bounded functions on [t0,∞) with the supre-
mum norm. Set

Ω = {x ∈ Λ : M5 ≤ x(t) ≤M6, t ≥ t0}.

It is clear that Ω is a bounded, closed and convex subset of Λ. Define an operator
S : Ω→ Λ as follows:

(Sx)(t) =


α− P1(t)x(t− τ1)− P2(t)x(t+ τ2)
+
∫∞
t

[Q1(s)x(s− σ1)−Q2(s)x(s+ σ2)] ds, t ≥ t1,

(Sx)(t1), t0 ≤ t ≤ t1.

Obviously, Sx is continuous. For t ≥ t1 and x ∈ Ω, from (2.12) and (2.13), respec-
tively, it follows that

(Sx)(t) ≤ α− p1M6 +M6

∫ ∞
t

Q1(s)ds ≤M6,

(Sx)(t) ≥ α− p2M6 −M6

∫ ∞
t

Q2(s)ds ≥M5.

This proves that SΩ ⊂ Ω. To apply the contraction mapping principle it remains
to show that S is a contraction mapping on Ω. Thus, if x1, x2 ∈ Ω, t ≥ t1,

|(Sx1)(t)− (Sx2)(t)| ≤ ‖x1 − x2‖
(
− p1 + p2 +

∫ ∞
t

(Q1(s) +Q2(s)) ds
)

≤ λ5‖x1 − x2‖,

where λ5 = (1− M5
M6

). This implies

‖Sx1 − Sx2‖ ≤ λ5‖x1 − x2‖,

where the supremum norm is used. Since λ5 < 1, S is a contraction mapping on Ω.
Thus S has a unique fixed point which is a positive and bounded solution of (1.1).
This completes the proof. �

Theorem 2.6. Assume that −1 < p1 ≤ P1(t) ≤ 0, −1− p1 < p2 ≤ P2(t) ≤ 0 and
(2.1) hold, then (1.1) has a bounded non-oscillatory solution.

Proof. Because of (2.1), we can choose a t1 > t0 sufficiently large satisfying (2.2)
such that ∫ ∞

t

Q1(s)ds ≤ (1 + p1 + p2)N6 − α
N6

, t ≥ t1, (2.14)

and ∫ ∞
t

Q2(s)ds ≤ α−N5

N6
, t ≥ t1, (2.15)

where N5 and N6 are positive constants such that

N5 < (1 + p1 + p2)N6 and α ∈ (N5, (1 + p1 + p2)N6).

Let Λ be the set of continuous and bounded functions on [t0,∞) with the supremum
norm. Set

Ω = {x ∈ Λ : N5 ≤ x(t) ≤ N6, t ≥ t0}.
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It is clear that Ω is a bounded, closed and convex subset of Λ. Define an operator
S : Ω→ Λ as follows:

(Sx)(t) =


α− P1(t)x(t− τ1)− P2(t)x(t+ τ2)
+
∫∞
t

[Q1(s)x(s− σ1)−Q2(s)x(s+ σ2)] ds, t ≥ t1,

(Sx)(t1), t0 ≤ t ≤ t1.

Obviously, Sx is continuous. For t ≥ t1 and x ∈ Ω, from (2.14) and (2.15), respec-
tively, it follows that

(Sx)(t) ≤ α− p1N6 − p2N6 +N6

∫ ∞
t

Q1(s)ds ≤ N6,

(Sx)(t) ≥ α−N6

∫ ∞
t

Q2(s)ds ≥ N5.

This proves that SΩ ⊂ Ω. To apply the contraction mapping principle it remains
to show that S is a contraction mapping on Ω. Thus, if x1, x2 ∈ Ω and t ≥ t1,

|(Sx1)(t)− (Sx2)(t)| ≤ ‖x1 − x2‖
(
− p1 − p2 +

∫ ∞
t

(Q1(s) +Q2(s)) ds
)

≤ λ6‖x1 − x2‖,

where λ6 = (1− N5
N6

). This implies

‖Sx1 − Sx2‖ ≤ λ6‖x1 − x2‖,

where the supremum norm is used. Since λ6 < 1, S is a contraction mapping on Ω.
Thus S has a unique fixed point which is a positive and bounded solution of (1.1).
This completes the proof. �

Theorem 2.7. Assume that −∞ < p10 ≤ P1(t) ≤ p1 < −1, 0 ≤ P2(t) ≤ p2 <
−p1 − 1 and (2.1) hold, then (1.1) has a bounded non-oscillatory solution.

Proof. In view of (2.1), we can choose a t1 > t0 sufficiently large satisfying (2.7)
such that ∫ ∞

t

Q1(s)ds ≤ p10M7 + α

M8
, t ≥ t1, (2.16)

and ∫ ∞
t

Q2(s)ds ≤ (−p1 − 1− p2)M8 − α
M8

, t ≥ t1, (2.17)

where M7 and M8 are positive constants such that

−p10M7 < (−p1 − 1− p2)M8 and α ∈ (−p10M7, (−p1 − 1− p2)M8) .

Let Λ be the set of all continuous and bounded functions on [t0,∞) with the supre-
mum norm. Set

Ω = {x ∈ Λ : M7 ≤ x(t) ≤M8, t ≥ t0}.
It is clear that Ω is a bounded, closed and convex subset of Λ. Define a mapping
S : Ω→ Λ as follows:

(Sx)(t) =


−1

P1(t+τ1)
{α+ x(t+ τ1) + P2(t+ τ1)x(t+ τ1 + τ2)

−
∫∞
t+τ1

[Q1(s)x(s− σ1)−Q2(s)x(s+ σ2)] ds}, t ≥ t1
(Sx)(t1), t0 ≤ t ≤ t1.
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Clearly, Sx is continuous. For t ≥ t1 and x ∈ Ω, from (2.17) and (2.16), respectively,
it follows that

(Sx)(t) ≤ −1
p1

(
α+M8 + p2M8 +M8

∫ ∞
t

Q2(s)ds
)
≤M8

and

(Sx)(t) ≥ −1
p10

(
α−M8

∫ ∞
t

Q1(s)ds
)
≥M7.

This implies that SΩ ⊂ Ω. To apply the contraction mapping principle it remains
to show that S is a contraction mapping on Ω. Thus, if x1, x2 ∈ Ω and t ≥ t1,

|(Sx1)(t)− (Sx2)(t)| ≤ −1
p1
‖x1 − x2‖

(
1 + p2 +

∫ ∞
t

(Q1(s) +Q2(s)) ds
)

≤ λ7‖x1 − x2‖,

where λ7 = (1− p10M7

p1M8
). This implies

‖Sx1 − Sx2‖ ≤ λ7‖x1 − x2‖,
where the supremum norm is used. Since λ7 < 1, S is a contraction mapping on Ω.
Thus S has a unique fixed point which is a positive and bounded solution of (1.1).
This completes the proof. �

Theorem 2.8. Assume that −∞ < p10 ≤ P1(t) ≤ p1 < −1, p1+1 < p2 ≤ P2(t) ≤ 0
and (2.1) hold, then (1.1) has a bounded non-oscillatory solution.

Proof. In view of (2.1), we can choose a t1 > t0 sufficiently large satisfying (2.7)
such that ∫ ∞

t

Q1(s)ds ≤ p10N7 + p2N8 + α

N8
, t ≥ t1, (2.18)

and ∫ ∞
t

Q2(s)ds ≤ (−p1 − 1)N8 − α
N8

, t ≥ t1, (2.19)

where N7 and N8 are positive constants such that

−p10N7 − p2N8 < (−p1 − 1)N8 and α ∈ (−p10N7 − p2N8, (−p1 − 1)N8).

Let Λ be the set of continuous and bounded functions on [t0,∞) with the supremum
norm. Set

Ω = {x ∈ Λ : N7 ≤ x(t) ≤ N8, t ≥ t0}.
It is clear that Ω is a bounded, closed and convex subset of Λ. Define a mapping
S : Ω→ Λ as follows:

(Sx)(t) =


−1

P1(t+τ1)
{α+ x(t+ τ1) + P2(t+ τ1)x(t+ τ1 + τ2)

−
∫∞
t+τ1

[Q1(s)x(s− σ1)−Q2(s)x(s+ σ2)] ds}, t ≥ t1,
(Sx)(t1), t0 ≤ t ≤ t1.

Clearly, Sx is continuous. For t ≥ t1 and x ∈ Ω, from (2.19) and (2.18), respectively,
it follows that

(Sx)(t) ≤ −1
p1

(
α+N8 +N8

∫ ∞
t

Q2(s)ds
)
≤ N8

and

(Sx)(t) ≥ −1
p10

(
α+ p2N8 −N8

∫ ∞
t

Q1(s)ds
)
≥ N7.
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These prove that SΩ ⊂ Ω. To apply the contraction mapping principle it remains
to show that S is a contraction mapping on Ω. Thus, if x1, x2 ∈ Ω, t ≥ t1,

|(Sx1)(t)− (Sx2)(t)| ≤ −1
p1
‖x1 − x2‖

(
1− p2 +

∫ ∞
t

(Q1(s) +Q2(s)) ds
)

≤ λ8‖x1 − x2‖,

where λ8 = (1− p10N7

p1N8
). This implies

‖Sx1 − Sx2‖ ≤ λ8‖x1 − x2‖,

where the supremum norm is used. Since λ8 < 1, S is a contraction mapping on Ω.
Thus S has a unique fixed point which is a positive and bounded solution of (1.1).
This completes the proof. �

Example 2.9. Consider the equation[
x(t)− 1

2
x(t− 2π) +

[1
2
− exp(− t

2
)
]
x(t+ 5π)

]′
+

1
2

exp(− t
2

)x(t− 4π)− exp(− t
2

)x(t+
5π
2

) = 0, t > −2 ln(1/2)
(2.20)

and note that

P1(t) = −1
2
, P2(t) =

1
2
− exp(− t

2
), Q1(t) =

1
2

exp(− t
2

), Q2(t) = exp(− t
2

).

A straightforward verification yields that the conditions of Theorem 2.5 are valid.
We note that x(t) = 2 + sin t is a non-oscillatory solution of (2.20).

Example 2.10. Consider the equation[
x(t)− 1

exp(1)
[3
4
− exp(−t)

]
x(t− 1)− exp(1/4)

[1
4

+ exp(−t)
]
x(t+

1
4

)
]′

+ exp(−t− 1)x(t− 1)− exp(−t+
1
4

)x(t+
1
4

) = 0, t ≥ 3
2

(2.21)

and note that

P1(t) = − 1
exp(1)

[3
4
− exp(−t)

]
, P2(t) = − exp(

1
4

)
[1
4

+ exp(−t)
]
,

Q1(t) = exp(−t− 1), Q2(t) = exp(−t+
1
4

).

It is easy to verify that the conditions of Theorem 2.6 are valid. We note that
x(t) = 1 + exp(−t) is a non-oscillatory solution of (2.21).
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