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ANALYTIC SMOOTHING EFFECT FOR THE CUBIC
HYPERBOLIC SCHRODINGER EQUATION IN TWO SPACE
DIMENSIONS

GAKU HOSHINO, TOHRU OZAWA

ABSTRACT. We study the Cauchy problem for the cubic hyperbolic Schrodinger
equation in two space dimensions. We prove existence of analytic global solu-
tions for sufficiently small and exponential decaying data. The method of proof
depends on the generalized Leibniz rule for the generator of pseudo-conformal
transform acting on pseudo-conformally invariant nonlinearity.

1. INTRODUCTION

We study the Cauchy problem for the hyperbolic Schrodinger equations in two

space dimensions

i0u + Ou = Mul?u, (t,2) € R x R?, (1.1)
where i = /=1, u : Rx R? > (t,z) — u(t,x) € C, §; = 9/0t, O = 9 — 03,
0; = 0/0z;, v = (x1,x2), and X € C.

The two dimensional cubic hyperbolic Schrodinger equation describes the grav-
ity waves on liquid surface and ion-cyclotron waves in plasma (see for instance
[T, 291 [30] and references therein). We refer the reader to [4], 20, 211, B3] and ref-
erence therein for recent study on the Cauchy problem for non elliptic nonlinear
Schrédinger equations. Especially, analyticity of solutions to non elliptic nonlinear
Schrodinger equations is studied in [4].

Space-time analytic smoothing effect for the local solutions to the nonlinear
Schrodinger equations in n space dimensions is studied in [0 25]. Space-time an-
alyticity is characterized by the Galilei generator J(t) = x + itV and the pseudo-
conformal generator K (t) = |x|? +nit +2it(td; +z- V). Since the following equality
holds ([17])

1 1
(i@t + 5A)K = (K + 4it) (iat + §A),
the following inequality plays an important role in construct analytic solutions
al

Zl||(K+ut)pr(0TX||<C bTZ ||Klf LP(0,T; X)|,
>0

2010 Mathematics Subject Classification. 35Q55.

Key words and phrases. Nonlinear Schréodinger equation; non elliptic Schrédinger equation;
analytic smoothing effect; global solution.

(©2016 Texas State University.

Submitted April 4, 2015. Published January 25, 2016.

1



2 G. HOSHINO, T. OZAWA EJDE-2016/34

where p € C, abT < 1, a, T > 0, b > 2,1 < p < 0o and X is an appropriate
Banach space of functions on R™. In [I4} [I5] [T6], we prove the space-time analytic
smoothing effect for the global solutions to the nonlinear Schrédinger equations with
sufficiently small data by using the Leibniz rule for the pseudo-conformal generator
such as:

2 2 S
(K +ai)ful*"u = (14 ) ful " Ku = = ful /=K.
n n

The hyperbolic Galilei transform G, and the pseudo-conformal transform Py are
defined by

(Gou)(t,x) = eii”'“’?it(”%*”g)u(t,xl + 2uit, x9 — 20at), v € R?,
t T —XT2
1—60t'1-60t"1—6t
respectively. We see that is invariant under the transforms G, and Py (see

[29, B30]).

In this paper, we consider the analyticity in both space-time variables of solutions
to . We prove the Leibniz rule for the pseudo-conformal generator Kj(t) =
22 — 23 + 4it(td; + x - V) + 4it holds even for (see Lemma [2.3[ below).

For stating our main result precisely, we introduce the following notation. L?
denotes the usual Lebesgue space LP(R?), 1 < p < oo. The Fourier transform F is
defined by

(Pou)(t,z) = (1 — 0t)Le ia0 (xf—x%( ) 6 €R,

Flol(€) = (2m) / e () di

R2
and F~! is its inverse. We denote the linear part of (1.1) by £ = id; + 0. The
free propagator of hyperbolic Schrédinger equation is defined by Uy (t) = e,
t € R. We use the notation such as (Un)(t) = Un(t)¢. We put Uy (t) = €t
Uy(t) = e~% . Then

Un(t) = (Ur(t) @ I)(I @ Uz(t)) = (I @ Uz(t))(Ur(t) ® 1),

where [ is the identity in L?(R) and ® denotes the tensor product. The relations
are abbreviated as Uy (t) = Uy (t)Ua(t) = Uz(t)U1(t). The Galilei generators are
defined by

Jn(t) = (J1(t), J2(t)) = (1, x2) + 2it(01, —02) = Un(t)(z1, 22)Un(—t), t € R.
For t # 0, we put My(t) = ei# and we use the notation such as (M, ')(t) =
My, (—t). For ¢ # 0, Jp, is represented as:

In(t) = My (£)2it(01, —02) M, (1).
According to [8 13| 22], we define

As(t) = Up(t)e®Up(—t), tE€R, § € R,

where § - © = d121 + 0. For t #£ 0, Ay is represented as:

As(t) = My (t)e* 0= ALt
where €249°(01,=02) — F—1o=2t6:(€1,=&2) £ We define the generator of dilations by

P(t)=td +z-V, teR.

We define

Ky (t) = 2% — 23 + 4itP(t), teR.
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For t #£ 0, K}, is represented as:

Ky (t) = 4it My, () P(t) M, (t).
We define the pseudo-conformal generator by

Kn(t) = Ku(t) + 4it = Up(t) (23 — 23 + 4it?0,)Up(—t), teR.
We introduce the following basic function space:
X = L>®(R; L*) N L*(R; L),
with the norm
l[us X = [lus L°(R; L) || + [lu; L* (R; LY) .

Let D C R", a > 0 and w be a real-valued function on R?. We define the following
function spaces:

GP(2;1%) = {6 € L% 6 G (a; L?)]| < o0},
163 GP (23 L2)|| = sup [l g5 L2,
SeD

GP (s X) = {u € X; |us GP (Jy: X)|| < o
s GP (Jn; X)|| = sup || Asu; X ||,
SeD

GP(w,w; L2) = {6 € GP (w3 L) |65 G2 (w,w; L2)]| < o},

l
a _ [¢
l6: G2, wi L2 = ) ﬂllwlqﬁ; GP(z;L7)],

1>0
GP (T, Kp; X) = {U € GP(J; X); ||u; GP(Jn, Ky X)|| < OO},

l
a
s G (i, Ko 2| = > 55 (1K G2 (s X))
>0
For any r > 0 and any Banach space 2", we put
B(Z) = {u e Xsllu; 2| < T}.
We consider the following integral equation associated with the Cauchy problem
(1.1) with data ¢:
u = Upop — iAFy (Julu)
where (F, f)(t) fo Un(t —s)f(s)ds, t € R.
Since the free propagator Uy is written as a product of one dimensional free

Schrédinger propagators, Uy, has the same properties as those of the free Schrodinger
propagator (see Lemma E below). Especially, we have by the representation

| y\ \JL y2l
Up(t)p = (4mt)~ // T 2¢(y1,y2)dy1dy2, t#0,

RxR
|Un(t)d; L?| = [|¢; L*|, tE€R,
|Un(t); L) < Clt| " s L', t#0,
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and ) )
1UR ()¢ LP|| < Clt| =5 |5 L7 |, £ #0

for 2 < p < oo. There are many papers on the Cauchy problem for the nonlinear
Schrédinger equations and on the analyticity of solutions to the nonlinear evolution
equations we refer the reader to [2] 3, [l I8, B0, B2] for the former and to [4} 6, LT,
12, (13, (17, 19, 22, 23, 24, 25, 26, 27, 28, B1] for the latter.

We say that a domain D C R? is symmetric if D satisfies the following conditions:
0 € D and for any 6 = (61,02) € D we have (—d1,—3d2), (61, —d2) € D. We state

our main result:

Theorem 1.1. There exists an € > 0 such that for any a > 0, any symmetric
domain D C R? and any ¢ € B.(GP*(x,2? — 2%; L?)), (T.1) has a unique solution
u €GPy, Ky X).

Remark 1.2. Since |z — 23| < 2% + 23, the following inequality holds:
s G (2, 2% — 23 L?)|| < |5 GP (@, aF + 35 L2)].

Remark 1.3. Regarding analyticity, the operators J;, and K} correspond analyt-
icity in space and in time, respectively.

Remark 1.4. As stated in the theorem, ¢ and D may be taken independent of ¢.

2. PRELIMINARIES

In this section, we introduce the some basic lemmas.

Lemma 2.1 ([2, B0, B2]). For any (r;,q;) satisfying 2/r; = 1 — 2/q;, with ¢; €
[2,00), j = 1,2, the following inequalities hold:

[Ungs L™ (R; L7)|| < Cllés L),
135 L7 (R; L] < C|If5 L7 (R L)
where p' denotes the Holder conjugate of p defined by 1/p+1/p’ = 1.

The following result is similar to the previous results in [7, [13], where we can find
commutation relation between pseudo-conformal generator K (t) (not hyperbolic
Ky (t)) and the linear operator i9; + 1A (not £ = id; + 0).

Lemma 2.2. Lett € R. We have
[Kn(t), £] = =8itL,  [As(t), £] = 0,
where [A, B] = AB — BA is the commutator.
Proof. Since L = Uy,(t)i0Up(—t), we have
[Kn(t), £] = Up(t)[2] — 23 + 4it?0y, 10, | Up (—t)
= Uy (t)[4it?0y,i0,] Up(—t)
= —8itL

and

[As(t), £] = Un(£)[¢**, 0, ]Un(—t) = 0.

Lemma 2.3. Lett € R. We have
(Kh(t) + 8it) U1 UU3 = (Kh (t)u1 )@u;; — Uy (Kh (t)ug)U3 =+ ulfg(Kh(t)U3).



EJDE-2016/34 ANALYTIC SMOOTHING EFFECT 5

Proof. By the Leibniz rule for P(t) = t0; + x - V, we have
(Kh(t) + 8Zt) U1 UU3 = ( (t) + 12it)u11TQU3

= My (t) (4itP(t) + 12it) M, " (t) (u1Tzus)

— M, (¢) (46t P(t) + 12it) Mj,  (£)uy Mj, (£)ug M;, * () ug
= (R (t) + ity )wgus — ur (Ra(t) + 4it)us )ug

+ wg (R (t) + 4it)us )

h
( (t)ul)u2u3 — U (Kh( )’U,g)u:; =+ ulfg(Kh(t)U3).

Lemma 2.4. Lett € R. We have

NP 1)k
(Kh(t) +8Zt) (ulugu;),) = Z (l 1 )'l ‘Kl ( ) KlQ( )U2Kl3( )U37
htlotls=1 12

foralll € Z>o.

The above lemma follows immediately by Lemma

3. PROOF OF THEOREM [L1]

Let ¢ € B.(GP%(z,22 — 22; L?)), u € GP%(J),, Kp; X). We define @ : u +— du
by

Pu = Uy — iAFy (Jul*u).
Let r > 0, we define a metric space (X (r),d) by
X (r) = B.(GP(Jy, Kp; X)),
d(u,v) = ||u — v; G2 (T, Kp; X)||.

We see that (X (r),d) is a complete metric space. We show that @ is a contraction
mapping in (X(r),d). By Lemma we have

|1 X|| < Cllgs L[| + Clu®; LY (R; L))
< Cllg; L?|| + Cllus L*(R; LY.
Hence & is a mapping in X'. Since M, ! A gives an analytic continuation
(M, P Asp) (t, ) = M, (t, @1 + 206y, w0 — 20tSo ) (t, 1 + 2itdy, m2 — 2itds),
for t # 0, x + 2it6 € R? + 2itD and ¢ € GP(J,; L°(R; L?)), by Lemmas and

we have

AsK! du = Upe®® (22 — 22)l¢p — iNF), <A5 (Kn + 8is)l|u\2u>

- —1)k21! i
= Upe®® (22 — 22)'p — iNFy, (A5 Z (l 'l)'l ' K;LluK,lqu,lf’u)
P
(=1)k21!

FUPUEY

= Upe®®(2? — 22)lp — i) Z

li+la+13=l

Fh (A(;K;Ll uA_(;Kff UA(;K}ZLSU)
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for all [ € Z>(. In the same way as above, we have
|45 K}, Pu; X |
< Olle”*(af — 23)'¢; L7
C 7HA K uA_sKPuds Ku; L3 (R; L3 H
T > RAIATN o8 Y U (R; L)
L1+l +l3=
<Clle”(af —a3) g L2 +C Y
l1+la+lz=
Aol R L) g LR L)
By the assumption —D = D, we have
!

e sup ||As K} du; X||
I''sep

I

ek L ® 1Y)

!
a -z

< C’l—' sup || 0% (22 — 22)'g; L?|| + C g I | — sup ||A5K u; X
Foeb htlerty=i =t ' o€

Therefore, we obtain
[Pu; GP (T, K; X)|| < Cllgys G (2,21 — a3; L2)|| + Cllus GP (I, K X))
Similarly, we have

|Pu — Bv; G (T, Kpp; X)||
< O (Il G2 (s K 22 + 1[0 G2 (s B X)) [ = w3 G2 (i Ko X) |

for all u,v € GP:%(Jy,, Kp; X). Hence, @ is a mapping in GP+(Jy, Kp,; X). We take
g, > 0 satisfying

Ce+Cr3<r,
Cr? < 1.

Then @ is a contraction mapping in (X (r),d). This completes the proof of Theorem
Imi!

Acknowledgment. The authors would like to thank the anonymous referees for
their important comments. This work was supported by Grant-in-Aid for JSPS
Fellows.

REFERENCES

[1] D. R. Crawford, P. G. Saffman, H. C. Yuen; Evolution of a random inhomogeneous field of
nonlinear deep-wave gravity waves, Wave Motion, 2 (1980), 1-16.

[2] T. Cazenave; Semilinear Schridinger Equations, Courant Lecture Notes in Math., 10, Amer.
Math. Soc., 2003.

[3] T. Cazenave, F. B. Weissler; Some remarks on the nonlinear Schrédinger equation in the
critical case, Lecture notes in Math. Springer, Berlin, 1394 (1989), 18-29.

[4] A. DeBouard; Analytic solution to non elliptic non linear Schrédinger equations, J. Differ-
ential Equations., 104, (1993), 196-213.

[5] J. Ginibre; Introduction auz équations de Schrodinger non linéaires, Paris Onze Edition,
L161. Université Paris-Sud, 1998.

[6] N. Hayashi, K. Kato; Analyticity in time and smoothing effect of solutions to nonlinear
Schrédinger equations, Commun. Math. Phys., 184 (1997), 273-300.



EJDE-2016/34 ANALYTIC SMOOTHING EFFECT 7

(7]

(8]

[9]
(10]
(11]
(12]
(13]
(14]
[15]
[16]
[17]
(18]
19]
[20]
21]
22]
(23]
24]
(25]
(26]

27]

(28]

29]
(30]
(31]
32]

(33]

N. Hayashi, T. Ozawa; Smoothing effect for some Schrodinger equations, J. Funct. Anal., 85
(1989), 307-348.

N. Hayashi, T. Ozawa; On the derivative nonlinear Schrédinger equation, Physica D, 55
(1992), 14-36.

N. Hayashi, S. Saitoh; Analyticity and smoothing effect for the Schrodinger equation, Ann.
Inst. Henri Poincaré, Phys. Théor., 52 (1990), 163-173.

N. Hayashi, S. Saitoh, Analyticity and global existence of small solutions to some nonlinear
Schrédinger equations, Commun. Math. Phys., 129, (1990), 27-41.

G. Hoshino, T. Ozawa; Analytic smoothing effect for a system of monlinear Schrodinger
equations, Differ. Equ. Appl., 5 (2013), 395-408.

G. Hoshino, T. Ozawa; Analytic smoothing effect for nonlinear Schrodinger equation in two
space dimensions, Osaka J. Math., 51 (2014), 609-618.

G. Hoshino, T. Ozawa; Analytic smoothing effect for nonlinear Schrodinger equations with
quintic nonlinearity, J. Math. Anal. Appl., 419 (2014), 285-297.

G. Hoshino, T. Ozawa; Space-time analytic smoothing effect for pseudo-conformally invariant
Schrodinger equations, Nonlinear Differential Equations and Applications, in press.

G. Hoshino, T. Ozawa; Analytic smoothing effect for a system of monlinear Schridinger
equations with three wave interaction, J. Math Phys., 56 (2015), 091513.

G. Hoshino, T. Ozawa; Analytic smoothing effect for a system of nonlinear Schridinger
equations with two wave interaction, Adv. Differential Equations 20 (2015), 697-716.

K. Kato, K. Taniguchi, Gevrey regularizing effect for nonlinear Schrédinger equations, Osaka.
J. Math., 33 (1996), 863-880.

T. Kato; On nonlinear Schrodinger equations, Ann. Inst. Henri Poincaré, Phys. Théor., 46
(1987), 113-129.

T. Kato, K. Masuda; Nonlinear evolution equations and analyticity, Ann. Inst. Henri
Poincaré, Analyse non linéaire, 3, (1986), 455-467.

C. E. Kenig, G. Ponce, C. Rolvung, L. Vega; Variable coefficient Schrodinger flows for
ultrahyperbolic operators, Adv. Math., 196 (2005), 373-486.

C. E. Kenig, G. Ponce, C. Rolvung, L. Vega; The general quasilinear ultrahyperbolic
Schrédinger equation, Adv. Math., 206 (2006), 402-433.

K. Nakamitsu; Analytic finite energy solutions of the nonlinear Schrodinger equation, Com-
mun. Math. Phys., 260 (2005), 117-130.

T. Ozawa, K. Yamauchi; Remarks on analytic smoothing effect for the Schridinger equation,
Math. Z., 261, (2009), 511-524.

T. Ozawa, K. Yamauchi; Analytic smoothing effect for global solutions to mnonlinear
Schrédinger equation, J. Math. Anal. Appl., 364 (2010), 492-497.

T. Ozawa, K. Yamauchi, Y.Yamazaki; Analytic smoothing effect for solutions to Schréidinger
equations with nonlinearity of integral type, Osaka J. Math., 42 (2005), 737-750.

L. Robbiano, C. Zuily; Microlocal analytic smoothing effect for the Schrédinger equation,
Duke Math. J., 100 (1999), 93-129.

L. Robbiano, C. Zuily; Effect régularisant microlocal analytique pour l’équation de Schro-
dinger : le cas données oscillantes, Comm. Partial Deifferential Equations, 25, (2000), 1891-
1906.

J. C. H Simon, E. Taflin; Wave operators and analytic solutions of nonlinear Klein-Gordon
equations and of nonlinear Schrédinger equations, Commun. Math. Phys., 99, (1985), 541-
562.

E. A. Kuznetsov, S. K. Turitsyn; Talanov transformations in self-focusing problems and
instability of stationary waveguides, Physics Letters, 112 (1985), 273-275.

C. Sulem, P.-L. Sulem; The Nonlinear Schréidinger Equation. Self-focusing and Wave Col-
lapse, Appl. Math. Sci., 139, Springer 1999.

H. Takuwa; Analytic smoothing effects for a class of dispersive

equations, Tsukuba J. Math., 28 (2004), 1-34.

K. Yajima; FEuxistence of solutions for Schrédinger evolution equations, Commun. Math.
Phys., 110 (1987), 415-426.

W. Yuzhao; Periodic cubic hyperbolic Schrédinger equation on T2, J. Funct. Anal., 265
(2013), 424-434.



8 G. HOSHINO, T. OZAWA EJDE-2016/34

GAKU HOSHINO
DEPARTMENT OF APPLIED PHYSICS, WASEDA UNIVERSITY, TOKYO 169-8555, JAPAN
E-mail address: gaku-hoshino@ruri.waseda. jp

ToHRU OzAWA
DEPARTMENT OF APPLIED PHYSICS, WASEDA UNIVERSITY, TOKYO 169-8555, JAPAN
E-mail address: txozawa@waseda. jp



	1. Introduction
	2. Preliminaries
	3. Proof of Theorem ??
	Acknowledgment

	References

