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EXISTENCE OF HIGH-ENERGY SOLUTIONS FOR
SUPERCRITICAL FRACTIONAL SCHRODINGER
EQUATIONS IN RV

LU GAN, WEIMING LIU

ABSTRACT. In this article, we study supercritical fractional Schrédinger equa-
tions. Applying the finite-dimensional reduction method and the penalization
method, we obtain the high-energy solutions for this equation.

1. INTRODUCTION AND STATEMENT OF MAIN RESULTS
This article is devoted to the study of the problem
(=A)*u=V(zx)u? O+l 4 >0 zeRY,

u—0 as|z] — +oo,

(1.1)

where 2*(s) = NQi\;S7 N >2s5,0<s<1,e>0,V isa positive continuous potential.

Here, the fractional Laplacian of a function f : RV — R is expressed by the formula

(-A) @) = Cropv. [ ST,
BN [T — Y| (1.2)
f@) — 1) '

O éli% RN\ By (c) [T — y[N T2
where C'y s is some normalization constant.

The operator (—A)® can be seen as the infinitesimal generators of Lévy stable
diffusion processes (see [I]). The Lévy processes occur widely in physics, biology,
chemistry and finance (see [I, B]). The stable Lévy processes that give rise to
equations with fractional Laplacians have recently attracted much research interest,
and there are a lot of results in the literature on the existence of such solutions. In
[5], Barrios et al. studied the existence and multiplicity of solutions to the following
critical problem with convex-concave nonlinearities

(=A)’u = Auf +u¥ G u>0, e,
u=0, xcR¥\Q.

As we know, the fractional power of the Laplacian can also be defined by using
spectral decomposition. The same problem considered in [5] but for this spectral
fractional Laplacian has been treated in [6]. As in [6] the purpose of this paper

(1.3)
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is to study the existence of weak solutions for (L.3). In [I7], in order to construct
solutions to the problem of the form (—A)*u = ehul + uﬁ_, Dipierro et al. used the
Lyapunov-Schmidt reduction, that takes advantage of the variational structure of
the problem. For related results, we refer the reader to [7, [14] 19, 23] 24, 27, 29,
33, 34, [35].

Let us come back to equation (L.I)). Recently, many results on the existence
of solutions for problem when e = 0 have been obtained. Liu [25] obtained
infinitely many concentration solutions for under certain conditions. Assume
V =14 7K and K has at least two critical points satisfying some local conditions,
Chen and Zheng [I3] proved the existence of two-peak solutions when the positive
number 7 is small enough. When V' = 1, the existence of finite-energy sign-changing
solutions to has been established by Garrido and Musso [20]. In particular,
DelaTorre et al. [16] constructed a class of Delaunay-type solutions for .

When s = 1, problem reduces formally, to the classical Schrédinger equation

—Au=V(x)u T u>0,

(1.4)
u—0 as || — +o0.

The study of problem has attracted considerable attention in recent years,
and there are several results in the literature on the existence of solutions. When V'
is a perturbation of the constant, Ambrosetti et al. [2] and Cao et al. [J] proved the
existence of two or many positive solutions. Li [25] proved that has infinitely
many positive solutions if V is periodic, while similar result was obtained in [38]
if V' has a sequence of strict local maximum points tending to infinity. Wei and
Yan [36] obtained solutions with large number of bumps near infinity for with
V being radial. Meanwhile, they proved that the energy of these solutions can be
arbitrarily large. For related results, we refer the readers to [10, 11} 21, 22] and the
references therein.

The aim of this article is to show the existence of high-energy solutions for the
fractional Schrodinger equation with slightly supercritical exponent. We assume
that the positive continuous potential V satisfies the following conditions:

(A1) There exist constants g € [0,2s) and C' > 0, such that V(x) < C(1+]|z|)? for
all » € RY;

(A2) For some p,7 >0,V € C**(B,(yo)), and AV (yo) > 0, where yo € RY is a
strict local minimum point of V.

Now, we recall the basic theory on fractional Laplacian operator. For s € (0,1),
the nonlocal operator (—A)* in RY is defined on the Schwartz class through the
Fourier transform

(—A)2f(€) = €[ F(©),
or via the Riesz potential. And™ is the Fourier transform. When f has some suffi-
ciently regularity, the fractional Laplacian of a function f : RY — R is expressed
as ([.2). That integral makes sense directly when s < 1/2 and f € C%7(RY) with
v > 2s, or if f € CVY(RY) with 1+ 2y > 2s. It is well known that (—A)* on
RN with 0 < s < 1 is a nonlocal operator. In the remarkable work by Caffarelli
and Silvestre [I2], this nonlocal operator was expressed as a generalized Dirichlet-to-
Neumann map for a certain elliptic boundary value problem with a local differential
operator defined on the upper half-space Rf“ = {(z,y) : # € RN,y > 0}. That
is, for a function f : RV — R, we consider the extension u : RY x [0, +00) — R
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that satisfies the equations
u(z,0) = f(x), (1.5)
Azu + %uy + uyy = 0. (1.6)
Equation can also be written as
div(y' ~2*Vu) = 0, (1.7)

which is clearly the Euler-Lagrange equation for the functional
J(u) = / |Vu|?y' 2% dx dy.
y>0

From (|1.5)-(1.7) it follows that
: - U ulay) —u(e,0)
_ sp __ _ 125 _ ’
C(=AYf = yli,%l+ Yy, = lim

In the rest of this article, the homogeneous fractional Sobolev space is given by

DEY) = {ue LR ®Y): [ (ePlaf < +oc)

with the norm
25|~ 2 1/2
= ([ te=mer) "
RN

which is induced by the inner product

won = ([ eane)

The so-called Gagliardo semi-norm of w is defined as

Ny / / ‘2 da:dy)l/z
Ul RN JRN \53—?J|N+2S .

It can be proved [32] Proposition 3.4 and 3.6] that

1/2 s
iy = O( [ 1EE1ROR) = Cl=8) R ull oy

for a suitable positive constant C' depending only on s and .
We consider the equation
(=A)u=u*®"1 4 >0o0nRY. (1.8)
It has been proved in [8, 26] that the following function, for y € RY and A > 0,

A N—2s
Uy =C (7> ° RY,
AT+ N — g e

where Cy = Cy(N, s) > 0, solves (1.8) on RY.
For any positive integer m, ¥y = (y1,%2,---,¥m) € R™V X = (A1, A2, ..., Am)s
and A\, >0, k=1,2,...,m, we define
aUylm)\k> _ <
O
k:L“qmi:L“wN}

Ey = {w € D*(RY) : (w, 8Uy,€ Ak

by o,

Our main result in this paper can be stated as follows.
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Theorem 1.1. Suppose that N > 2s, 0 < s < 1. If V satisfies (A1) and (A2), then
for any positive integer m, there exists an 9 > 0, such that for each € € (0,¢e¢],
the problem (L.1) has a solution of the form u. = Z’,;”:l Uysk’)\% + we, where we €
Eyx, y = (Yers Yeos - 1 Yer) and as € — 0, Ye,, — Yo, Ae, — +00, k=1,...,m,
[we]l — 0,

The proof of our results is inspired by the methods of [I8] [37], we will combine a
penalization argument and Lyapunov-Schmidt reduction scheme which are similar
to [I8, 87] to prove our main result.

This article is organized as follows. In section [2] we introduce the penalization
problem, give some preliminary estimates and carry out the finite dimensional re-
duction. In section |3} we give the proof of Theorem Some technical estimates
are left in the appendix. Throughout this paper, we simply write [ f to mean the
Lebesgue integral of f(x) in RY. The ordinary inner product between two vectors
a,b € RN will be denoted by a-b, and C, C , ¢; denote generic constants, which may
vary inside a chain of inequalities. We use O(t), o(t) to mean |O(t)| < C[t|, @ —0
as t — 0; o(1) denotes quantities that tend to 0 as |z| — oo.

2. PRELIMINARIES AND FINITE DIMENSIONAL REDUCTION

In this section, we give some preliminary results, which are crucial in the proof
of the main theorem and the finite-dimensional reduction. Problem (L.1)) is the
Euler-Lagrange equation of functional

1 1

D) =gt = 5057 Jow

As we know, under the conditions (A1) and (A2), the functional I;(u) will not be
well defined and differentiable in D*(R%)

Inspired by the idea introduced by Yan [37] and Deng et al. [18], we modify the
nonlinearity as in [37]. To this end, we need to fix some notation. Choose R > 0
large enough. Define

V(:I:)u2*(s)+€.

f(@,u) = XBRr0) (@) f1(v) + XBe (0) (@) f2(u),

where x () denotes the characteristic function of Br(0), and

u2*(s)+e—17 if0<u< G_kQN,
fi(uw) =S acu® O~ 4 b, if u > e RN
—f1(—u), if u <0,
where
€ € "
c=(1 7) “kaNe g€ RN ()te-1)
" ( +2*(5)_1 ‘ 2*(5)—16

and ke > 0 is a constant to be determined in Proposition [3.1] Moreover,

1 r —2s
folesu) = forasran=ag Pl 0w),

where the nonnegative C' function f, satisfies:
0 if u > 2,

fo(u) = §u¥ @t ifu e [0, 1],
—fa(—u) ifu<O0.
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Let F(z,u) = [’ f(z,7)dr, then we have the following Lemma.

Lemma 2.1. Assume that V(x) satisfies (A1). Then [pn V(2)F (2, u) is well de-
fined on D*(R™N).

Proof. Using (A1) and the definition of f(z,u), we obtain

| V(z)F(z,u)dx|
RN

SAN\BR(0)|V(x)F($’u)|dx+/ |V (2)F(x,u)|dx

Br(0)
<c (1+\x|)q</ f(a,m)dr )i + C O
RN\Bg(0) 0 o)
1 u
<C 1 ¢ L NI
-~ ]RN\BR(O)( +‘x|) |ZL‘|N+2S+E(N_25) (/0 f2(‘.]j| T) 7_) ~

+C u|? O dz
RN

Iw‘N72s

1 u .
N 2(s)
<C RN\BRm)(l + |z) PERE= G (/0 fQ(T)dT)dx + C/]RN u|? ) da
! 2"(s)
= C/RN 1+ |x\2N—q+(N_2s)s dx + C/]RN |ul dx < 4o00.
Consequently, the result follows from the above estimate. O

Now we consider the penalization problem

(—A)'u=V(z)f(z,u), xR,

2.1
u € D*(RY). 21)
The functional associated with problem ([2.1)) is given by
1
I(u) = §<u, u)s — V(x)F(x,u), u€ D*(RY). (2.2)
]RN

It follows from Lemma, that I € C! is well defined in Ey » and hence its critical
points are solutions of problem ({2.1)).

Denote
m
Uy, A) = Z Uy A
k=1
and set
J(y7 )\7 w) = I(Z Uyk,/\k + w)a V(y, )‘7 U)) € My,)w (23)
k=1
where
My x ={(y, A\ w) : w € Ey x,(y,\) € Dy m, |w]| <5}, (2.4)

Dy = {y = (1,2, ym) €R™, A = (A1, Aoy, M), u € Ba(yo),

1
A€ e e k=1, m, e < 7 j;«ék},
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where small k1 > 0 and large ko > 0 are constants to be determined in Proposition
L > 0 large enough, and
Ao Ak 2

€k = (Yk X + N Akly; — yk|2)

Lemma 2.2. There exists g > 0, such that, for e € (0,&0], L > 0 large enough,
0 > 0 small enough, (y,\,w) € My x is a critical point of J if and only if u =
Sre Uypon, +w is a critical point of I in D5(RY).

The proof of Lemma is standard, since can be complete it with the same
arguments as those in [30} [13], we omit it. Without loss of generality, we assume
that yo = 0 and V(0) = 1. Expanding J(y, A, w), we obtain

1
J(y, A, w) = J(y,\,0) + Iy r(w) + i(Ly’Aw,uﬁs + Ry (w),

where

m 2% (s)+e—1
tatw) == [ V@) (XU W {Uy a0
k=1

2% (s)+e—2

(Lysw)e = (e = @) +e=1) [ V(S0 )
Ry aw=— /RN V(z)F(x, Uy x +w) + /RN V(z)F(x,Uy »)
N /RN Vi) (lé Uyk,Ak)Q*(SHE_lw

2%(s) +e—1 m 2" (s)+e—2
+ L/ V(@) (3 Uy ) w?.
2 RN Pt

Now, we state a lemma which is very important for our precise estimate on the
functional energy and can be found in [31].

Lemma 2.3. For2 < g <3 and |a| > |b],
[+ B17 — Jal — b1 ~ glalt="1b] — alpj*2al|< Clbl2~"a]
For g > 3,
[la -+ b1 = Jal = [b[7 — gla]~1[b] — qlb[*~Jal|< C(lal*=2]b[? + [bl*2]al?).
Next, we show the invertibility of Ly ».
Lemma 2.4. There exist constants eg > 0 and C' > 0 such that for (y,\) € Dy m,
[Lyaw| = Cllwl]l,  Vw € Ey .

Proof. We proceed by contradiction. Assume that there exist €,, — 0,d,, — 0, A" —
oo, (", A") = (T, ..., uh, AL, ..., A) € Dy, and wy, € Ey 5, such that

(Lyn anwn; )s = on(Dllwallllell, Ve € Ey x. (2.5)

Without loss of generality, we assume that ||w,| = 1. Let

Wn k(1) = (Af)

2s—N

wa(AN) P+ yf), k=1,...,m.
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Assume that

Wpp —~wp, k=1,...,m, asn— oo,
Wn,k — Wy, strongly in LE.RY), k=1,....m, as n— oc.
From
(25500 = ()
8/\”’ns ayki’"s ’
k=1,...,m,i=1,..., N, we obtain
Uy 1 - OUo 1 .
< O\ A:l’wn’k>s:< ox; z:o’wn’k>si 0
fork=1,...,m,i=1,...,N. So w; satisfies
<%‘A:l’wz>s: <a;£?;1 =0 Z>s: 0, (2:6)
fork=1,...,m,i=1,...,N.
Define
Bt @, (282}~ (2] ) -0t
Note that

oDl = {wnsos = [ V@ (@ Uyn roJng. (27)

Let ¢ € C°(RY) N Ey)\ and take pp(z) = ()\”) cp[(x — y)A}]. Letting

n — 00, we obtain
* * 2% (s)—2 «
wivph =26 =1) [ U5 P uie =0,

It is easy to prove that

(Wi )= @)= 1) [ U Puip =0, Vo€ By (2:8)
R
But (28) is true for ¢ = co 53|, + 31 ;%% . Thus, (2.8) is true for
any ¢ € Ey y, and hence w} = 00818};,1 ‘)\ +30 lag;, !

w:O-
It follows from (22.6) that ¢; =0 (i =0, 1, ..., N) and wj = 0. Therefore, letting
En,Op > 0 small enough A" big enough,

o(1) = (wn, wp)s — V(x)f'(z, Uyn o )wy,
= (2.9)
>1- C/ U 72w = 14 Og(1) +o(1).
RN

This contradicts (2.5]). O
Proposition 2.5. For ¢ > 0 sufficiently small and (y,\) € Dy ., there exists a
Ct-map w(y,\) : Dy — My x such that w(y, ) satisfies <8‘é75;”),<p>: 0 for all
¢ € My x. Moreover,

(|DV 1 1 .
] SO(Z(%U—ﬁW V(O0) =V ()l +elndy )+ 3 iT). (2.10)
k=1 k k )\k 2 ];ﬁk
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Proof. To find a critical point for J(w), we only need to solve

lyx + (Ly aw, w) + R (w) = 0. (2.11)

From Lemma we know that Ly  is invertible. Therefore, (2.11)) can be rewritten
as

w=A(w) =: —L 1 L;})\Rl (w).

y/\Y7
Set

DV 1 1
N:{weE,,A ol < 3 PVl + V(0) = V()

s )\1 5 /\i(l—é) )\kL;ZS(lfé)
1 61H/\k+z ( +7)(1— 6}
J#k

where ¢ > 0 is small enough.
As in [37], R(w) is the higher order term satisfying

Ri(w) = O(|lw||**?7%), i=0,1,2,

where 6 > 0 is some constant.
Hence, Lemma [2.6] below implies

[A(w)
< Clllyall + Cllwl***

SC(Z(%+)\%+ /\Nlﬁb V(0) — V(y) H'Ehl)\k) Z€Z+T)

k=1 k j#k

 [DV (ys)| 1 1 1-5

+ O(kzl N et V(0) = V(gi)| + " In Ay
= k 2.12
(3+m)(1—6)) 212

+ ZE )

J#k
" DV 1 1
< Z | (yk>| + |V(O) _ V(yk)l +eld In Ay

+
)\i 5 /\k(ka) /\L;?S(ké)

k
+Z ( +7)(1— 6

J#k
Meanwhile,
[ A(w1) — A(w)|| = | L, 3R (w1) — L, SR (ws)]|
< CIR (wy) — R (ws)|
< O|R" (ewy + (1 — e)w)|[[Jwy — ws
1
< C(lwill® + fJwz]|®) w1 — wal < 5||'w1 —wa|,

where ¢ € (0,1). Thus, A maps N to N and A is a contraction map.
By the contraction mapping theorem, we see that there is a unique w such that

(2.11)) holds, and from (2.12]) that (2.10) holds. O
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Lemma 2.6.

S DV Yk 1 1 +7
(Z(il )\( >| +F+ Nt2s V(O) (yk)| +51n)‘k)+252 )
k=1 k koA 2 j#k

Proof. First, we know that

Ly,

m

N+42s
Uy w <ZUyk ao W) = Z/ U w. (2.13)
k=
Next, we estimate
IR
RN
2% (s)+e—1
- [ v (zwm> w
2 (s)te-1
Zk 1fRN yk;k Tw
2*(s)+e—1 2% (s)+e—1 .
= +O( i#k fRN @U,0" Uyl w)’ if1<2%(s)+e—-1<2,
-1 o
S Jer V@)U S w+0(z#kejk)uwn, if2°(s) +e— 1> 2,

2 +e—1 147 . %
ST fan V@U2 Y w1 0(, e, )||w||, if1<2(s)+e—1<2,
v fan V@)U S w4+ O (2 sz ) loll, i 27(s) 42— 1> 2.
We also have

V(.’I})UQ* (S)+671w

RN Yk Ak
. /RN V(@)U2 O + O n Ay w] (2.14)
2% (s)—1 |IDV (y)| 1
/RN Vig)U, N w+ 0(7& - p¥ +eln Ak) | wl].

Combining above estimates, we obtain

N+2s

ol =3 [ 0FEw= 3 [ v e

DV ()] -
+o(;( " +Ai+glnxk)+;ﬁajk )l

N+42s

3 NUCEh+

+o<z<DK§f’v>'+Az+m> Sk

J#k

m

— O(Z(lDV Yi)| Ai + )\N1+ V(0) — V()| +51n)\k)

k=1 k
+> e ) Il

J#k
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O
3. PROOF OF MAIN RESULT
Let w(y, A) be the map obtained in Proposition Define
Iy, \) = I(y,\w(y,)\), (y.)) € Dym.
Let (ye, Ae) € Dy 1 be any point for which
I(ye, Ae) = sup{I(y,\) : (y,A) € Dy} (3.1)

The next Proposition shows that for small € > 0, (y¢, A¢) is an interior point of
Dy m, and hence a critical point of I.

Proposition 3.1. Let (y., A:) satisfy (3.1). Then ase — 0,

yfﬂ(), k=1,...,m,
Mg e e, k=1,...,m, for some positive constant ki < ko,

ejk:_)oa ]#k

Proof. Tt follows from Lemma Lemma [2.6] and Proposition 2.5] that

I(y, A\ w(y, \))
= I(y, A, 0) + O(|lly all[lwy Al + [lwy AlI*)

m

_(m_ 1 2%(s) _ 1 “ AV(yk)/ 2772%(s)
- (3 2*(s)+ekzv(yk)>/RNU AT iy L

=1 k=1

1 Ui Noas o "
_WZ[’SV(W(/RNIHM 2 U2<>—/RNU2<>1nUﬂ

k=1

_’:Z_ll . V(UC)Uyk,Ak( i ij’/\j>2*(s)+s—1+0(i )\ilﬂj

j=k+1 k=1

ro(X e )oY W%O(i(l V()
JF#k k=1 =

k=1
Fo( (B ).

—k
k
Denote zf = cep, A\, =

1 o . .
. = 2z, k=1,...,m. Some unit vectors ey,...,e, with e; #

ej (k # j), for Then [2] — 2F|> = &%|e; — ex|> — 0, X’; — 00, as € — 0. Then

I(stAans(YEa )\6)) Z I(Z€7X€)w€(’z€7)\€))
1 1

. 1
=—m(Z - —— 27(s) _ Z
m(2 2*(3)—&—5)/RNU mC’ElnE + O(e).
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Thus
m 1 & . 1 AV .
m Vit ER0) e / 2072"(s)
( 2 2%(s)+e ; (ye))/ﬂw 2%(s)+¢ kz:; 2(\k)2 =1
1 m k k N —2s 2*(\) / 2*(8)
— _ 1 8) — 1
2*(S)+€;[EV(%)(/RN n()‘e) 2 U RNU IlU)i|
m—1 m 2% (8)te—1 m 1
- /N V(x)Uy‘“A’:( Z yZ,Ai) +O(Z ()\k)2+u)
k=1"R j=k+1 k=1 "¢
1+71 - |Dv(y§)‘2 G k\\14+T7
+o(Yeim)+o(X o )03 - v
j#k k=1 € k=1
eln A} 91 .92 vk
+O<Z:1( Y; +¢e“ln )\E)>
1 1 ) 1
>m(z - —— (s) _ Z '
_m(2 2*(S)+E)/NU mCeln -+ Oe)
(3.2)
Moreover,
m—1 2% (s)+e—1
Z RN U k Ak( Z viA ) > CZGJk. (3.3)
k=1 j=k+1 j#k
This and (3.2) imply
. 1
0<V(yl)—1<Celn-+O(e), (3.4)
€
1
€jr < Celn—+0(e), j # k, (3.5)
€
k oy N52s AV(yf) / 2772%(s)
In(A
V) [ ) S0 [ e
\DV ye
+0(Z )+Zo( 2+u) (3.6)
< (2%(s) + e)mCe ln - + O(e),
which implies \¥ — +oco for k = 1,...,m, and €jrp — 0 for j # k, as e — 0,

k,j=1,2....m

)

If \¥ = e=*1 for some k, then from (3.6)), we obtain
k1 AV(yf)

This is a contradiction if k; > 0 small enough.
If \¥ = e=*2 for some k, then from ({3.6)), we obtain
N —2s

“(s)+1)mC

x “ 1
2 2 (S) D k\|2 2]61 < 1 —.
) /RN|m|U +o(;| V()P ) < Celn -

1 * 1
koe In fV(yf) / U2 () < (2%(s) + e)mCeln = + O(e),
RN €

which is impossible if we choose ko > max{m, 2} Consequently, the

result \f € [e7%1 e7%2] (kK =1,...,m) follows from the above estimate.

O
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Proof of Theorem [I.1 By Proposition we can check that ([3.1)) is achieved by
(Ye, Ac) which is an mterlor point of Dyym for small ¢, It follows from Proposition

that (y.,\c) is a critical point of J. Using Lemma we can obtain u =
Y opeq Uy n,. + w is a critical point of I. Note that

(~8)w = V(@)f (2, Uy + )= S U5 G
k=1 k=1

On the other hand,

. s “(5)— _ ka(N429)
V@) (2,3 U, + w) UZ 7 |< Chuf 97 4 o
k=1
Since |Jwe|| — 0 as € — 0, by adaptlng the same approach explored in [4] and [I5],
we deduce that

ko (N+2s)

[we| < Cllwell L2 (o)) +Ce™ 7, Vo € By(0),

which implies |u.| < e %2 for all |z| < R.
Let tc(z) = |z|~ V=2 (2/|z|?) which satisfies

|1-|(N72s)ev(wi>f2(ae)7 if |1-| < 1
(=4)" = g(z)c —(N+2s) ‘ I; N-2s- e 1 " 2
2l =29V (12) Aol 20, if <ol < 3
We can choose v > 0 small enough, and it also follows from the same approach
explored in [4] and [I5] that
|te| Lo~ (B, (0) < Clltell L2 (B, 0) = 0, ase—0,

which implies ue — 0 as € — 0. From above estimates, we can obtain that
u solves indeed the original problem (|1.1)). O

‘$|N—25

4. APPENDIX
In this section, we prove some estimates needed in the proof of our main results.

Lemma 4.1. For any (y,\) € Dy ,,,, we have

I(Uy,/\)
_(m__1 ¥ * 1 AV :
B (? C27(s) +e ;V(yk))/ﬂw e - 2%(s) + ¢ ; 2X2 /]RN [T
Fo(S5 o (85 - 1)) +0(S e+ 1))
k=1 k=1 j#k J
1 - N-2s o ‘(s
- W;(a—v(yk)/m Inx, = U —sV(yk)/RN U >1nU)
m m—1 “(s)
+0(3 -V )= 3 [ V@ ( > v)
k=1 =1 /RN =k+1
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Proof. Firstly, for any (y, ) € Dy ,, we see that

1
IWy) = 50 a U)o = [ V@F@Uy)
_1 1 2" (s)+¢
= 2(Uy,,\,Uy,,\>s 3 (s) + e /}RN V(z)U,
1 m
= 9 Z<Uyk,kk7 Uyk7>\k>5 + Z<ij,)\j ) Uyk,)\k>8
k=1 i<k
1 2% (s) e
- V(x)U,
2*(s)+€/w @)Uy
1 o 2 s
= ) Z<Uyk7kk7 ylm)\k + Z/ yJ7( A Ui Ai
k=1 i<k
1 2% (s)+e
- V(z)U. .
2%(s)+ ¢ /RN @)Uy

Next, we estimate fRN V(x)UQ*(SHE. Using Lemma we have

¥,A
/ V(a)Us
]RN
m 2% (s)+e
= /]RN V(l’) (Uyh)q +;Uyk7>\k>
. m 2%(s)+e
_ 2%(s)+e
= [ V@UZ e+ /}R i V(x)(z Uy
* 2 s)+e—1
+(2(s)+e) [ VUL ZUM

RN

+E / V yh/\l ZUyk,)\A>

By repeated applications of Lemma [2:3] we deduce

*(s)+e— 1

RN

+(2°(s) +¢) V(2)Uyy A, ( Z Uy )2 ©Fe1 4 (Z E”T),

RN k=2

= / V@)U +e / V@)U, ) mUy, s, + O n* A)
R R

aln)\k)

= [ v@usee [ veusQnt,., o5

+O(22el),

e 2*%(s)+e % 2 s)4e—1
=3 [ et @@ se [ v ZUM

13

(4.2)
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+ O(2In? \p,)

:/ V(x)Ui;(,\SZ—FaV(yk)(/ A, U2 / v mu)
RN RN RN

1
+o(€ “‘“)+0(52 In? \y). (4.3)
/\k

From and (| , we have

s)+e
/RN V(x)Uy’/\( )

- Z[ 51« (ASZ: + Ev(yk)(/]R ln)\ U2 () _ /RN U2 ) In U)

k=1
+o(“§3’€>+o<g a0+ Y /
i<k
m—1 m "
+(2(s) 4 o) / V(x)Uyk,Ak( Z Uymj)2 (s)+e— 1 (Zsl-‘r"')
1 RN j=k+1 Jj#k

We also have
[ VU U = [ V@US S Vs, + Oei9)
RN RN

s 1
:/N VU & Vg + Oe402) + O(5-250)
R

J
Z
and

2 (s)
- V($)Uyk,)\k

Z/ V(yk)U;:,(;i+/ <DV(yk)’$—yk>U5k,(;Z
RN RN
+ [ APV = o), (= )UL ) + 00T
. AV
:V(yk)/ U2 (s)+ (2yk)/ | |2U2 (s) -I-O( (2+H))
RN 2Ak} R

Combining above estimates, we obtain

m

1 s
I(Uy,k) = b} Z<Uyk7)\k’ yk,kk +Z/ YjA J) U Uy A

<k
Y+e Z{ ;k (ASZ +5V(yk)(/ ln)\ S5 2 (s)
k=1 RN

_ /R 0O U) +O(E I:kA’C ) +O(2 In? )\k)]

2 : s)+s 1
- /]RN y77 J Uyk’)"“

]<k7

B ; RN Un. ’\’“< Z V. ]) (ZEHT)

Jj=k+1 Jj#k

+51
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_(m_ 1\ “(s)
N ( 2 2%(s)+e ; V(yk))/ v

1 NAV(g) “(s (2 4)

C2%(s) +e Z 207 /]RN [T + O(z::l A )

o

+ k
+ O( (51;1:’“ 4 &2 In? )\k>>+0(z<€ + %)
V(x)Uyka( i pr)\j>2*(8)+€_1

k=1 ik
Ak k=1 /RY j=k+1

1 m N—2s -
- = E v InX. 2z U2
2%(s) +¢ (€ (uk) /RN ny U

k=1

— V() /RN U2 ) I U) +0(§:(1 - V(yk))HT).

k=1
(]
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