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EXISTENCE OF HIGH-ENERGY SOLUTIONS FOR
SUPERCRITICAL FRACTIONAL SCHRÖDINGER

EQUATIONS IN RN

LU GAN, WEIMING LIU

Abstract. In this article, we study supercritical fractional Schrödinger equa-

tions. Applying the finite-dimensional reduction method and the penalization
method, we obtain the high-energy solutions for this equation.

1. Introduction and statement of main results

This article is devoted to the study of the problem

(−∆)su = V (x)u2∗(s)+ε−1, u > 0, x ∈ RN ,
u→ 0 as |x| → +∞,

(1.1)

where 2∗(s) = 2N
N−2s , N > 2s, 0 < s < 1, ε > 0, V is a positive continuous potential.

Here, the fractional Laplacian of a function f : RN → R is expressed by the formula

(−∆
)s
f(x) = CN,s p. v.

∫
RN

f(x)− f(y)
|x− y|N+2s

dy

= CN,s lim
δ→0

∫
RN\Bδ(x)

f(x)− f(y)
|x− y|N+2s

dy,

(1.2)

where CN,s is some normalization constant.
The operator (−∆)s can be seen as the infinitesimal generators of Lévy stable

diffusion processes (see [1]). The Lévy processes occur widely in physics, biology,
chemistry and finance (see [1, 3]). The stable Lévy processes that give rise to
equations with fractional Laplacians have recently attracted much research interest,
and there are a lot of results in the literature on the existence of such solutions. In
[5], Barrios et al. studied the existence and multiplicity of solutions to the following
critical problem with convex-concave nonlinearities

(−∆)su = λuq + u2∗(s)−1, u > 0, x ∈ Ω,

u = 0, x ∈ RN \ Ω.
(1.3)

As we know, the fractional power of the Laplacian can also be defined by using
spectral decomposition. The same problem considered in [5] but for this spectral
fractional Laplacian has been treated in [6]. As in [6] the purpose of this paper
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is to study the existence of weak solutions for (1.3). In [17], in order to construct
solutions to the problem of the form (−∆)su = εhuq+ +up+, Dipierro et al. used the
Lyapunov-Schmidt reduction, that takes advantage of the variational structure of
the problem. For related results, we refer the reader to [7, 14, 19, 23, 24, 27, 29,
33, 34, 35].

Let us come back to equation (1.1). Recently, many results on the existence
of solutions for problem (1.1) when ε = 0 have been obtained. Liu [25] obtained
infinitely many concentration solutions for (1.1) under certain conditions. Assume
V = 1 + τK and K has at least two critical points satisfying some local conditions,
Chen and Zheng [13] proved the existence of two-peak solutions when the positive
number τ is small enough. When V ≡ 1, the existence of finite-energy sign-changing
solutions to (1.1) has been established by Garrido and Musso [20]. In particular,
DelaTorre et al. [16] constructed a class of Delaunay-type solutions for (1.1).

When s = 1, problem (1.1) reduces formally, to the classical Schrödinger equation

−∆u = V (x)u2∗+ε−1, u > 0,

u→ 0 as |x| → +∞.
(1.4)

The study of problem (1.4) has attracted considerable attention in recent years,
and there are several results in the literature on the existence of solutions. When V
is a perturbation of the constant, Ambrosetti et al. [2] and Cao et al. [9] proved the
existence of two or many positive solutions. Li [25] proved that (1.4) has infinitely
many positive solutions if V is periodic, while similar result was obtained in [38]
if V has a sequence of strict local maximum points tending to infinity. Wei and
Yan [36] obtained solutions with large number of bumps near infinity for (1.4) with
V being radial. Meanwhile, they proved that the energy of these solutions can be
arbitrarily large. For related results, we refer the readers to [10, 11, 21, 22] and the
references therein.

The aim of this article is to show the existence of high-energy solutions for the
fractional Schrödinger equation with slightly supercritical exponent. We assume
that the positive continuous potential V satisfies the following conditions:

(A1) There exist constants q ∈ [0, 2s) and C > 0, such that V (x) ≤ C(1+|x|)q for
all x ∈ RN ;

(A2) For some µ, r > 0, V ∈ C2,µ(Br(y0)), and ∆V (y0) > 0, where y0 ∈ RN is a
strict local minimum point of V .

Now, we recall the basic theory on fractional Laplacian operator. For s ∈ (0, 1),
the nonlocal operator (−∆)s in RN is defined on the Schwartz class through the
Fourier transform

(̂−∆)sf(ξ) = |ξ|2sf̂(ξ),

or via the Riesz potential. And̂ is the Fourier transform. When f has some suffi-
ciently regularity, the fractional Laplacian of a function f : RN → R is expressed
as (1.2). That integral makes sense directly when s < 1/2 and f ∈ C0,γ(RN ) with
γ > 2s, or if f ∈ C1,γ(RN ) with 1 + 2γ > 2s. It is well known that (−∆)s on
RN with 0 < s < 1 is a nonlocal operator. In the remarkable work by Caffarelli
and Silvestre [12], this nonlocal operator was expressed as a generalized Dirichlet-to-
Neumann map for a certain elliptic boundary value problem with a local differential
operator defined on the upper half-space RN+1

+ := {(x, y) : x ∈ RN , y > 0}. That
is, for a function f : RN → R, we consider the extension u : RN × [0,+∞) → R
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that satisfies the equations

u(x, 0) = f(x), (1.5)

∆xu+
1− 2s
y

uy + uyy = 0. (1.6)

Equation (1.6) can also be written as

div(y1−2s∇u) = 0, (1.7)

which is clearly the Euler-Lagrange equation for the functional

J(u) =
∫
y>0

|∇u|2y1−2s dx dy.

From (1.5)-(1.7) it follows that

C(−∆)sf = lim
y→0+

−y1−2suy =
1
2s

lim
y→0+

u(x, y)− u(x, 0)
y2s

.

In the rest of this article, the homogeneous fractional Sobolev space is given by

Ds(RN ) =
{
u ∈ L

2N
N−2s (RN ) :

∫
RN
|ξ|2s|û(ξ)|2 < +∞

}
with the norm

‖u‖ =
(∫

RN
|ξ|2s|û(ξ)|2

)1/2

,

which is induced by the inner product

〈u, v〉s =
(∫

RN
|ξ|2sû(ξ)v̂(ξ)

)1/2

.

The so-called Gagliardo semi-norm of u is defined as

[u]Hs(RN ) :=
(∫

RN

∫
RN

|u(x)− u(y)|2

|x− y|N+2s
dx dy

)1/2

.

It can be proved [32, Proposition 3.4 and 3.6] that

[u]Hs(RN ) = C
(∫

RN
|ξ|2s|û(ξ)|2

)1/2

= C‖(−∆)
s
2u‖L2(RN )

for a suitable positive constant C depending only on s and N .
We consider the equation

(−∆)su = u2∗(s)−1, u > 0 on RN . (1.8)

It has been proved in [8, 26] that the following function, for y ∈ RN and λ > 0,

Uy,λ = C0

( λ

1 + λ2|x− y|2
)N−2s

2
, x ∈ RN ,

where C0 = C0(N, s) > 0, solves (1.8) on RN .
For any positive integer m, y = (y1, y2, . . . , ym) ∈ RmN , λ = (λ1, λ2, . . . , λm),

and λk > 0, k = 1, 2, . . . ,m, we define

Ey,λ =
{
w ∈ Ds(RN ) :

〈
w,

∂Uyk,λk
∂λk

〉
s

=
〈
w,

∂Uyk,λk
∂yki

〉
s

= 0,

k = 1, . . . ,m, i = 1, . . . , N
}
.

Our main result in this paper can be stated as follows.
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Theorem 1.1. Suppose that N > 2s, 0 < s < 1. If V satisfies (A1) and (A2), then
for any positive integer m, there exists an ε0 > 0, such that for each ε ∈ (0, ε0],
the problem (1.1) has a solution of the form uε =

∑m
k=1 Uyεk ,λεk + ωε, where ωε ∈

Ey,λ, y = (yε1 , yε2 , . . . , yεm) and as ε → 0, yεk → y0, λεk → +∞, k = 1, . . . ,m,
‖ωε‖ → 0,

The proof of our results is inspired by the methods of [18, 37], we will combine a
penalization argument and Lyapunov-Schmidt reduction scheme which are similar
to [18, 37] to prove our main result.

This article is organized as follows. In section 2, we introduce the penalization
problem, give some preliminary estimates and carry out the finite dimensional re-
duction. In section 3, we give the proof of Theorem 1.1. Some technical estimates
are left in the appendix. Throughout this paper, we simply write

∫
f to mean the

Lebesgue integral of f(x) in RN . The ordinary inner product between two vectors
a, b ∈ RN will be denoted by a · b, and C, C̃, ci denote generic constants, which may
vary inside a chain of inequalities. We use O(t), o(t) to mean |O(t)| ≤ C|t|, o(t)t → 0
as t→ 0; o(1) denotes quantities that tend to 0 as |x| → ∞.

2. Preliminaries and finite dimensional reduction

In this section, we give some preliminary results, which are crucial in the proof
of the main theorem and the finite-dimensional reduction. Problem (1.1) is the
Euler-Lagrange equation of functional

I1(u) =
1
2
〈u, u〉s −

1
2∗(s) + ε

∫
RN

V (x)u2∗(s)+ε.

As we know, under the conditions (A1) and (A2), the functional I1(u) will not be
well defined and differentiable in Ds(RN )

Inspired by the idea introduced by Yan [37] and Deng et al. [18], we modify the
nonlinearity as in [37]. To this end, we need to fix some notation. Choose R > 0
large enough. Define

f(x, u) = χBR(0)(x)f1(u) + χBCR (0)(x)f2(u),

where χBR(0) denotes the characteristic function of BR(0), and

f1(u) =


u2∗(s)+ε−1, if 0 ≤ u ≤ ε−k2N ,
aεu

2∗(s)−1 + bε, if u ≥ ε−k2N ,
−f1(−u), if u < 0,

where

aε =
(

1 +
ε

2∗(s)− 1

)
ε−k2Nε, bε = − ε

2∗(s)− 1
ε−k2N(2∗(s)+ε−1),

and k2 > 0 is a constant to be determined in Proposition 3.1. Moreover,

f2(x, u) =
1

|x|N+2s+ε(N−2s)
f̄2(|x|N−2su),

where the nonnegative C1 function f̄2 satisfies:

f̄2(u) =


0 if u ≥ 2,
u2∗(s)+ε−1 if u ∈ [0, 1],
−f̄2(−u) if u < 0.
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Let F (x, u) =
∫ u
0
f(x, τ)dτ , then we have the following Lemma.

Lemma 2.1. Assume that V (x) satisfies (A1). Then
∫

RN V (x)F (x, u) is well de-
fined on Ds(RN ).

Proof. Using (A1) and the definition of f(x, u), we obtain∣∣∫
RN

V (x)F (x, u)dx
∣∣

≤
∫

RN\BR(0)

|V (x)F (x, u)|dx+
∫
BR(0)

|V (x)F (x, u)|dx

≤ C
∫

RN\BR(0)

(1 + |x|)q
(∫ u

0

f(x, τ)dτ
)
dx+ C

∫
BR(0)

|u|2
∗(s)dx

≤ C
∫

RN\BR(0)

(1 + |x|)q 1
|x|N+2s+ε(N−2s)

(∫ u

0

f̄2(|x|N−2sτ)dτ
)
dx

+ C

∫
RN
|u|2

∗(s)dx

≤ C
∫

RN\BR(0)

(1 + |x|)q 1
|x|2N+ε(N−2s)

(∫ |x|N−2su

0

f̄2(τ)dτ
)
dx+ C

∫
RN
|u|2

∗(s)dx

≤ C
∫

RN

1
1 + |x|2N−q+(N−2s)ε

dx+ C

∫
RN
|u|2

∗(s)dx < +∞.

Consequently, the result follows from the above estimate. �

Now we consider the penalization problem

(−∆)su = V (x)f(x, u), x ∈ RN ,
u ∈ Ds(RN ).

(2.1)

The functional associated with problem (2.1) is given by

I(u) =
1
2
〈u, u〉s −

∫
RN

V (x)F (x, u), u ∈ Ds(RN ). (2.2)

It follows from Lemma 2.1 that I ∈ C1 is well defined in Ey,λ and hence its critical
points are solutions of problem (2.1).

Denote

U(y, λ) =
m∑
k=1

Uyk,λk

and set

J(y, λ, w) = I
( m∑
k=1

Uyk,λk + w
)
, ∀(y, λ, w) ∈My,λ, (2.3)

where
My,λ = {(y, λ, w) : w ∈ Ey,λ, (y, λ) ∈ Dy,m, ‖w‖ ≤ δ}, (2.4)

Dy,m =
{
y = (y1, y2, . . . , ym) ∈ RmN , λ = (λ1, λ2, . . . , λm), yk ∈ Bδ(y0),

λk ∈ [ε−k1 , ε−k2 ], k = 1, . . . ,m, εjk ≤
1
L
, j 6= k

}
,
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where small k1 > 0 and large k2 > 0 are constants to be determined in Proposition
3.1, L > 0 large enough, and

εjk =
(λj
λk

+
λk
λj

+ λjλk|yj − yk|2
) 2s−N

2
.

Lemma 2.2. There exists ε0 > 0, such that, for ε ∈ (0, ε0], L > 0 large enough,
δ > 0 small enough, (y, λ, w) ∈ My,λ is a critical point of J if and only if u =∑m
k=1 Uyk,λk + w is a critical point of I in Ds(RN ).

The proof of Lemma 2.2 is standard, since can be complete it with the same
arguments as those in [30, 13], we omit it. Without loss of generality, we assume
that y0 = 0 and V (0) = 1. Expanding J(y, λ, w), we obtain

J(y, λ, w) = J(y, λ, 0) + ly,λ(w) +
1
2
〈Ly,λw,w〉s +Ry,λ(w),

where

ly,λ(w) = −
∫

RN
V (x)

( m∑
k=1

Uyk,λk

)2∗(s)+ε−1

w + 〈Uy,λ, w〉s,

〈Ly,λw,w〉s = 〈w,w〉s − (2∗(s) + ε− 1)
∫

RN
V (x)

( m∑
k=1

Uyk,λk

)2∗(s)+ε−2

w2,

Ry,λ,w = −
∫

RN
V (x)F (x, Uy,λ + w) +

∫
RN

V (x)F (x, Uy,λ)

+
∫

RN
V (x)

( m∑
k=1

Uyk,λk

)2∗(s)+ε−1

w

+
2∗(s) + ε− 1

2

∫
RN

V (x)
( m∑
k=1

Uyk,λk

)2∗(s)+ε−2

w2.

Now, we state a lemma which is very important for our precise estimate on the
functional energy and can be found in [31].

Lemma 2.3. For 2 < q ≤ 3 and |a| > |b|,∣∣∣|a+ b|q − |a|q − |b|q − q|a|q−1|b| − q|b|q−2|a|
∣∣∣≤ C|b|q−1|a|.

For q > 3,∣∣∣|a+ b|q − |a|q − |b|q − q|a|q−1|b| − q|b|q−1|a|
∣∣∣≤ C(|a|q−2|b|2 + |b|q−2|a|2).

Next, we show the invertibility of Ly,λ.

Lemma 2.4. There exist constants ε0 > 0 and C > 0 such that for (y, λ) ∈ Dy,m,

‖Ly,λw‖ ≥ C‖w‖, ∀w ∈ Ey,λ.

Proof. We proceed by contradiction. Assume that there exist εn → 0, δn → 0, λn →
∞, (yn, λn) = (yn1 , . . . , y

n
m, λn1 , . . . , λ

n
m) ∈ Dy,m and wn ∈ Ey,λ, such that

〈Lyn,λnwn, ϕ〉s = on(1)‖wn‖‖ϕ‖, ∀ϕ ∈ Ey,λ. (2.5)

Without loss of generality, we assume that ‖wn‖ = 1. Let

w̃n,k(x) = (λnk )
2s−N

2 wn((λnk )−1x+ ynk ), k = 1, . . . ,m.



EJDE-2016/321 FRACTIONAL SCHRÖDINGER EQUATIONS 7

Assume that

w̃n,k ⇀ w∗k, k = 1, . . . ,m, as n→∞,
w̃n,k → w∗k, strongly in L2

loc(RN ), k = 1, . . . ,m, as n→∞.
From 〈∂Uynk ,λnk

∂λnk
, wn

〉
s
=
〈∂Uynk ,λnk

∂ynki
, wn

〉
s
= 0,

k = 1, . . . ,m, i = 1, . . . , N , we obtain〈∂U0,1

∂λ

∣∣∣
λ=1

, w̃n,k

〉
s
=
〈∂U0,1

∂xi

∣∣∣
x=0

, w̃n,k

〉
s
= 0,

for k = 1, . . . ,m, i = 1, . . . , N . So w∗k satisfies〈∂U0,1

∂λ

∣∣∣
λ=1

, w∗k

〉
s
=
〈∂U0,1

∂xi

∣∣∣
x=0

, w∗k

〉
s
= 0, (2.6)

for k = 1, . . . ,m, i = 1, . . . , N .
Define

Ẽy,λ = {ϕ ∈ Ds(RN ),
〈∂U0,1

∂λ

∣∣∣
λ=1

, ϕ
〉
s
=
〈∂U0,1

∂xi

∣∣∣
x=0

, ϕ
〉
s
= 0, i = 1, . . . , N}.

Note that

o(1)‖ϕ‖ = 〈wn, ϕ〉s −
∫

RN
V (x)f ′(x, Uyn,λn)wnϕ. (2.7)

Let ϕ ∈ C∞0 (RN ) ∩ Ẽy,λ and take ϕn(x) := (λnk )
2s−N

2 ϕ[(x − ynk )λnk ]. Letting
n→∞, we obtain

〈w∗k, ϕ〉s − (2∗(s)− 1)
∫

RN
U

2∗(s)−2
0,1 w∗kϕ = 0.

It is easy to prove that

〈w∗k, ϕ〉s − (2∗(s)− 1)
∫

RN
U

2∗(s)−2
0,1 w∗kϕ = 0, ∀ϕ ∈ Ẽy,λ. (2.8)

But (2.8) is true for ϕ = c0
∂U0,1
∂λ

∣∣
λ=1

+
∑n
i=1 ci

∂U0,1
∂xi

∣∣
x=0

. Thus, (2.8) is true for

any ϕ ∈ Ey,λ, and hence w∗k = c0
∂U0,1
∂λ

∣∣∣
λ=1

+
∑n
i=1 ci

∂U0,1
∂xi

∣∣∣
x=0

.

It follows from (2.6) that ci = 0 (i = 0, 1, . . . , N) and w∗k = 0. Therefore, letting
εn, δn > 0 small enough, λn big enough,

o(1) = 〈wn, wn〉s −
∫

RN
V (x)f ′(x, Uyn,λn)w2

n

≥ 1− C
∫

RN
U

2∗(s)−2
0,1 w2

n = 1 +OR(1) + o(1).
(2.9)

This contradicts (2.5). �

Proposition 2.5. For ε > 0 sufficiently small and (y, λ) ∈ Dy,m, there exists a

C1-map w(y, λ) : Dy,m → My,λ such that w(y, λ) satisfies
〈
∂J(w)
∂w , ϕ

〉
= 0 for all

ϕ ∈My,λ. Moreover,

‖w‖ ≤ C
( m∑
k=1

( |DV (yk)|
λk

+
1
λ2
k

+
1

λ
N+2s

2
k

|V (0)−V (yk)|+ε lnλk
)

+
∑
j 6=k

ε
1
2+τ

jk

)
. (2.10)



8 L. GAN, W. LIU EJDE-2016/321

Proof. To find a critical point for J(w), we only need to solve

ly,λ + 〈Ly,λw,w〉+ R
′
(w) = 0. (2.11)

From Lemma 2.4, we know that Ly,λ is invertible. Therefore, (2.11) can be rewritten
as

w = A(w) =: −L−1
y,λly,λ − L

−1
y,λR

′
(w).

Set

N =
{
w ∈ Ey,λ : ‖w‖ ≤

m∑
k=1

|DV (yk)|
λ1−δ
k

+
1

λ
2(1−δ)
k

+
1

λ
N+2s

2 (1−δ)
k

|V (0)− V (yk)|

+ ε1−δ lnλk +
∑
j 6=k

ε
( 1
2+τ)(1−δ)
jk

}
,

where δ > 0 is small enough.
As in [37], R(w) is the higher order term satisfying

Ri(w) = O(‖w‖2+θ−i), i = 0, 1, 2,

where θ > 0 is some constant.
Hence, Lemma 2.6 below implies

‖A(w)‖

≤ C‖ly,λ‖+ C‖w‖1+θ

≤ C
( m∑
k=1

( |DV (yk)|
λk

+
1
λ2
k

+
1

λ
N+2s

2
k

|V (0)− V (yk)|+ ε lnλk
)

+
∑
j 6=k

ε
1
2+τ

jk

)
+ C

( m∑
k=1

|DV (yk)|
λ1−δ
k

+
1

λ
2(1−δ)
k

+
1

λ
N+2s

2 (1−δ)
k

|V (0)− V (yk)|+ ε1−δ lnλk

+
∑
j 6=k

ε
( 1
2+τ)(1−δ)
jk

)1+θ

≤
m∑
k=1

|DV (yk)|
λ1−δ
k

+
1

λ
2(1−δ)
k

+
1

λ
N+2s

2 (1−δ)
k

|V (0)− V (yk)|+ ε1−δ lnλk

+
∑
j 6=k

ε
( 1
2+τ)(1−δ)
jk .

(2.12)

Meanwhile,

‖A(w1)−A(w2)‖ = ‖L−1
y,λR

′
(w1)− L−1

y,λR
′
(w2)‖

≤ C‖R
′
(w1)− R

′
(w2)‖

≤ C‖R
′′
(εw1 + (1− ε)w2)‖‖w1 − w2‖

≤ C(‖w1‖θ + ‖w2‖θ)‖w1 − w2‖ ≤
1
2
‖w1 − w2‖,

where ε ∈ (0, 1). Thus, A maps N to N and A is a contraction map.
By the contraction mapping theorem, we see that there is a unique w such that

(2.11) holds, and from (2.12) that (2.10) holds. �
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Lemma 2.6.

‖ly,λ‖ ≤ C
( m∑
k=1

( |DV (yk)|
λk

+
1
λ2
k

+
1

λ
N+2s

2
k

|V (0)− V (yk)|+ ε lnλk
)

+
∑
j 6=k

ε
1
2+τ

jk

)
.

Proof. First, we know that

〈Uy,λ, w〉s =
〈 m∑
k=1

Uyk,λk , w
〉
s
=

m∑
k=1

∫
RN

U
N+2s
N−2s
yk,λk

w. (2.13)

Next, we estimate∫
RN

V (x)f(x, Uy,λ)w

=
∫

RN
V (x)

( m∑
k=1

Uyk,λk

)2∗(s)+ε−1

w

=


∑m
k=1

∫
RN V (x)U2∗(s)+ε−1

yk,λk
w

+O
(∑

j 6=k
∫

RN V (x)U
2∗(s)+ε−1

2
yj ,λj

U
2∗(s)+ε−1

2
yk,λk

w
)
, if 1 < 2∗(s) + ε− 1 ≤ 2,∑m

k=1

∫
RN V (x)U2∗(s)+ε−1

yk,λk
w +O

(∑
j 6=k εjk

)
‖w‖, if 2∗(s) + ε− 1 > 2,

=


∑m
k=1

∫
RN V (x)U2∗(s)+ε−1

yk,λk
w +O

(∑
j 6=k ε

1
2+τ

jk

)
‖w‖, if 1 < 2∗(s) + ε− 1 ≤ 2,∑m

k=1

∫
RN V (x)U2∗(s)+ε−1

yk,λk
w +O

(∑
j 6=k εjk

)
‖w‖, if 2∗(s) + ε− 1 > 2.

We also have∫
RN

V (x)U2∗(s)+ε−1
yk,λk

w

=
∫

RN
V (x)U2∗(s)−1

yk,λk
w +O(ε lnλk)‖w‖

=
∫

RN
V (yk)U2∗(s)−1

yk,λk
w +O

( |DV (yk)|
λk

+
1
λ2
k

+ ε lnλk
)
‖w‖.

(2.14)

Combining above estimates, we obtain

|ly,λw| =
m∑
k=1

∫
RN

U
N+2s
N−2s
yk,λk

w −
m∑
k=1

∫
RN

V (yk)U
N+2s
N−2s
yk,λk

w

+O
( m∑
k=1

( |DV (yk)|
λk

+
1
λ2
k

+ ε lnλk
)

+
∑
j 6=k

ε
1
2+τ

jk

)
‖w‖

=
m∑
k=1

∫
RN
|V (0)− V (yk)|U

N+2s
N−2s
yk,λk

w

+O
( m∑
k=1

( |DV (yk)|
λk

+
1
λ2
k

+ ε lnλk
)

+
∑
j 6=k

ε
1
2+τ

jk

)
‖w‖

= O
( m∑
k=1

( |DV (yk)|
λk

+
1
λ2
k

+
1

λ
N+2s

2
k

|V (0)− V (yk)|+ ε lnλk
)

+
∑
j 6=k

ε
1
2+τ

jk

)
‖w‖.
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�

3. Proof of main result

Let w(y, λ) be the map obtained in Proposition 2.5. Define

Ĩ(y, λ) := I(y, λ, w(y, λ)), (y, λ) ∈ Dy,m.

Let (yε, λε) ∈ Dy,m be any point for which

Ĩ(yε, λε) = sup{Ĩ(y, λ) : (y, λ) ∈ Dy,m}. (3.1)

The next Proposition shows that for small ε > 0, (yε, λε) is an interior point of
Dy,m, and hence a critical point of Ĩ.

Proposition 3.1. Let (yε, λε) satisfy (3.1). Then as ε→ 0,

ykε → 0, k = 1, . . . ,m,

λkε ∈ [ε−k1 , ε−k2 ], k = 1, . . . ,m, for some positive constant k1 < k2,

εjk → 0, j 6= k.

Proof. It follows from Lemma 4.1, Lemma 2.6 and Proposition 2.5 that

I(y, λ, w(y, λ))

= I(y, λ, 0) +O(‖ly,λ‖‖wy,λ‖+ ‖wy,λ‖2)

=
(m

2
− 1

2∗(s) + ε

m∑
k=1

V (yk)
)∫

RN
U2∗(s) − 1

2∗(s) + ε

m∑
k=1

∆V (yk)
2λ2

k

∫
RN
|x|2U2∗(s)

− 1
2∗(s) + ε

m∑
k=1

[
εV (yk)

(∫
RN

lnλ
N−2s

2
k U2∗(s) −

∫
RN

U2∗(s) lnU
)]

−
m−1∑
k=1

∫
RN

V (x)Uyk,λk
( m∑
j=k+1

Uyj ,λj

)2∗(s)+ε−1

+O
( m∑
k=1

1
λ2+µ
k

)
+O

(∑
j 6=k

ε1+τjk

)
+O
( m∑
k=1

|DV (yk)|2

λ2
k

)
+O
( m∑
k=1

(1− V (yk))1+τ
)

+O
( m∑
k=1

(ε lnλk
λk

+ ε2 ln2 λk

))
.

Denote zkε = εek, λ
k

ε = 1
ε2 , k = 1, . . . ,m. Some unit vectors e1, . . . , em with ek 6=

ej (k 6= j), for Then |zjε − zkε |2 = ε2|ej − ek|2 → 0, λ
k

ε →∞, as ε→ 0. Then

I(yε, λε, wε(yε, λε)) ≥ I(zε, λε, wε(zε, λε))

= m
(1

2
− 1

2∗(s) + ε

)∫
RN

U2∗(s) −mCε ln
1
ε

+O(ε).
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Thus(m
2
− 1

2∗(s) + ε

m∑
k=1

V (ykε )
)∫

RN
U2∗(s) − 1

2∗(s) + ε

m∑
k=1

∆V (ykε )
2(λkε )2

∫
RN
|x|2U2∗(s)

− 1
2∗(s) + ε

m∑
k=1

[
εV (ykε )

(∫
RN

ln(λkε )
N−2s

2 U2∗(s) −
∫

RN
U2∗(s) lnU

)]
−
m−1∑
k=1

∫
RN

V (x)Uykε ,λkε
( m∑
j=k+1

Uyjε ,λjε

)2∗(s)+ε−1

+O
( m∑
k=1

1
(λkε )2+µ

)
+O

(∑
j 6=k

ε1+τjk

)
+O
( m∑
k=1

|DV (ykε )|2

(λkε )2
)

+O
( m∑
k=1

(1− V (ykε ))1+τ
)

+O
( m∑
k=1

(ε lnλkε
λkε

+ ε2 ln2 λkε

))
≥ m

(1
2
− 1

2∗(s) + ε

)∫
RN

U2∗(s) −mCε ln
1
ε

+O(ε).

(3.2)
Moreover,

m−1∑
k=1

∫
RN

V (x)Uykε ,λkε
( m∑
j=k+1

Uyjε ,λjε

)2∗(s)+ε−1

≥ C
∑
j 6=k

εjk. (3.3)

This and (3.2) imply

0 ≤ V (yjε )− 1 ≤ Cε ln
1
ε

+O(ε), (3.4)

εjk ≤ Cε ln
1
ε

+O(ε), j 6= k, (3.5)

εV (ykε )
∫

RN
ln(λkε )

N−2s
2 U2∗(s) +

∆V (ykε )
2(λkε )2

∫
RN
|x|2U2∗(s)

+O
( m∑
k=1

|DV (ykε )|2

(λkε )2
)

+
m∑
k=1

O
( 1

(λkε )2+µ
)

≤ (2∗(s) + ε)mCε ln
1
ε

+O(ε),

(3.6)

which implies λkε → +∞ for k = 1, . . . ,m, and εjk → 0 for j 6= k, as ε → 0,
k, j = 1, 2, . . . ,m.

If λkε = ε−k1 for some k, then from (3.6), we obtain

ε2k1
∆V (ykε )

2

∫
RN
|x|2U2∗(s) +O

( m∑
k=1

|DV (ykε )|2
)
ε2k1 ≤ Cε ln

1
ε
.

This is a contradiction if k1 > 0 small enough.
If λkε = ε−k2 for some k, then from (3.6), we obtain

N − 2s
2

k2ε ln
1
ε
V (ykε )

∫
RN

U2∗(s) ≤ (2∗(s) + ε)mCε ln
1
ε

+O(ε),

which is impossible if we choose k2 > max{ 2(2∗(s)+1)mC

(N−2s)
R

RN U2∗(s) ,
1
2}. Consequently, the

result λkε ∈ [ε−k1 , ε−k2 ] (k = 1, . . . ,m) follows from the above estimate. �
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Proof of Theorem 1.1. By Proposition 3.1, we can check that (3.1) is achieved by
(yε, λε) which is an interior point of Dy,m for small ε, It follows from Proposition
2.5 that (yε, λε) is a critical point of J . Using Lemma 2.2, we can obtain u =∑m
k=1 Uyk,λk + w is a critical point of I. Note that

(−∆)sw = V (x)f
(
x,

m∑
k=1

Uyk,λk + w
)
−

m∑
k=1

U
2∗(s)−1
yk,λk

.

On the other hand,∣∣∣V (x)f
(
x,

m∑
k=1

Uyk,λk + w
)
−

m∑
k=1

U
2∗(s)−1
yk,λk

∣∣∣≤ C|w|2∗(s)−1 + Cε−
k2(N+2s)

2 .

Since ‖wε‖ → 0 as ε→ 0, by adapting the same approach explored in [4] and [15],
we deduce that

|wε| ≤ C‖wε‖L2∗(s)(B2(0)) + Cε−
k2(N+2s)

2 , ∀x ∈ B2(0),

which implies |uε| ≤ ε−k2N for all |x| < R.
Let ūε(x) = |x|−(N−2s)uε(x/|x|2) which satisfies

(−∆)sūε = g(x)ūε :=

|x|
(N−2s)εV

(
x
|x|2

)
f̄2(ūε), if |x| ≤ 1

R ,

|x|−(N+2s)V
(

x
|x|2

)
f1(|x|N−2sūε), if 1

R ≤ |x| ≤
2
R .

We can choose γ > 0 small enough, and it also follows from the same approach
explored in [4] and [15] that

|ūε|L∞(Bγ(0)) ≤ C‖ūε‖L2∗(s)(B2γ(0)) → 0, as ε→ 0,

which implies |x|N−2suε → 0 as ε → 0. From above estimates, we can obtain that
u solves indeed the original problem (1.1). �

4. Appendix

In this section, we prove some estimates needed in the proof of our main results.

Lemma 4.1. For any (y, λ) ∈ Dy,m, we have

I(Uy,λ)

=
(m

2
− 1

2∗(s) + ε

m∑
k=1

V (yk)
)∫

RN
U2∗(s) − 1

2∗(s) + ε

m∑
k=1

∆V (yk)
2λ2

k

∫
RN
|x|2U2∗(s)

+O
( m∑
k=1

λ
−(2+µ)
k

)
+O
( m∑
k=1

(ε lnλk
λk

+ ε2 ln2 λk

))
+O
(∑
j 6=k

(
ε+

1
λj

)
εjk

)
− 1

2∗(s) + ε

m∑
k=1

(
εV (yk)

∫
RN

lnλ
N−2s

2
k U2∗(s) − εV (yk)

∫
RN

U2∗(s) lnU
)

+O
( m∑
k=1

(1− V (yk))1+τ
)
−
m−1∑
k=1

∫
RN

V (x)Uyk,λk
( m∑
j=k+1

Uyj ,λj

)2∗(s)+ε−1

+O
(∑
j 6=k

ε1+τj,k

)
.
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Proof. Firstly, for any (y, λ) ∈ Dy,m, we see that

I(Uy,λ) =
1
2
〈Uy,λ, Uy,λ〉s −

∫
RN

V (x)F (x, Uy,λ)

=
1
2
〈Uy,λ, Uy,λ〉s −

1
2∗(s) + ε

∫
RN

V (x)U2∗(s)+ε
y,λ

=
1
2

m∑
k=1

〈Uyk,λk , Uyk,λk〉s +
∑
j<k

〈Uyj ,λj , Uyk,λk〉s

− 1
2∗(s) + ε

∫
RN

V (x)U2∗(s)+ε
y,λ

=
1
2

m∑
k=1

〈Uyk,λk , Uyk,λk〉s +
∑
j<k

∫
RN

U
2∗(s)−1
yj ,λj

Uyk,λk

− 1
2∗(s) + ε

∫
RN

V (x)U2∗(s)+ε
y,λ .

(4.1)

Next, we estimate
∫

RN V (x)U2∗(s)+ε
y,λ . Using Lemma 2.3, we have∫

RN
V (x)U2∗(s)+ε

y,λ

=
∫

RN
V (x)

(
Uy1,λ1 +

m∑
k=1

Uyk,λk

)2∗(s)+ε

=
∫

RN
V (x)U2∗(s)+ε

y1,λ1
+
∫

RN
V (x)

( m∑
k=1

Uyk,λk

)2∗(s)+ε

+ (2∗(s) + ε)
∫

RN
V (x)U2∗(s)+ε−1

y1,λ1

m∑
k=2

Uyk,λk

+ (2∗(s) + ε)
∫

RN
V (x)Uy1,λ1

( m∑
k=2

Uyk,λk

)2∗(s)+ε−1

+O
(∑
j 6=k

ε1+τj,k

)
.

By repeated applications of Lemma 2.3, we deduce∫
RN

V (x)U2∗(s)+ε
y,λ

=
m∑
k=1

∫
RN

V (x)U2∗(s)+ε
yk,λk

+ (2∗(s) + ε)
∫

RN
V (x)U2∗(s)+ε−1

y1,λ1

m∑
k=2

Uyk,λk

+ (2∗(s) + ε)
∫

RN
V (x)Uy1,λ1(

m∑
k=2

Uyk,λk)2
∗(s)+ε−1 +O

(∑
j 6=k

ε1+τj,k

)
.

(4.2)

We also deduce∫
RN

V (x)U2∗(s)+ε
yk,λk

=
∫

RN
V (x)U2∗(s)

yk,λk
+ ε

∫
RN

V (x)U2∗(s)
yk,λk

lnUyk,λk +O(ε2 ln2 λk)

=
∫

RN
V (x)U2∗(s)

yk,λk
+ ε

∫
RN

V (yk)U2∗(s)
yk,λk

lnUyk,λk +O
(ε lnλk

λk

)
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+O(ε2 ln2 λk)

=
∫

RN
V (x)U2∗(s)

yk,λk
+ εV (yk)

(∫
RN

lnλ
N−2s

2
k U2∗(s) −

∫
RN

U2∗(s) lnU
)

+O
(ε lnλk

λk

)
+O(ε2 ln2 λk). (4.3)

From (4.2) and (4.3), we have∫
RN

V (x)U2∗(s)+ε
y,λ

=
m∑
k=1

[∫
RN

V (x)U2∗(s)
yk,λk

+ εV (yk)
(∫

RN
lnλ

N−2s
2

k U2∗(s) −
∫

RN
U2∗(s) lnU

)
+O

(ε lnλk
λk

)
+O(ε2 ln2 λk)

]
+(2∗(s) + ε)

∑
j<k

∫
RN

V (x)U2∗(s)+ε−1
yj ,λj

Uyk,λk

+ (2∗(s) + ε)
m−1∑
k=1

∫
RN

V (x)Uyk,λk
( m∑
j=k+1

Uyj ,λj

)2∗(s)+ε−1

+O
(∑
j 6=k

ε1+τj,k

)
.

We also have∫
RN

V (x)U2∗(s)+ε−1
yj ,λj

Uyk,λk =
∫

RN
V (x)U2∗(s)−1

yj ,λj
Uyk,λk +O(εj,kε)

=
∫

RN
V (yj)U

2∗(s)−1
yj ,λj

Uyk,λk +O(εj,kε) +O(
1
λi
εj,k)

and ∫
RN

V (x)U2∗(s)
yk,λk

=
∫

RN
V (yk)U2∗(s)

yk,λk
+
∫

RN
〈DV (yk), x− yk〉U2∗(s)

yk,λk

+
∫

RN
〈D2V (yk)(yk − x), (yk − x)〉U2∗(s)

yk,λk
+O(λ−(2+µ)

k )

= V (yk)
∫

RN
U2∗(s) +

∆V (yk)
2λ2

k

∫
RN
|x|2U2∗(s) +O(λ−(2+µ)

k ).

Combining above estimates, we obtain

I(Uy,λ) =
1
2

m∑
k=1

〈Uyk,λk , Uyk,λk〉s +
∑
j<k

∫
RN

U
2∗(s)−1
yj ,λj

Uyk,λk

− 1
2∗(s) + ε

m∑
k=1

[∫
RN

V (x)U2∗(s)
yk,λk

+ εV (yk)
(∫

RN
lnλ

N−2s
2

k U2∗(s)

−
∫

RN
U2∗(s) lnU

)
+O
(ε lnλk

λk

)
+O(ε2 ln2 λk)

]
−
∑
j<k

∫
RN

V (x)U2∗(s)+ε−1
yj ,λj

Uyk,λk

−
m−1∑
k=1

∫
RN

V (x)Uyk,λk
( m∑
j=k+1

Uyj ,λj

)2∗(s)+ε−1

+O
(∑
j 6=k

ε1+τj,k

)
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=
(m

2
− 1

2∗(s) + ε

m∑
k=1

V (yk)
)∫

RN
U2∗(s)

− 1
2∗(s) + ε

m∑
k=1

∆V (yk)
2λ2

k

∫
RN
|x|2U2∗(s) +O

( m∑
k=1

λ
−(2+µ)
k

)
+O

( m∑
k=1

(ε lnλk
λk

+ ε2 ln2 λk

))
+O
(∑
j 6=k

(
ε+

1
λj

)
εjk

)

+O
(∑
j 6=k

ε1+τj,k

)
−
m−1∑
k=1

∫
RN

V (x)Uyk,λk
( m∑
j=k+1

Uyj ,λj

)2∗(s)+ε−1

− 1
2∗(s) + ε

m∑
k=1

(
εV (yk)

∫
RN

lnλ
N−2s

2
k U2∗(s)

− εV (yk)
∫

RN
U2∗(s) lnU

)
+O
( m∑
k=1

(1− V (yk))1+τ
)
.

�
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