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FRACTIONAL SCHRÖDINGER-POISSON EQUATIONS WITH
GENERAL NONLINEARITIES

RONALDO C. DUARTE, MARCO A. S. SOUTO

Abstract. In this article we study the existence of positive solutions and

ground state solutions for a class of fractional Schrödinger-Poisson equations
in R3 with general nonlinearity.

1. Introduction

In this article we consider the Schrödinger-Poisson system

(−∆)su+ V (x)u+ φu = f(u), in R3,

(−∆)tφ = u2, in R3,
(1.1)

where (−∆)α is the fractional Laplacian for α = s, t. This article was motivated
by [2]. There the authors show the existence of positive solutions for the system

−∆u+ V (x)u+ φu = f(u), in R3,

−∆φ = u2, in R3,

where V : R3 → R is a continuous periodic potential and positive. Our purpose is to
show that when we consider this system with fractional Laplacian operator instead
of the Laplacian, then we obtain a positive solution and a ground state solution
for the system. We emphasize that we prove the existence of weak solution to the
system and without using results of regularity, we show that the weak solution is
positive almost everywhere in R3. To prove this, we present another version of the
Logarithmic lemma and we deduce a weak comparison principle for the solution of
the system (See Theorem 4.1).

We use the following assumptions for the potential function V and the function
f ∈ C(R,R):

(A1) V (x) ≥ α > 0, ∀x ∈ R3, for some constant α > 0,
(A2) V (x) = V (x+ y), for all x ∈ R3, y ∈ Z3.
(A3) f(u)u > 0, u 6= 0;
(A4) limu→0 f(u)/u = 0;
(A5) there exists p ∈ (4, 2∗s) and C > 0, such that

|f(u)| ≤ C(|u|+ |u|p−1),

for all u ∈ R, where 2∗s = 6
3−2s .
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(A6) limu→+∞ F (u)/u4 = +∞, where F (u) =
∫ u

0
f(z)dz;

(A7) The function u 7−→ f(u)/|u|3 is increasing in |u| 6= 0.

We will denote g(u) := f(u+) and G(t) =
∫ t

0
g(s)ds.

System (1.1) was studied in [11], where the author consider the one dimensional
system

−∆u+ φu = a|u|p−1u, in R,
(−∆)tφ = u2, in R,

for p ∈ (1, 5) and t ∈ (0, 1). In [18], the authors show the existence of positive
solutions for the system

−∆u+ u+ λφu = f(u), in R3,

−∆φ = λu2, in R,

for λ > 0 and a general critical nonlinearity f . In [17], the authors proved the
existence of radial ground state solutions of (1.1) when V = 0. In [16], the system
was studied, although the sign of the solutions is not considered. In this article,
we prove the existence of positive solutions for (1.1). Using a Nehari manifold, we
ensure the existence of a ground state solution for the problem. Our main result
reads as follows.

Theorem 1.1. Suppose that s ∈ (3/4, 1), t ∈ (0, 1), and (A1)–(A7) are satisfied.
Then (1.1) has a positive solution and a ground state solution.

The hypothesis s ∈ (3/4, 1) is required to ensure that the interval (4, 2∗s) is
nondegenerate.

Remark 1.2. Condition (A7) implies that H(u) = uf(u)−4F (u) is a non-negative
function.

In [10, Lemma 2.3], the authors proved the following version of the Lions lemma,
which will be needed to prove our result.

Lemma 1.3. If {un}n∈N is a bounded sequence in Hs(R3) such that for some R > 0
and 2 ≤ q < 2∗s we have

sup
x∈R3

∫
BR(x)

|un|q → 0

when n→∞, then un → 0 in Lr(R3) for all r ∈ (2, 2∗s).

2. Preliminaries

For s ∈ (0, 1), we denote by Ḣs(R3) the homogeneous fractional space. It is
defined as the completion of C∞0 (R3) under the norm

‖u‖Ḣs =
(∫

R3

∫
R3

(u(x)− u(y))2

|x− y|3+2s
dx dy)1/2

and we define

Hs(R3) :=
{
u ∈ L2(R3);

∫
R3

∫
R3

(u(x)− u(y))2

|x− y|3+2s
dx dy <∞

}
.

The space Hs(R3) is a Hilbert space with the norm

‖u‖Hs =
(∫

R3
|u|2dx+

∫
R3

∫
R3

(u(x)− u(y))2

|x− y|3+2s
dx dy

)1/2
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We define the fractional Laplacian operator (−∆)s : Ḣs(R3) → (Ḣs(R3))′ by
((−∆)su, v) = ζ

2 (u, v)Ḣs , where ζ = ζ(s) = (
∫

R3
1−cos(ξ1)
|ξ|3+2s dξ)−1 and (·, ·)Hs is an

inner product of Hs(R3). The constant ζ satisfies∫
R3

∫
R3

(u(x)− u(y))(v(x)− v(y))
|x− y|3+2s

dx dy = 2ζ−1

∫
R3
|ξ|2sFu(ξ)Fv(ξ)dξ,

where Fu is the Fourier transform of u (see [6, Proposition 3.4]). The fractional
Laplacian operator is a bounded linear operator.

A pair (u, φu) is a solution of (1.1) if

ζ(t)
2

∫
R3

∫
R3

(φu(x)− φu(y))(w(x)− w(y))
|x− y|3+2t

dx dy =
∫

R3
u2w dx.

for all w ∈ Ḣt(R3), and

((−∆)su, v) +
∫

R3
V (x)uvdx+

∫
R3
φuuvdx =

∫
R3
f(u)v dx

for all v ∈ Hs(R3).
Let us recall some facts about the Schrödinger-Poisson equations (see [14, 3, 19, 9]

for instance). We can transform (1.1) into a fractional Schrödinger problem with
a nonlocal term. For all u ∈ Hs(R3), there exists a unique φ = φu ∈ Ḣt(R3) such
that

(−∆)tφ = u2.

In fact, since Hs(R3) ↪→ L
22∗t

2∗t−1 (R3) (continuously), a simple application of the
Lax-Milgram theorem shows that φu is well defined and

‖φu‖2Ḣt ≤ S2‖u‖422∗t
2∗t−1

,

where ‖ · ‖p denotes the Lp(R3) norm and S is the best constant of the Sobolev
immersion Hs(R3)→ L2∗t (R3); that is

S = inf
u∈Ḣt(R3)\{0}

‖u‖2
Ḣt

‖u‖22∗t
.

Lemma 2.1. We have:
(i) there exists C > 0 such that ‖φu‖Ḣt ≤ C‖u‖2Hs and∫

R3

∫
R3

(φu(x)− φu(y))2

|x− y|3+2t
dx dy ≤ C‖u‖4Hs

for all u ∈ Hs(R3);
(ii) φu ≥ 0, ∀u ∈ Hs(R3);

(iii) φtu = t2φu, ∀t > 0, u ∈ Hs(R3).
(iv) If ũ(x) := u(x+ z) then φũ(x) = φu(x+ z) and∫

R3
φuu

2dx =
∫

R3
φũũ

2dx.

for all z ∈ R3 and u ∈ Hs(R3).
(v) If {un} converges weakly to u in Hs(R3), then {φun

} converges weakly to
φu in Ḣt(R3).
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The proof of the above lemma is analogous to the case of Poisson equation in
D1,2(R3) (See [2, 14, 19]).

At first, we are interested in showing the existence of a positive solution for (1.1).
We will consider the Euler-Lagrange functional I : Hs(R3)→ R given by

I(u) =
ζ(s)

4

∫
R3

∫
R3

(u(x)− u(y))2

|x− y|3+2s
dx dy +

1
2

∫
R3
V (x)u2dx

+
1
4

∫
R3
φuu

2dx−
∫

R3
G(u)dx,

whose derivative is

I
′
(u)(v) =

ζ

2

∫
R3

∫
R3

(u(x)− u(y))(v(x)− v(y))
|x− y|3+2s

dx dy

+
∫

R3
V (x)uvdx+

∫
R3
φuuvdx−

∫
R3
g(u)vdx

= ((−∆)su, v) +
∫

R3
V (x)uvdx+

∫
R3
φuuvdx−

∫
R3
g(u)vdx.

We remark that critical points of I determine solutions for (1.1).

Lemma 2.2. The function

u 7→ ‖u‖ :=
(ζ(s)

2

∫
R3

∫
R3

(u(x)− u(y))2

|x− y|3+2s
dx dy +

∫
R3
V (x)u2dx

)1/2

defines a norm in Hs(R3) which is equivalent to the standard norm.

The proof of the previous lemma is trivial and therefore we will omit it in this
paper.

3. Existence of the Solution

Theorem 3.1. Suppose that 1 > s > 3/4, t ∈ (0, 1), and (A1)–(A6 are satisfied.
Then (1.1) has a nontrivial solution.

Proof. By usual arguments, we prove that the functional I has the mountain pass
geometry. By Montain Pass theorem, there is a Cerami’s sequence for I at the
mountain pass level c. That is, there is {un}n∈N ⊂ Hs(R3) such that

I(un)→ c,

(1 + ‖un‖)I
′
(un)→ 0.

where

c = inf
γ∈Γ

sup
t∈[0,1]

I(γ(t)),

Γ = {γ ∈ C([0, 1], Hs(R3)); γ(0) = 0, γ(1) = e},

where e ∈ Hs(R3), and e satisfies I(e) < 0. By Remark 1.2

4I(un)− I ′(un)un = ‖un‖2 +
∫

R3
[f(un)un − 4F (un)]dx ≥ ‖un‖2

Therefore {un} is bounded in Hs(R3). So, there is u ∈ Hs(R3) such that {un}
converges weakly to u. The Lemma 2.1, (A4), and (A5) imply that u is a critical
point for I. If u 6= 0 then u is a nontrivial solution for (1.1). Suppose that u = 0.
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We claim that {un} does not converge to 0 in Lr(R3) for all r ∈ (2, 2∗s). Indeed,
otherwise, by (A4), (A5) and the boundedness of {un} in L2(R3) we have∫

R3
g(un)undx→ 0;

By Lemma 2.1

‖un‖2 ≤ ‖un‖2 +
∫

R3
φunu

2
ndx =

∫
R3
g(un)undx+ I ′(un)un.

The right-hand side of the above inequality converges to 0. In this case, un → 0 in
Hs(R3). Consequently

c = lim I(un) = 0.
This equality can not occur. Then, we can assume that there are R > 0 and δ > 0
such that passing to a subsequence if necessary∫

BR(yn)

u2
ndx ≥ δ,

for some sequence {yn} ⊂ Z3 (See Lemma 1.3). For each n ∈ N, we define

wn(x) := un(x+ yn).

Note that wn ∈ Hs(R3). Moreover, changing the variables in the integral below,
we have

I(wn) =
ζ

4

∫
R3

∫
R3

(un(x+ yn)− un(y + yn))2

|(x+ yn)− (y + yn)|3+2s
dx dy +

1
2

∫
R3
V (x)un(x+ yn)2dx

+
1
4

∫
R3
φwn

w2
ndx−

∫
R3
G(un(x+ yn))dx

=
ζ

4

∫
R3

∫
R3

(un(z)− un(w))2

|z − w|3+2s
dzdw +

1
2

∫
R3
V (z)un(z)2dz

+
1
4

∫
R3
φunu

2
ndx−

∫
R3
G(un(z))dz

= I(un).

Analogously, for every φ ∈ Hs(R3),

I ′(wn)φ =
ζ

2

∫
R3

∫
R3

(wn(x)− wn(y))(φ(x)− φ(y))
|x− y|3+2s

dx dy +
∫

R3
V (x)wnφdx

+
∫

R3
φwn

wnφdx−
∫

R3
g(wn)φdx

=
ζ

2

∫
R3

∫
R3

(un(x+ yn)− un(y + yn))(φ(x)− φ(y))
|(x+ yn)− (y + yn)|3+2s

dx dy

+
∫

R3
V (x+ yn)un(x+ yn)φ(x)dx+

∫
R3
φun

(x+ yn)un(x+ yn)φdx

−
∫

R3
g(un(x+ yn))φ(x)dx

=
ζ

2

∫
R3

∫
R3

(un(z)− un(w)(φ(z − yn)− φ(w − yn))
|z − w|3+2s

dzdw

+
∫

R3
V (z)un(z)φ(z − yn)dz +

∫
R3
φun

(z)un(z)φ(z − yn)dz
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−
∫

R3
g(un(z))φ(z − yn)dz

= I ′(un)φ

where φ(x) = φ(x−yn). This implies that {wn} is a Cerami’s sequence for I at the
level c. Analogously, we can show that {wn} is bounded, {wn} converges weakly
to some w0 ∈ Hs(R3) and that I ′(w0) = 0. Passing to a subsequence, if necessary,
we can assume that {wn} converges on L2

loc(R3) to w0. Then∫
BR(0)

w2
0dx = lim

n→∞

∫
BR(0)

w2
ndx

= lim
n→∞

∫
BR(0)

un(x+ yn)2dx

= lim
n→∞

∫
BR(yn)

un(z)2dz ≥ δ.

Therefore, w0 is a nontrivial solution for (1.1). Thus, if u = 0 we prove that there
is a critical point for I, that is nontrivial. �

4. Positivity of solutions

In this section, we prove that the solution in Theorem 3.1 is positive. Initially,
we prove a version of a logarithmic lemma. The logarithmic lemma was presented
by Di Castro, Kuusi and Palatucci. [5, lemma 1.3]). In the Logarithmic lemma,
the authors give an estimate for weak solutions of the equation

(−∆p)su = 0 in Ω

u = g in Rn \ Ω

in Br(x0) ⊂ BR
2

(x0) ⊂ Ω, for x0 ∈ Ω and u ≥ 0 in BR(x0). Following the ideas from
Di Castro, Kuusi and Palatucci, we will show a similar estimate for a supersolution
of the problem

(−∆)su+ a(x)u = 0 in Rn

(See Lemma 4.1 bellow). Supersolutions are defined as follows∫
Rn

∫
Rn

(u(x)− u(y))(v(x)− v(y))
|x− y|n+2s

dx dy +
∫

Rn

a(x)u(x)v(x)dx ≥ 0,

for all v ∈ Hs(Rn) with v ≥ 0 almost everywhere. Also, in this situation, we need
not to assume that u ≥ 0 in some subset of Rn. With this estimate, we conclude
that the supersolution satisfies u > 0 almost everywhere in R3 or u = 0 almost
everywhere in R3.

Lemma 4.1. Suppose that a : Rn → R is a nonnegative function and u ∈ Hs(Rn).
If ∫

Rn

∫
Rn

(u(x)− u(y))(v(x)− v(y))
|x− y|n+2s

dx dy +
∫

Rn

a(x)u(x)v(x)dx ≥ 0.

for all v ∈ Hs(Rn) with v ≥ 0 almost everywhere, then u ≥ 0 almost everywhere.
In other words, if (−∆)su+ a(x)u ≥ 0 then u ≥ 0 almost everywhere.
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Proof. Define v = u− = max{0,−u}. By hypothesis∫
Rn

∫
Rn

(u(x)− u(y))(u−(x)− u−(y))
|x− y|n+2s

dx dy +
∫

Rn

a(x)u(x)u−(x)dx ≥ 0.

However:
• if u(x) > 0 and u(y) > 0 then (u(x)− u(y))(u−(x)− u−(y)) = 0;
• if u(x) < 0 and u(y) < 0 then (u(x) − u(y))(u−(x) − u−(y)) = −(u(x) −
u(y))2 ≤ 0;
• if u(x) > 0 and u(y) < 0 then (u(x) − u(y))(u−(x) − u−(y)) = (u(x) −
u(y))u(y) ≤ 0;
• if u(x) < 0 and u(y) > 0 then (u(x) − u(y))(u−(x) − u−(y)) = (u(x) −
u(y))(−u(x)) ≤ 0;

• if u(x) < 0, then a(x)u(x)u−(x) = −a(x)u2(x) < 0, and a(x)u(x)u−(x)
= 0 in the case u(x) ≥ 0.

We conclude that each one of the integrals above is equal to zero. Therefore

(u(x)− u(y))(u−(x)− u−(y))
|x− y|n+2s

= 0.

Also u− is constant in Hs(Rn), that is, u− = 0. �

Lemma 4.2. Suppose that ε ∈ (0, 1] and a, b ∈ Rn. Then

|a|2 ≤ |b|2 + 2ε|b|2 +
1 + ε

ε
|a− b|2

Proof. Note taht

|a|2 ≤ (|b|+ |a− b|)2 = |b|2 + 2|b‖a− b|+ |a− b|2

By the Cauchy inequality with ε,

|b‖a− b| ≤ ε|b|2 +
|a− b|2

4ε
≤ ε|b|2 +

|a− b|2

2ε
Replacing in the inequality above,

|a|2 ≤ |b|2 + 2ε|b|2 +
|a− b|2

ε
+ |a− b|2 = |b|2 + 2ε|b|2 +

1 + ε

ε
|a− b|2.

�

Lemma 4.3. With the same assumptions as in Lemma 4.1 and a ∈ L1
loc(R3), we

have that for all r, d > 0 and x0 ∈ Rn,∫
Br

∫
Br

∣∣∣ log
(d+ u(x)
d+ u(y)

)∣∣∣2 1
|x− y|n+2s

dx dy ≤ Crn−2s +
∫
B2r

a(x)dx, (4.1)

where Br = Br(x0) and C = C(n, s) > 0 is a constant.

Proof. Consider φ ∈ C∞0 (B 3r
2

), 0 ≤ φ ≤ 1, φ = 1 in Br and K > 0 such that
‖Dφ‖∞ ≤ Kr−1. The function

η =
φ2

u+ d
is in Hs(Rn) and η ≥ 0 (see [6, Lemma 5.3]). By hypothesis,

0 ≤
∫
Rn

∫
Rn

(u(x)− u(y))(η(x)− η(y))
|x− y|n+2s

dx dy +
∫

Rn

a(x)u(x)η(x)dx
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=
∫
B2r

∫
B2r

(u(x)− u(y))(η(x)− η(y))
|x− y|n+2s

dx dy

+
∫
Rn−B2r

∫
B2r

(u(x)− u(y))(η(x)− η(y))
|x− y|n+2s

dx dy

+
∫
B2r

∫
Rn−B2r

(u(x)− u(y))(η(x)− η(y))
|x− y|n+2s

dx dy

+
∫
Rn−B2r

∫
Rn−B2r

(u(x)− u(y))(η(x)− η(y))
|x− y|n+2s

dx dy

+
∫

Rn

a(x)u(x)η(x)dx.

We will prove some statements about the five integrals above.

Claim 1. There are constants C2, C3 > 0, such that, they depend only on n and
s and ∫

B2r

∫
B2r

(u(x)− u(y))(η(x)− η(y))
|x− y|n+2s

dx dy

≤ −C2

∫
B2r

∫
B2r

∣∣∣ log
(d+ u(x)
d+ u(y)

)∣∣∣2 1
|x− y|n+2s

min{φ(y)2, φ(x)2} dx dy

+ C3

∫
B2r

∫
B2r

|φ(x)− φ(y)|2

|x− y|n+2s
dx dy,

where min{a, b} = a if a ≤ b and min{a, b} = b if a ≥ b, for all a, b ∈ R.
Fix x, y ∈ B2r and suppose that u(x) > u(y). Define

ε = δ
u(x)− u(y)
u(x) + d

where δ ∈ (0, 1) is chosen small enough such that ε ∈ (0, 1). Taking a = φ(x) and
b = φ(y) in the Lemma 4.2, we obtain

|φ(x)|2 ≤ |φ(y)|2 + 2δ
u(x)− u(y)
u(x) + d

|φ(y)|2 + (δ−1 u(x) + d

u(x)− u(y)
+ 1)|φ(x)− φ(y)|2

Then

(u(x)− u(y))(η(x)− η(y))
|x− y|n+2s

= (u(x)− u(y))(
φ2(x)
u(x) + d

− φ2(y)
u(y) + d

)
1

|x− y|n+2s

≤ (u(x)− u(y))
( |φ(y)|2 + 2δ u(x)−u(y)

u(x)+d |φ(y)|2 + (δ−1 u(x)+d
u(x)−u(y) + 1)|φ(x)− φ(y)|2

u(x) + d

− φ2(y)
u(y) + d

) 1
|x− y|n+2s

= (u(x)− u(y))
|φ(y)|2

u(x) + d

[
1 + 2δ

u(x)− u(y)
u(x) + d

+ (δ−1 u(x) + d

u(x)− u(y)
+ 1)

|φ(x)− φ(y)|2

|φ(y)|2
− u(x) + d

u(y) + d

] 1
|x− y|n+2s
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= (u(x)− u(y))
|φ(y)|2

u(x) + d

1
|x− y|n+2s

(1 + 2δ
u(x)− u(y)
u(x) + d

− u(x) + d

u(y) + d
)

+ (δ−1 +
(u(x)− u(y))
u(x) + d

)|φ(x)− φ(y)|2 1
|x− y|n+2s

≤ (u(x)− u(y))
|φ(y)|2

u(x) + d

1
|x− y|n+2s

(1 + 2δ
u(x)− u(y)
u(x) + d

− u(x) + d

u(y) + d
)

+ 2δ−1|φ(x)− φ(y)|2 1
|x− y|n+2s

.

We rewrite the first part of the sum appearing on the right side of the above
inequality as

(u(x)− u(y))
|φ(y)|2

u(x) + d

1
|x− y|n+2s

(
1 + 2δ

u(x)− u(y)
u(x) + d

− u(x) + d

u(y) + d

)
=
(u(x)− u(y)

u(x) + d

)2

φ(y)2 1
|x− y|n+2s

[ u(x) + d

u(x)− u(y)
+ 2δ − u(x) + d

u(y) + d
· u(x) + d

u(x)− u(y)

]
= (

u(x)− u(y)
u(x) + d

)2φ(y)2 1
|x− y|n+2s

[1− u(x)+d
u(y)+d

1− u(y)+d
u(x)+d

+ 2δ
]
.

Define the function g : (0, 1)→ R defined by

g(t) =
1− t−1

1− t

satisfies g(t) ≤ − 1
4
t−1

1−t if t ∈ (0, 1
2 ] and g(t) ≤ −1 for all t ∈ (0, 1). We have two

cases. If u(y)+d
u(x)+d ≤

1
2 then, we conclude that

(u(x)− u(y)
u(x) + d

)2

φ(y)2 1
|x− y|n+2s

[1− u(x)+d
u(y)+d

1− u(y)+d
u(x)+d

+ 2δ
]

≤ (
u(x)− u(y)
u(x) + d

)2φ(y)2 1
|x− y|n+2s

[
− 1

4

u(x)+d
u(y)+d

u(x)−u(y)
u(x)+d

+ 2δ
]

=
u(x)− u(y)
u(x) + d

φ(y)2 1
|x− y|n+2s

[
− 1

4
u(x) + d

u(y) + d
+ 2δ

u(x)− u(y)
u(x) + d

]
=
u(x)− u(y)
u(y) + d

φ(y)2 1
|x− y|n+2s

[
− 1

4
+ 2δ

(u(x)− u(y))(u(y) + d)
(u(x) + d)2

]
≤ u(x)− u(y)

u(y) + d
φ(y)2 1

|x− y|n+2s
[−1

4
+ 2δ].

In the last inequality, we used

(u(x)− u(y))(u(y) + d)
(u(x) + d)2

≤ 1.

Choosing δ = 1/16 we have(u(x)− u(y)
u(x) + d

)2

φ(y)2 1
|x− y|n+2s

[1− u(x)+d
u(y)+d

1− u(y)+d
u(x)+d

+ 2δ
]
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≤ −1
8
u(x)− u(y)
u(y) + d

φ(y)2 1
|x− y|n+2s

≤ −1
8

[
log(

u(x) + d

u(y) + d
)
]2
φ(y)2 1

|x− y|n+2s
.

Above, we used that (log(t))2 ≤ t − 1 for all t ≥ 2, and that u(x)+d
u(y)+d ≥ 2. But, if

u(y)+d
u(x)+d > 1/2, then using g(t) ≤ −1 and δ = 1/16,

(u(x)− u(y)
u(x) + d

)2

φ(y)2 1
|x− y|n+2s

[1− u(x)+d
u(y)+d

1− u(y)+d
u(x)+d

+ 2δ
]

≤
(u(x)− u(y)

u(x) + d

)2

φ(y)2 1
|x− y|n+2s

[−1 + 2δ]

≤ −7
8

(u(x)− u(y)
u(x) + d

)2

φ(y)2 1
|x− y|n+2s

≤ − 7
32

[
log(

u(x) + d

u(y) + d
)
]2
φ(y)2 1

|x− y|n+2s
.

Here, we used[
log(

u(x) + d

u(y) + d
)
]2

=
[

log(1 +
u(x)− u(y)
u(y) + d

)
]2
≤ 4(

u(x)− u(y)
u(x) + d

)2.

This is a consequence of the inequality log(1 + t) ≤ t for all t > 0, and

t =
u(x)− u(y)
u(y) + d

=
u(x)− u(y)
u(x) + d

· u(x) + d

u(y) + d
≤ 2

u(x)− u(y)
u(x) + d

.

Therefore,

(u(x)− u(y))
|φ(y)|2

u(x) + d

1
|x− y|n+2s

(
1 + 2δ

u(x)− u(y)
u(x) + d

− u(x) + d

u(y) + d

)
≤ −1

8

[
log(

u(x) + d

u(y) + d
)
]2
φ(y)2 1

|x− y|n+2s
.

We have proved that: if u(x) > u(y), then

(u(x)− u(y))(η(x)− η(y))
|x− y|n+2s

≤ −1
8

[
log(

u(x) + d

u(y) + d
)
]2
φ(y)2 1

|x− y|n+2s
+ 32|φ(x)− φ(y)|2 1

|x− y|n+2s
.

Integrating on B2r the above inequality, we obtain∫
B2r

∫
B2r

(u(x)− u(y))(η(x)− η(y))
|x− y|n+2s

dx dy

=
∫
B2r

∫
{x;u(x)>u(y)}

(u(x)− u(y))(η(x)− η(y))
|x− y|n+2s

dx dy

+
∫
B2r

∫
{x;u(x)<u(y)}

(u(x)− u(y))(η(x)− η(y))
|x− y|n+2s

dx dy

≤ −1
8

∫
B2r

∫
{x;u(x)>u(y)}

[
log(

u(x) + d

u(y) + d
)
]2
φ(y)2 1

|x− y|n+2s
dx dy
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− 1
8

∫
B2r

∫
{x;u(x)<u(y)}

[
log(

u(y) + d

u(x) + d
)
]2
φ(x)2 1

|x− y|n+2s
dx dy

+ 32
∫
B2r

∫
B2r

|φ(x)− φ(y)|2 1
|x− y|n+2s

dx dy.

Using that | log(x)| = | log( 1
x )| for all x 6= 0, we obtain[

log(
u(y) + d

u(x) + d
)
]2

=
[

log(
u(x) + d

u(y) + d
)
]2
.

Then∫
B2r

∫
B2r

(u(x)− u(y))(η(x)− η(y))
|x− y|n+2s

dx dy

≤ −1
8

∫
B2r

∫
{x;u(x)>u(y)}

[
log(

u(x) + d

u(y) + d
)
]2
φ(y)2 1

|x− y|n+2s
dx dy

− 1
8

∫
B2r

∫
{x;u(x)<u(y)}

[
log(

u(x) + d

u(y) + d
)
]2
φ(x)2 1

|x− y|n+2s
dx dy

+ 32
∫
B2r

∫
B2r

|φ(x)− φ(y)|2 1
|x− y|n+2s

dx dy

≤ −1
8

∫
B2r

∫
{x;u(x)>u(y)}

[
log(

u(x) + d

u(y) + d
)
]2

min{φ(y)2, φ(x)2} 1
|x− y|n+2s

dx dy

− 1
8

∫
B2r

∫
{x;u(x)<u(y)}

[
log(

u(x) + d

u(y) + d
)
]2

min {φ(y)2, φ(x)2} 1
|x− y|n+2s

dx dy

+ 32
∫
B2r

∫
B2r

|φ(x)− φ(y)|2 1
|x− y|n+2s

dx dy

= −1
8

∫
B2r

∫
B2r

[
log(

u(x) + d

u(y) + d
)
]2

min {φ(y)2, φ(x)2} 1
|x− y|n+2s

dx dy

+ 32
∫
B2r

∫
B2r

|φ(x)− φ(y)|2 1
|x− y|n+2s

dx dy,

Thus, we have proved claim 1.
Claim 2. There exist C3 > 0, depending only on s and n, such that∫

Rn−B2r

∫
B2r

(u(x)− u(y))(η(x)− η(y))
|x− y|n+2s

dx dy ≤ C3r
n−2s.

Indeed,∫
Rn−B2r

∫
B2r

(u(x)− u(y))(η(x)− η(y))
|x− y|n+2s

dx dy

=
∫

Rn−B2r

∫
Rn

(u(x)− u(y))
( φ2(x)
u(x) + d

− φ2(y)
u(y) + d

) 1
|x− y|n+2s

dx dy

=
∫

Rn−B2r

∫
Rn

|φ(x)|2u(x)− u(y)
u(x) + d

1
|x− y|n+2s

dx dy

≤
∫

Rn−B2r

∫
Rn

|φ(x)|2 1
|x− y|n+2s

dx dy
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In the above equality, we used that u(y) ≥ 0. Therefore

u(x)− u(y)
u(x) + d

≤ 1.

A simple calculation shows that∫
Rn−B2r

∫
Rn

|φ(x)|2 1
|x− y|n+2s

dx dy ≤ C3r
n−2s

and C3 depends only on n and s. Therefore we obtain Claim 2.
Claim 3. ∫

Rn

a(x)u(x)η(x)dx ≤
∫
B2r

a(x)dx

. Indeed, ∫
Rn

a(x)u(x)η(x)dx =
∫

Rn

a(x)u(x)
φ2(x)
u(x) + d

dx

=
∫
B2r

a(x)u(x)
φ2(x)
u(x) + d

dx

=
∫
B2r

a(x)
u(x)

u(x) + d
φ2(x)dx

≤
∫
B2r

a(x)dx

We used that supp(η) ⊂ B2r, that φ(x) ∈ (0, 1) and that u(x)
u(x)+d ≤ 1.

Claims 1,2 and 3 imply∫
B2r

∫
B2r

[
log(

u(x) + d

u(y) + d
)
]2

min{φ(y)2, φ(x)2} 1
|x− y|n+2s

dx dy

≤ C5

∫
B2r

∫
B2r

|φ(x)− φ(y)|2

|x− y|n+2s
dx dy + C6r

n−2s +
∫
B2r

a(x)dx.

for constants C5, C6. The constants C5, C6 depend only on n and s. Since φ = 1
in Br, ∫

Br

∫
Br

∣∣∣ log(
d+ u(x)
d+ u(y)

)
∣∣∣2 1
|x− y|n+2s

dx dy

≤ C5

∫
B2r

∫
B2r

|φ(x)− φ(y)|2

|x− y|n+2s
dx dy + C6r

n−2s +
∫
B2r

a(x)dx
(4.2)

Finally, we show that∫
B2r

∫
B2r

|φ(x)− φ(y)|2

|x− y|n+2s
dx dy ≤ C7r

n−2s .

By assumption,∫
B2r

∫
B2r

|φ(x)− φ(y)|2

|x− y|n+2s
dx dy ≤ Kr−2

∫
B2r

∫
B2r

|x− y|2

|x− y|n+2s
dx dy

= Kr−2

∫
B2r

∫
B2r

1
|x− y|n+2(s−1)

dx dy

≤ Kr−2 r
2(1−s)

2(1− s)
|B2r| = C7r

n−2s
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where C7 depends only on n and s. Replacing the above estimate in (4.2), we
obtain the Lemma 4.3. �

Following the same ideas as in [4, Theorem A.1], we prove the theorem stated
at the beginning of the section.

Theorem 4.4. Suppose that u ∈ Hs(Rn) and a ≥ 0 with a ∈ L1
loc(Rn). We assume

that ∫
Rn

∫
Rn

(u(x)− u(y))(v(x)− v(y))
|x− y|n+2s

dx dy +
∫

Rn

a(x)u(x)v(x)dx ≥ 0,

for all v ∈ Hs(Rn) with v ≥ 0 almost everywhere. Then u > 0 almost everywhere
in Rn or u = 0 almost everywhere in Rn.

Proof. By Lemma 4.1, u ≥ 0. Suppose that x0 ∈ Rn and r > 0. Define

Z := {x ∈ Br(x0);u(x) = 0}

If |Z| > 0, then we define Fδ : Br(x0)→ R as

Fδ(x) = log(1 +
u(x)
δ

)

for all δ > 0. We have Fδ(y) = 0 for all y ∈ Z. Therefore, if x ∈ Br(x0) and y ∈ Z,

|Fδ(x)|2 =
|Fδ(x)− Fδ(y)|2

|x− y|n+2s
|x− y|n+2s

Integrating with respect to y ∈ Z we obtain

|Z‖Fδ(x)|2 =
∫
Z

|Fδ(x)− Fδ(y)|2

|x− y|n+2s
|x− y|n+2sdy ≤ 2rn+2s

∫
Z

|Fδ(x)− Fδ(y)|2

|x− y|n+2s
dy

Now, integrating with respect to x ∈ Br we obtain∫
Br(x0)

|Fδ(x)|2dx ≤ 1
|Z|

2rn+2s

∫
Br(x0)

∫
Z

|Fδ(x)− Fδ(y)|2

|x− y|n+2s
dy dx

≤ 1
|Z|

2rn+2s

∫
Br(x0)

∫
Br(x0)

|Fδ(x)− Fδ(y)|2

|x− y|n+2s
dy dx

=
1
|Z|

2rn+2s

∫
Br(x0)

∫
Br(x0)

∣∣∣ log(
δ + u(x)
δ + u(y)

)
∣∣∣2 1
|x− y|n+2s

dx dy

≤ 1
|Z|

2rn+2s
(
Crn−2s +

∫
B2r

a(x)dx
)

=
1
|Z|

2Cr2n +
1
|Z|

2rn+2s

∫
B2r

a(x)dx := L.

The number L does not depend on δ. In summary, we have proved that∫
Br(x0)

∣∣∣ log(1 +
u(x)
δ

)
∣∣∣2dx ≤ C

for some constant C > 0 which does not depend on δ. If u(x) 6= 0 then Fδ(x)→∞
when δ → 0. By Fatou’s lemma, if |Br ∩ Zc| > 0,

+∞ ≤ lim inf
δ→0

∫
Br∩Zc

|Fδ(x)|2 ≤ C.
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Therefore |Z| = |Br| and u = 0 almost everywhere in Br(x0). Now, we define

A = {Br(x); r > 0, x ∈ Rn, u > 0 in Br(x)},
B = {Br(x); r > 0, x ∈ Rn, u = 0 in Br(x)},

S = ∪V ∈AV, W = ∪V ∈BV .
Note that S and W are open sets. Consider x ∈ Rn and r > 0. We have two
possibilities, either u 6= 0 in Br(x) or u = 0 in Br(x). If u 6= 0 in Br then u > 0 in
Br. In this case, x ∈ S. If u = 0 in Br(x), then x ∈W . Consequently

Rn = S ∪W.
By connectedness, we should have S = ∅ or W = ∅. If Rn = S then u > 0 almost
everywhere in Rn. If Rn = W then u = 0 almost everywhere in Rn. �

Corollary 4.5. The solution u found in Theorem 3.1 is positive almost everywhere
in R3.

Proof. For some v ∈ Hs(R3), with v ≥ 0 almost everywhere, we have

(ζ)
2

∫
R3

∫
R3

(u(x)− u(y))(v(x)− v(y))
|x− y|3+2s

dx dy +
∫

R3
V (x)uvdx+

∫
R3
φuuv dx

=
∫

R3
g(u)v dx ≥ 0.

If we define a(x) = 2
ζ (V (x)+φu(x)), we have that a ∈ L1

loc(R3), because L2∗t (R3) ⊂
L1

loc(R3) and V is continuous. By (A1) and Lemma 2.1 we have a(x) > 0 in R3.
Therefore ∫

R3

∫
R3

(u(x)− u(y))(v(x)− v(y))
|x− y|3+2s

dx dy +
∫

R3
a(x)uv dx ≥ 0.

for all v ∈ Hs(R3) with v ≥ 0. But u 6= 0. Then, Theorem 4.4 implies that u > 0
almost everywhere in R3. �

Remark 4.6. Define N = {u ∈ Hs(R3) \ {0}; I ′(u)u = 0}, where

I(u) =
ζ(s)

4

∫
R3

∫
R3

(u(x)− u(y))2

|x− y|3+2s
dx dy +

1
2

∫
R3
V (x)u2dx+

1
4

∫
R3
φuu

2dx

−
∫

R3
F (u)dx.

If f satisfies (A3)–(A7), then
I∞ = inf

u∈N
I(u)

coincides with the mountain pass level associated with I.

Theorem 4.7. If (A1)–(A7) are satisfied, then (1.1) has a ground state solution.

Proof. Defining the Euler-Lagrange functional I : Hs(R3)→ R by

I(u) =
ζ(s)

4

∫
R3

∫
R3

(u(x)− u(y))2

|x− y|3+2s
dx dy +

1
2

∫
R3
V (x)u2dx+

1
4

∫
R3
φuu

2dx

−
∫

R3
F (u)dx,

and following with the ideas in Theorem 3.1, we prove that there is a nonzero
solution u to the system (1.1). Also, we prove that there is a Cerami’s sequence
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{wn} in the mountain pass level associated with I converging to u. By Remark 1.2
and Fatou’s lemma

4c = lim inf
n→∞

(4I(wn)− I ′(wn)wn)

= lim inf
n→∞

(‖wn‖2 +
∫

R3
H(wn)dx)

≥ lim inf
n→∞

‖wn‖2 + lim inf
n→∞

∫
R3
H(wn)dx

≥ ‖u‖2 +
∫

R3
H(u)dx

= 4I(u)− I ′(u)u

= 4I(u).

where H(u) = uf(u)− 4F (u). By definition u ∈ N . Then I(u) ≤ infu∈N I(u). By
Remark 4.6

I(u) = inf
u∈N

I(u).

�

5. Asymptotically periodic potential

In this section, we study problem (1.1), when V satisfies the Assumption (A1)
and

(A8) There is a function Vp satisfying (V1) such that

lim
|x|→∞

|V (x)− Vp(x)| = 0;

(A9) V (x) ≤ Vp(x) and there is a open set Ω ⊂ R3 with |Ω| > 0 and V (x) < Vp(x)
in Ω.

Here Vp is a periodic continuous potential. This case follows the ideas already
studied in Schrödinger-Poisson system with asymptotically periodic potential in
[2]. We are writing this case to make a complete work for the reader.

Theorem 5.1. Suppose that (A1), (A3)–(A9) are satisfied. Then (1.1) has a
ground state solution.

Proof. In Hs(R3) we define the norm

‖u‖p =
(ζ

2

∫
R3

∫
R3

(u(x)− u(y))2

|x− y|3+2s
dx dy +

∫
R3
Vp(x)u2dx

)1/2

.

Consider the functional

Ip(u) =
1
2
‖u‖2p +

1
4

∫
R3
φuu

2dx−
∫

R3
F (u)dx.

We claim that there is wp ∈ Hs(R3) such that I ′p(wp) = 0 and Ip(wp) = cp, where
cp is the mountain pass level associated with Ip. We consider another norm in
Hs(R3):

‖u‖ =
(ζ

2

∫
R3

∫
R3

(u(x)− u(y))2

|x− y|3+2s
dx dy +

∫
R3
V (x)u2dx

)1/2

.
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Then, we define

I(u) =
1
2
‖u‖2 +

1
4

∫
R3
φuu

2dx−
∫

R3
F (u)dx.

The functional I has a mountain pass geometry. If c is the mountain pass level
associated with I then c < cp. Indeed, there is a t∗ such that t∗wp ∈ N (see remark
4.6) and it is the unique with this property. Then

c ≤ I(t∗wp)

< Ip(t∗wp)

≤ max
t≥0

Ip(twp)

= Ip(wp) = cp

Consider {un}n∈N a Cerami’s sequence at the mountain pass level c associated with
I. Similarly to the periodic case, we prove that the sequence {un} is bounded and
therefore, converges weakly to u ∈ Hs(R3). Additionally I ′(u) = 0. Now we prove
that u 6= 0. Suppose that u = 0. Regarding the sequence {un}, the following
equalities are true

(1) limn→∞
∫

R3 |V (x)− Vp(x)|u2
ndx = 0

(2) limn→∞ ‖|un‖ − ‖un‖p| = 0.
(3) limn→∞ |Ip(un)− I(un)| = 0
(4) limn→∞ |I ′p(un)un − I ′(un)un| = 0

We will prove (1). The limits (2), (3) and (4) are immediate consequences of (1).
Consider ε > 0 and A > 0 such that ‖un‖22 < A for all n ∈ N. By (A8), there is
R > 0 such that, for all |x| > R we have

|V (x)− Vp(x)| < ε

2A
.

But {un} converges weakly to u = 0. Then un → 0 in L2(BR(0)). This convergence
implies that there is n0 ∈ N such that∫

BR(0)

|V (x)− Vp(x)|u2
ndx <

ε

2

for all n ≥ n0. Then, if n ≥ n0∫
R3
|V (x)− Vp(x)|u2

ndx

=
∫
BR(0)

|V (x)− Vp(x)|u2
ndx+

∫
(BR(0))c

|V (x)− Vp(x)|u2
ndx

<
ε

2
+
ε

2
= ε.

Consider sn > 0 such that snun ∈ Np for every n ∈ N. Where Np = {u ∈
Hs(R3) \ {0}; I ′p(u)u = 0}. We claim that lim supn→∞ sn ≤ 1. Otherwise, there
is δ > 0 such that, passing to a subsequence if necessary, we can assume that
sn ≥ 1 + δ for all n ∈ N. By (4) we have I ′p(un)un → 0; that is,

‖un‖2p +
∫

R3
φun

u2
ndx =

∫
R3
f(un)undx+ on(1)
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From snun ∈ Np we have I ′p(snun)un = 0. Equivalently

sn‖un‖2p + s3
n

∫
R3
φunu

2
ndx =

∫
R3
f(snun)undx

Therefore,∫
R3

[f(snun)
(snun)3

− f(un)
(un)3

]
u4
ndx =

( 1
s2
n

− 1
)
‖un‖2p + on(1) ≤ on(1). (5.1)

If {un}n∈N converges to 0 in Lq(R3) for all q ∈ (2, 2∗s), then by Lemma 2.1,

‖un‖2 ≤ ‖un‖2 +
∫

R3
φun

u2
ndx =

∫
R3
f(un)un + I ′(un)un

consequently {un} would have limit 0 in Hs(R3) and this would contradict the fact
that c > 0. Therefore, there is a sequence {yn} ⊂ Zn, R > 0 and β > 0 such that∫

BR(yn)

u2
ndx ≥ β > 0

Taking vn(x) := un(x+yn) we have ‖vn‖ = ‖un‖ and therefore we can assume that
{vn}n∈N converges weakly to some v ∈ Hs(R3). Note that∫

BR(0)

v2dx ≥ β > 0 .

The inequality (5.1), Remark 1.2 and Fatou’s lemma imply that

0 <
∫

R3

[f((1 + δ)v)
((1 + δ)v)3

− f(v)
(v)3

]
v4dx

≤ lim inf
n→∞

∫
R3

[f((1 + δ)vn)
((1 + δ)vn)3

− f(vn)
(vn)3

]
v4
ndx

≤ lim inf
n→∞

∫
R3

[f(snvn)
(snvn)3

− f(vn)
(vn)3

]
v4
ndx

= lim inf
n→∞

∫
R3

[f(snun)
(snun)3

− f(un)
(un)3

]
u4
ndx

≤ lim inf
n→∞

on(1) = 0.

The above inequality is a contradiction. Therefore lim supn→∞ sn ≤ 1. Now, we
will prove that for n large enough, sn > 1. Suppose that the statement is false.
In this case, passing to a subsequence if necessary, we can assume that sn ≤ 1 for
all n ∈ N. Note that by (f5), the function H(u) := uf(u)− 4F (u) is increasing in
|u| 6= 0. Then

4cp = 4 inf
u∈Np

Ip(u)

≤ 4Ip(snun)

= 4Ip(snun)− I ′p(snun)(snun)

= s2
n‖un‖2p +

∫
R3
f(snun)(snun)− 4F (snun)dx

≤ ‖un‖2p +
∫

R3
f(un)(un)− 4F (un)dx

≤ 4I(un)− I ′(un)un +
∫

R3
|V (x)− Vp(x)|u2

ndx.
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This implies 4cp ≤ 4c. But, this last inequality is false, because we have proved
that c < cp. Therefore, we have that sn > 1 for n large enough. Then we have
proved that

1 ≤ lim inf
n→∞

sn ≤ lim sup
n→∞

sn ≤ 1.

and therefore
lim
n→∞

sn = 1. (5.2)

The Fundamental Theorem of Calculus implies∫
R3
F (snun)dx−

∫
R3
F (un)dx =

∫ sn

1

[ ∫
R3
f(τun)undx

]
dτ. (5.3)

Also, by (A5) we obtain C > 0 such that∫
R3
f(τun)undx ≤ C(sn‖un‖2 + sp−1

n ‖un‖p). (5.4)

for all τ ∈ (1, sn). We have that the sequence {un} is bounded. Then, by (5.2),
(5.3) and (5.4), ∫

R3
F (snun)dx−

∫
R3
F (un)dx = on(1).

Then

Ip(snun)− Ip(un)

=
(s2
n − 1)

2
‖un‖2 +

(s4
n − 1)

4

∫
R3
φunu

2
ndx−

∫
R3
F (snun)dx+

∫
R3
F (un)dx

= on(1)

because {un} is bounded and
∫

R3 φunu
2
ndx = ‖φun‖2Ḣt(R3)

≤ C‖un‖4. By (3),

cp ≤ Ip(snun) = Ip(un) + on(1) = I(un) + on(1)

In the limit as n → ∞ we obtain cp ≤ c But, this last inequality is false, because
we have proved that c < cp. This contradiction was generated because we assumed
that u = 0. It follows that u is nontrivial. In Particular,

I(u) ≥ inf
u∈N

I(u).

As in the periodic case
I(u) ≤ c = inf

u∈N
I(u).

Therefore u is a ground state solution for system (1.1). �
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