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BOUNDARY BEHAVIOR OF THE UNIQUE SOLUTION OF A
ONE-DIMENSIONAL PROBLEM

LING MI

ABSTRACT. In this article, we analyze the blow-up rate of the unique solution
to the singular boundary value problem

u’(t) = b(t) f(u(t)), u(t)>0,t>0,
u(0) = 00, u(o0) =0,

where f(u) grows more slowly than P (p > 1) at infinity, and b € C1(0, 00)
which is positive and non-decreasing (it may vanish at zero).

1. INTRODUCTION AND STATEMENT OF MAIN RESULTS

In this article, we consider the blow-up rate of the unique solution at zero of the
singular boundary-value problem

u”(t) = b(t) f(u(t), wu(t)>0,t>0,

u(0) = 00, u(oc0) =0, (1)

under the following assumptions on the functions b and f:

(A1) b e C(0,0) is non-decreasing and b(t) > 0 for ¢t > 0,
(A2) f e CY0,00), £(0) = f/(0) =0, f'(u) > 0 for any u > 0,
(A3) the Keller-Osserman [13] [16] condition

e} dS S

O(r) ::/ —— <00, Vr>0, F(s) :/ f(r)dr.

r A/ 2F (s) 0
Boundary blow-up problems rise in many branches of mathematics and have been
studied by many authors and in several contexts for a long time. Generally, so-
lutions of boundary blow-up problems are said to be explosive solutions or large
solutions. The pioneering research work on boundary blow-up problems goes back
to Keller-Osserman [13] [I6], who proved that the problem

Au=f(u), u>0, x€Q, u|lsgo=oc. (1.2)

has one solution v € C?(Q) if and only if (A3) holds.
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Loewner and Nirenberg [14] showed that if f(u) = uP® with pg = 312, N > 2,
then problem ([1.2)) has a unique solution v satisfying
(N(N - 2)><N—2>/4

lim w(z)(d(z)) N2/ = 1

d(z)—0
A function f is weakly superlinear when
f(s) = B1s(Ins)® +vy1s(Ins)* 1 +0o(1)] as s — oo, (1.3)

with #; > 0, @ > 2 and 3 € (—o0,+00). This function grows more slowly at
infinity than those variational functions with index p > 1 or rapid ones. When f
is weakly superlinear, Cirstea and Du [9] consider the first order expansion of the
blow-up solution of

Au=b(z)f(u), u>0, z€Q, ulsg= o0, (1.4)

where (2 is a bounded domain with smooth boundary in RY (N > 2).

We point out that Cirstea and Radulescu [4]-[8], and Cirstea and Du [9] intro-
duced a new unified approach via the Karamata regular variation theory, to study
the boundary behavior and uniqueness of solutions for boundary blow-up elliptic
problems. For singular elliptic problems, we refer the reader to the papers [3, [12],
[T7]-[18], [21]-[22] and the references therein.

Now, let us return to problem (1.1)). Cano-Casanova and Lépez-Gémez [2] stud-
ied the existence, uniqueness and the blow-up rate of large solutions of

u”(t) =b(t) f(u(t)), t>0, u(0)=+o00, wu(+oc)=0, (1.5)
where f satisfies (A2), (A3) and b satisfies

(A1’) b € C0,00) is non-decreasing and satisfies b(t) > 0 for ¢ > 0,

Under the conditions (A2) and (A1’), problem possesses a unique positive
solution (¢). Further, assuming that the following conditions are satisfied
(i) f*(u) = f(u)/u is non-decreasing on (0,00) and, for some o > 1, ¢o =
limy, o0 f(u)/u” € (0,00);
(ii) the limit
1!
ap = tl_i,%lJr W € (0,00)
is well defined for some R > 0, where G(t) stands for the function

G(t)/tRﬁi), A(t)(/Ot(b(T))l/("Jrl)dT)(U+1)/(U_1), te (0, R,

the unique large solution ¥(t) of (L.5|) satisfies

P(t) _ —ojo-1) 0+1)<”+1>/<"*1> —1/(0—1)
A G T (0 1 “ ‘

Later, using the Karamata regular variation theory, Zhang et al. [21] obtained the
exact blow-up rate of the unique solution 1 (t) of (1.5 for a more general nonlinear
term f. Let b satisfy (A1) and vb € A (see the definition of A below), f satisfy
(A2) and

1 g .
(iif) [y 7o = oo
(iv) lims—oo sf'(s)/f(s) =0 > 1.
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Then, the unique solution t(t) of (1.5 satisfies

lim vt)  _ (2(Ck(0 -1+ 2))0—1
t—0t (K (t)) o—1 ;

where K(t) = fg \/b(s)ds and ¢ is uniquely determined by the problem

/Oo Wy is0
oy fv) 7 '

However, there are fewer results for the exact blow-up rate of the unique solution
to (L.1) at zero when f(u) grows more slowly than u? (p > 1) at infinity. This case
is more difficult to handle than those foregoing cases, since the blow-up behavior
of the solution depends more subtly on the behavior of b(t) and f(u).

Next we explain our assumption on b(z). Let A denote the set of positive non-
decreasing functions in C(0,dp) which satisfy
d (K(t) K
—(—= ) =Ct € [0,0), K(t)= k(s)ds.
Pt dt( k(t) ) k €10,00) *) /0 (s)ds
We see that for each k € A,

t_1>1(1;1+lk(((;)) =0, Crel0,1]
and
KOK® . d K@)y
Jim =g =1 jim o (T =1- G (16)

The set A was first introduced by Cirstea and Radulescu [4] for studying the bound-
ary behavior and uniqueness of solutions of problem .

Inspired by the above ideas, the main purpose of this article is to establish blow-
up rate of the unique solution I(¢) at zero to under appropriate conditions on
the weight function b and the nonlinear term f. In this article, we assume that
f growths more slowly than any w? (p > 1) at infinity. In particular, we consider
functions f which satisfy (A2) and (A3) and the following conditions hold:

(A4) there exist two functions f; € C1[Sp, 00) for some large Sy > 0 and f such

that
f(s) = fi(s) + fa(s), s = So;
(A5)
fi(s)s
=1+ g(s), s> 5o, 1.7
0 1), 52 (1.7
with g € C1[Sy, 00) satisfying
g(s) >0, s>S0, lm g(s) =0, (18)
im 27 (5) =0, lim S% (5) =C;eR, lim 7'8/]01(8) =0 (1.9)
R O BT 2T o)
(A6) either there exists a constant Ey # 0 such that
: f2(s)
1 =F 1.10
s g(s)fils) o
or
m 228 (1.11)
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and there exists a constant ¢ < 1 such that
lim 72 (€s)

Our main results are summarized as follows.

=&t VESO. (1.12)

Theorem 1.1. Assume (A1)—(A6) are satisfied. If b(t) also satisfies
(A7) there exist k € A and a positive constant by such that

_b(t)
g 2y = o

then the unique solution l(t) of satisfies
U(t) ~ exp(&o)p(bo K (1)), (1.13)

where ) )
§o = 5 — E> — (1 _Ck)(§ +Cg)7

g, { B if (LI0) holds (1.14)
*7 o, if [T and (T12) hold,

and ¢ is the unique solution of the problem

vt > 0. (1.15)

& ds
— =t
/qs(t) Vsfi(s)

By fi(t) ~ fi(t) as t — to € R we mean lim;_,, figg = ¢, where ¢ is a constant.

2. PRELIMINARIES

Our approach relies on Karamata regular variation theory established by Kara-
mata in 1930 which is a basic tool in stochastic process (see Bingham, Goldie and
Teugels [1], Haan [10], Geluk and Haan [11], Maric [15], Resnick [19], Seneta [20]
and the references therein.). In this section, we present some bases of Karamata
regular variation theory which come from the Introductions and the Appendix in
Maric [I5], and Preliminaries in Resnick [19], Seneta [20].

Definition 2.1. A positive measurable function f defined on [a,o0), for some a >
0, is called regularly varying at infinity with index p, written f € RV,, if for each

&> 0 and some p € R,
- f(E)
g = >y

In particular, when p =0, f is called slowly varying at infinity.

Clearly, if f € RV, then L(t) := f(t)/t’ is slowly varying at infinity. Some basic
examples of slowly varying functions at infinity are
(i) every measurable function on [a,c0) which has a positive limit at infinity;
(i) (Int)? and (In(Int))?, ¢ € R;
(iif) eM™D* 0 < g < 1.
We also say that a positive measurable function h defined on (0, a) for some a > 0,

is reqularly varying at zero with index p (written h € RV Z,) if t — h(1/t) belongs
to RV_,,.
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Proposition 2.2 (Uniform convergence). If f € RV, then holds uniformly
for€ € [c1, co] with 0 < ¢1 < ¢a. Moreover, if p < 0, then uniform convergence holds
on intervals of the form (aq1,00) with a; > 0; if p > 0, then uniform convergence
holds on intervals (0, a1] provided f is bounded on (0,a1] for all a3 > 0.

Proposition 2.3 (Representation theorem). A function L is slowly varying at
infinity if and only if it can be written in the form

L(t) = o(t) exp (/t @df), t>a. (2.2)

ai
for some a1 > a, where the functions ¢ and y are measurable and as t — oo,
y(t) — 0 and p(t) — co, with cg > 0.

We call ,
L(t) = co exp (/ y(r) dT), t>a, (2.3)
T

ay

its normalized slowly varying at infinity and
f&) =t7L(t), t>a, (2.4)

its normalized regularly varying at infinity with index p (and write f € NRV)).
Similarly, h is called normalized regularly varying at zero with index p, written
he NRVZ, if t — h(1/t) belongs to NRV_,.
A function f € RV, belongs to NRV, if and only if

f € Cay,00), for some a; >0 and lim L)
1 ) 1 Pl f(t)

Proposition 2.4. If functions L, Ly are slowly varying at infinity, then
(i) LP (for every p € R), eyl + caLy (c1 > 0,¢c0 > 0 with ¢y + ¢ >0), Lo Ly

(if L1(t) — +00 as t — o0), are also slowly varying at infinity.
(ii) For every p >0 and t — oo,
tPL(t) — 400, t PL(t) — 0.
(iii) For p e R andt — oo, In(L(t))/Int — 0 and In(t*L(t))/Int — p.

Proposition 2.5. If fi € RV, , fo € RV,, with lim;_,o fa(t) = 400, then fiofs €
RV,

P1pP2 "

=p. (2.5)

Proposition 2.6 (Asymptotic behavior). If a function L is slowly varying at in-
finity, then for a >0 and t — oo,

(i) f; sPL(s)ds = (p+ 1)~ W HPL(t), for p > -1’
(ii) [, sPL(s)ds = (=3 — 1)"H P L(t), for p < —1.

3. AUXILIARY RESULTS
In this section, we give some results to be used in the proof of Theorem

Lemma 3.1 ([22] Lemma 2.1]). Let k € A.

(i) When Cy € (0,1), k is normalized regularly varying at zero with index
(1—Cy)/Ch;
(ii) when Cx =1, k is normalized slowly varying at zero;
(i) when Cy =0, k grows faster than any t* (p > 1) near zero.
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Denote
ds < ds
, O1(r)= —F, r>0. 3.1
V2F(s) 1(r) /r sfi(s) g 3
o O = e L) = >0 (5:2)
r) = ) 1(r) = Gk r > 0. .

Lemma 3.2. Under the hypotheses of Theorem [1.):
(i)

< oo, Va>0;

(ii)
. O(r) L ei(Mr)
dngm T e — b el
(i)
(T/fl(r))1/2 1
A e gy 2 T O
(iv)
€
gy
uniformly for £ € [c1, ca] with 0 < ¢ < ¢3;
(v)
f2(ér)

2

lim ——>~— =
r—oo g(r) f1(r)
uniformly for € € [c1, ca] with 0 < ¢1 < ca.
Proof. By (1.7)), (1.8) and (2.5, we see that f; € NRV;, hence,
sfi(s) € NRV;

Then, there exist a; > 0 and a function L which is normalized slowly varying at
infinity such that

sfi(s) = cosL ), s>a. (3.3)
(i) For arbitrary p € (1, 00), it follows by Proposition (ii) that

T Sfl = ¢y lim s'7PL(s)

§—00

= OQ.

s~>

Thus there exists Sy > 0 such that
\V Sf1 > s?, s> 8y,
i.e.
1
< - s> SO?

vV Sf 1

and the results follow. The proof of (11)*(V) can be found in [22] Lemma 2.6], we
omit here. (]
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Lemma 3.3 (22, Lemma 2.7]). Assume hypotheses of Theorem[1.1], and let ¢ be
the solution to the problem

o0
/ Ay weso
s(t) V/8f1(s)

() =¢'(t) = Vo(t)f1(¢(t), o(t) > 0, t > 0, ¢(0) := limy_o+ ¢(t) = oo,
t t ~

| L1 SWAGE). AEm)\ 1
lim (o0)) ™ (50+ =56 )~ Fhtewy) 3~ 6

L EDAGEH) 1

g E0L0)
t—0 Eg(o(t)) f1(o(t))

uniformly for £ € [c1,ca] with 0 < ¢1 < ¢a.

:E2

4. PROOF OF THEOREM [L1]

Since the nonlinear term f satisfies (A2) and (A3), by [2] Theorem 2.1], we
obtain under the assumptions on Theorem that problem (T.1]) has a unique
positive solution.

Lemma 4.1. Under the assumptions on Theorem there are 0 € (0,60) and 0 <
So < Ao such that for every s € (0,5] and X\ € [N, 20), u(t) = Aexp(&o)d(boK (t))
and u(t) = sexp(&o)d(bo K (t)) are a supersolution and a subsolution, respectively,
of the problem

u’(t) =b(t)f(ut)), wu(t) >0, t>0, u0)=oc0, wu(d)=I0), (4.1)
where I(t) denotes the unique solution of (L.1]).

Proof. Let
To(0) = (a(o(toE ()~ (21 + "5(1’”[;(@){;{0%?;;; (t”))
LM S (0)y | IRKOIAGTED KK ()
bik2(t) whi(d(bo K (1)) boK(t)g (¢>( ( ))) fi(d(boK(1)))  k2(t)
for t € (0,60), w > 0; and
bik2 (1) wg(e(bo K (1)) fr(@(bo K (1))’
By , Lemma and Proposition we see that

. 1 1
tli%l‘*' To(t) =0y := 5 —Inw — (5 + Cg)(l — Ck),

S (07(50), w > 0.

and
lim Y{(¢t) = F y
tl() 1( ) 2

which has uniform convergence on intervals (0, a] for all a; > 0 and w € (0, a4].
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Thus for each mgy € (0,1), My € (1,00) and w > 0, there exists § € (0,dp) such
that
moby < To(t) < M()@Q, Vit € (0,(5),
moFs < Tl(t) < M()EQ, Vit € (0, 5)

Let A and ¢ be positive constants satisfying

A> Ao = max{w,eXp (E2 - @EQ) }7

P(bo K (9)) Mo
¢ < ¢p:=min {m,exp (E2 — %Eg)}.
By a direct computation, we have
a”"(t) < b(t)f(u(t), te€(0,8), u(0)=o0, u(d)=1d);
u’(t) > b(t) f(u(t), te€(0,0), u(0)=o0, u(d)=<I().
i.e., u is a supersolution and wu is a subsolution to . ([

Lemma 4.2. Let 6 > 0, o > 0 and Ao > 0 be the positive constants given by
Lemmal[{.1 Then, for every s € (0,<] and X € [Ag, 00),

sexp(o)p(boK (1)) <1(t) < Nexp(€o)¢(boK (1)), t € (0,0),
where [(t) denotes the unique solution of and ¢ is defined by (1.15).
Proof. According to [2, Remark 1], I(¢) provides us with the unique positive solution
of

(1) = b Fu(t), te(0,8), u0)=oo, u(d)=16).  (42)
Subsequently, given ¢ € (0,50] and A € [\, o0), for each natural number n > !
we consider the boundary value problem

u’(t) =b(t)f(u(t)), te(n'6), s
4.3
™) = T2 (o) dboK (), u(d) = I(6).

Set u(t) = s exp(&o)p(boK (t)) and u(t) = Aexp(&o)p(boK (t)). By Lemmald.1] (u,u)
provides us with an ordered sub-supersolution pair of (4.3). Thus, this problem
possesses a solution u,, such that

u(t) < un(t) <alt), ten o).

By a standard compactness argument, we can extract a subsequence of u,, say
Unm, M > 1, approximating to a solution of (4.2)); necessarily I, by uniqueness.
Therefore, passing to the limit as m — oo in the estimates

u(t) < unm(t) <a(t), te[ng',dl,
we can get the result easily. O

Proof of Theorem[I.1. We consider the auxiliary function

o
M) = ) K@)

By Lemma h(t) satisfies the estimate
s<h(t) <A, te(0,d],

t € (0,0].
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and, hence,

0 < <h:=liminfh(t) < h:=limsuph(t) < \.

t—0+ t—0+

To show the existence of lim,_,o+ h(t), we argue by contradiction. Suppose h < h.
Then, there exist two sequences t,, s,,n > 1, such that

nh_)rr;o ty = nh_)rrgo sp =0, nlLII()lo h(t,) = h, nh_)n;<> h(sn) = h,
and, for each n > 1,
B (t,) =h'(s,) =0, h"(t,) <0, h"(s,) >0. (4.4)
Clearly,
I'(t) = exp(&o) (W' ()¢ (bo K (1)) + boh ()¢ (bo K (£))k(1)),
and
1"(t) = exp(&) (A" (t)p(bo K (t)) + 2boh (1) &' (bo K (t))k(t)
+b5h(t)9" (bo K ())K*(t) + boh(t)d' (b K (1)) (t)).
Since I (t) = b(¢t) f(I(t)), we have
exp(&o) (1 (t)d(bo K (1)) + 200l ()& (b K (t))k(t)
+bgh(t)¢" (bo K ())K*(t) + boh(t)¢' (b K (1)K (¢)) (4.5)
=b(t)f(l(t)), te(0,d].
By , Proposition Lemma and Lemma we have
- b39" (boK (t bod' (bo K (t))K'(t
g l6000K )™ (e a7+ 750 o)
b(t) f1(1(2))

- TR GEED)) "

1(U(1)

() f1(o

On the other hand, k%(t) > 0, g(¢(boK(t))) > 0 and fi(¢(boK(t))) > 0 for all
€ (0, 4]. Hence, there exists d; € (0,9) such that

b(t) f1(1(1))
exp(&o)h(t)
B0 (oK (1) bod! (oK (1) (1)
O f1(e(boK (1) K2() fr(b(boK (1))
exp(—&o0)b(t) f1(1(t
Ny b o) ELSREIULY

Thus, by and ([4.5), we obtain that, for any n > 1,

h(t,)

> h(t,) + b (tn) (oK (tn))

D36 (bo K (tn))k2(tn) + bo@! (b0 KK (£n) K () — 210 2))
_ b(tn)f2(l(tn))
D36 (bo K (tn) K2 (tn) + bo@! (b0 KK () ) (1) — L1 Gln))”

by (bo K ()2 (t) + bog' (bo K (1)K (¢) —

= k2 () f1(d(bo K (¥))) <k2

h(Sn)
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" (b(bOK(sn))
> h(sn) +h"(sn
o by () + b (K () 5) — =
_ b(sn) f2((sn))
B3 (bo K (30))k2(50) + Do/ (bo KK (5,))/ (s,,) — Lemddrllen))”

exp(€o)h(sn)
Therefore, passing to the limit as n — oo in these inequalities, it follows from (A7),
(1.6), (1.14) and Lemma that
h > %)
- E2 —1Inh

Consequently, h = h = 1, which contradicts the assumption h < h. Therefore, the
following limit exists

—q Lt)
ho = tlir(% exp(&o)p(bo K (t)) €loA,
ie. I(t) ~exp(&)d(boK(t)). The proof is complete.

5. EXAMPLES

In this section, we shw some basic cases of the nonlinear term f, and apply our
results to this examples.

Example 5.1. f(s) = C?s(Ins)** + fo(s), where a > 1, s > S,

g(s) =2a(lns)™;  lim V's/Fi(s) 1

= lim (Ins)~ (@Y = 0:
5—00 g(s) 2aCy si)rgo( DS) 0;
s9'(s) [T (1C)) L fa(s)
= = —— 1 = 1 e E .
9%(s) Cs 207 soe 9(s)fi(s)  2aC% 500 s(ln s)2e—1 %

o(t) = exp (Cr (o — l)t)_l/(a_l).
Then

[(t) ~ exp (% —E - %) exp (Cy(a — DboK (1) /7Y
ast — 07T,

In particular, when fo(s) = Cys#(Ins)? with 3 < 2a — 1, By = 0 for y < 1 or
p=1and § < 2a—1, andElzgﬁforuzlandﬁ:Qa—l.
1

Example 5.2. f(s) = C’fse(lns)q + fa(s), where ¢ € (0,1), s > Sy,

g(s):q(lns)—(l—q); hm\/m 1 I eXp(*%(lns)q)

A i WA S VA o
s—oo  g(s) 4Ch s—o0 (Ins)~(-a) ’

.59 (s) l—q -

lim = lim (Ins)"?=C, = 0;

fQ(S) 1

) _ . fa(s) — F-
51220 m a @ 5—00 s(ln 8)7(17‘1) eXp((ln S)q) -

Then

1(t) ~ exp (% — E5)¢(boK(t)) ast— 07,
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where ¢(t) is defined by
/ exp(—s?/2)ds = Cyt.
In(e(t))
Example 5.3. f(s) = C?s(Ins)?(In(In 5))2* + f(s), where a > 1, s > Sp,
g(s) =2(Ins) "' (1 + a(In(Ins))~");
1

lim s/ f1(s) _ 1 (In(Ins))~@ _ 0

s—oo  g(s) 2C s—oo 1+ a(ln(lns))—1! '
lim sg'(s) — _ lim 1+ a(ln(lns))~! + a(ln(Ins)) 2 _o 1
ML G(s) T T 201 T a(in(ing) )2 1Ty
f2(s) = 1 lim f2(s) = Ey;

LS g(s)fi(s)  2C% s—oo slns(In(lns))22(1 + a(ln(Ins))~1)
o(t) = exp (exp (Cy (o — 1)t)_1/(a_1)).
Then

l(t) ~ exp (% - E2> exp (exp (01(Oé _ 1)boK(t))_1/(a_1))_

Acknowledgments. This work was partially supported by the NSF of China (no.
11301250) and the NSF of Shandong Province (no. ZR2013AQ004).

REFERENCES

[1] N. H. Bingham, C. M. Goldie, J. L. Teugels; Regular Variation, Encyclopedia of Mathematics
and its Applications 27, Cambridge University Press, Cambridge, 1987.

[2] S. Cano-Casanova, J. Lépez-Gémez; Existence, uniqueness and blow-up rate of large solutions
for a canonical class of one-dimension problems on the half-line, J. Differential Equations
244 (2008), 3180-3203.

[3] M. Cencelj, D. Repovs, 2.Virk; Multiple perturbations of a singular eigenvalue problem,
Nonlinear Anal. 119 (2015), 37-45.

[4] F. Cirstea, V. Radulescu; Uniqueness of the blow-up boundary solution of logistic equations
with absorbtion, C. R. Acad. Sci. Paris, Sér. I, 335 (2002), 447-452.

[5] F. Cirstea, V. Radulescu; Blow-up solutions for semilinear elliptic problems, Nonlinear Anal.,
48 (2002), 541-554.

[6] F. Cirstea, V. Radulescu; Asymptotics for the blow-up boundary solution of the logistic
equation with absorption, C. R. Acad. Sci. Paris, Sér. I, 336 (2003), 231-236.

[7] F. Cirstea, V. Radulescu; Nonlinear problems with boundary blow-up: a Karamata regular
variation theory approach, Asymptot. Anal. 46 (2006), 275-298.

[8] F. Cirstea, V. Radulescu; Boundary blow-up in nonlinear elliptic equations of Bieberbach-
Rademacher type, Trans. Amer. Math. Soc., 359 (2007), 3275-3286.

[9] F. Cirstea, Y. Du; Large solutions of elliptic equations with a weakly superlinear nonlinearity,
J. Anal. Math., 103 (2007), 261-277.

[10] L. de Haan; On Regular Variation and its Application to the weak Convergence of Sample
Extremes, University of Amsterdam / Maths. Centre Tract 32, Amsterdam, 1970.

[11] J. L. Geluk, L. de Haan; Regular Variation, Extensions and Tauberian Theorems, CWI Tract,
Centrum Wisk. Inform., Amsterdam, 1987.

[12] M. Ghergu, V. Radulescu; Singular elliptic problems: bifurcation and asymptotic analysis.
Oxford Lecture Series in Mathematics and its Applications, 37. The Clarendon Press, Oxford
University Press, Oxford, 2008.

[13] J. B. Keller; On solutions of Au = f(u), Comm. Pure Appl. Math. , 10 (1957), 503-510.

[14] C. Loewner, L. Nirenberg; Partial differential equations invariant under conformal or pro-
jective transformations, in: Contributions to Analysis (A Collection of Papers Dedicated to
Lipman Bers), Academic Press, New York, 1974, 245-272.



12

L. MI EJDE-2016/308

[15] V. Maric; Regular Variation and Differential Equations, Lecture Notes in Math., vol. 1726,

Springer-Verlag, Berlin, 2000.

[16] R. Osserman; On the inequality Au > f(u), Pacific J. Math., 7 (1957), 1641-1647.
[17] V. Radulescu; Singular phenomena in nonlinear elliptic problems: from blow-up boundary

solutions to equations with singular nonlinearities. Handbook of differential equations: sta-
tionary partial differential equations. Vol. IV, 485-593, Handb. Differ. Equ., Elsevier /North-
Holland, Amsterdam, 2007.

[18] D. Repovs; Asymptotics for singular solutions of quasilinear elliptic equations with an ab-

sorption term, J. Math. Anal. Appl., 395 (2012) no. 1, 78-85.

[19] S.I. Resnick; Extreme Values, Regular Variation, and Point Processes, Springer-Verlag, New

York, Berlin, 1987.

[20] R. Seneta; Regular Varying Functions, Lecture Notes in Mathematics, vol. 508, Springer-

Verlag, 1976.

[21] Z. Zhang, L. Mi, X. Yin; Blow-up rate of the unique solution for a class of one-dimensional

problems on the half-line, J. Math. Anal. Appl., 348 (2008) 797-805.

[22] Z. Zhang; Boundary behavior of large solutions for semilinear elliptic equations in borderline

cases, Electron. J. Differential Equations, 136 (2012) 1-11.

LiNG M1

SCHOOL OF SCIENCE, LINYI UNIVERSITY, LINYI, SHANDONG 276005, CHINA

E-mail address: mi-1ing@163.com



	1. Introduction and statement of main results
	2. Preliminaries
	3. Auxiliary results
	4. Proof of Theorem ??
	5. Examples
	Acknowledgments

	References

