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BOUNDARY BEHAVIOR OF THE UNIQUE SOLUTION OF A
ONE-DIMENSIONAL PROBLEM

LING MI

Abstract. In this article, we analyze the blow-up rate of the unique solution

to the singular boundary value problem

u′′(t) = b(t)f(u(t)), u(t) > 0, t > 0,

u(0) =∞, u(∞) = 0,

where f(u) grows more slowly than up (p > 1) at infinity, and b ∈ C1(0,∞)

which is positive and non-decreasing (it may vanish at zero).

1. Introduction and statement of main results

In this article, we consider the blow-up rate of the unique solution at zero of the
singular boundary-value problem

u′′(t) = b(t)f(u(t)), u(t) > 0, t > 0,

u(0) =∞, u(∞) = 0,
(1.1)

under the following assumptions on the functions b and f :

(A1) b ∈ C1(0,∞) is non-decreasing and b(t) > 0 for t > 0,
(A2) f ∈ C1[0,∞), f(0) = f ′(0) = 0, f ′(u) > 0 for any u > 0,
(A3) the Keller-Osserman [13, 16] condition

Θ(r) :=
∫ ∞
r

ds√
2F (s)

<∞, ∀r > 0, F (s) =
∫ s

0

f(τ)dτ.

Boundary blow-up problems rise in many branches of mathematics and have been
studied by many authors and in several contexts for a long time. Generally, so-
lutions of boundary blow-up problems are said to be explosive solutions or large
solutions. The pioneering research work on boundary blow-up problems goes back
to Keller-Osserman [13, 16], who proved that the problem

4u = f(u), u > 0, x ∈ Ω, u|∂Ω =∞. (1.2)

has one solution u ∈ C2(Ω) if and only if (A3) holds.
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Loewner and Nirenberg [14] showed that if f(u) = up0 with p0 = N+2
N−2 , N > 2,

then problem (1.2) has a unique solution u satisfying

lim
d(x)→0

u(x)(d(x))(N−2)/2 =
(N(N − 2)

4

)(N−2)/4

.

A function f is weakly superlinear when

f(s) = β1s(ln s)α + γ1s(ln s)α−1[1 + o(1)] as s→∞, (1.3)

with β1 > 0, α > 2 and γ1 ∈ (−∞,+∞). This function grows more slowly at
infinity than those variational functions with index p > 1 or rapid ones. When f
is weakly superlinear, Ĉırstea and Du [9] consider the first order expansion of the
blow-up solution of

4u = b(x)f(u), u > 0, x ∈ Ω, u|∂Ω =∞, (1.4)

where Ω is a bounded domain with smooth boundary in RN (N ≥ 2).
We point out that Ĉırstea and Rǎdulescu [4]-[8], and Ĉırstea and Du [9] intro-

duced a new unified approach via the Karamata regular variation theory, to study
the boundary behavior and uniqueness of solutions for boundary blow-up elliptic
problems. For singular elliptic problems, we refer the reader to the papers [3, 12],
[17]-[18], [21]-[22] and the references therein.

Now, let us return to problem (1.1). Cano-Casanova and López-Gómez [2] stud-
ied the existence, uniqueness and the blow-up rate of large solutions of

u′′(t) = b(t)f(u(t)), t > 0, u(0) = +∞, u(+∞) = 0, (1.5)

where f satisfies (A2), (A3) and b satisfies
(A1’) b ∈ C[0,∞) is non-decreasing and satisfies b(t) > 0 for t > 0,

Under the conditions (A2) and (A1’), problem (1.5) possesses a unique positive
solution ψ(t). Further, assuming that the following conditions are satisfied

(i) f∗(u) = f(u)/u is non-decreasing on (0,∞) and, for some σ > 1, c0 :=
limu→∞ f(u)/uσ ∈ (0,∞);

(ii) the limit

a0 := lim
t→0+

G(t)G′′(t)
[G′(t)]2

∈ (0,∞)

is well defined for some R > 0, where G(t) stands for the function

G(t) =
∫ R

t

ds

A(s)
, A(t) =

(∫ t

0

(b(τ))1/(σ+1)dτ
)(σ+1)/(σ−1)

, t ∈ (0, R],

the unique large solution ψ(t) of (1.5) satisfies

lim
t→0+

ψ(t)
G(t)

= a
−σ/(σ−1)
0

(σ + 1
σ − 1

)(σ+1)/(σ−1)

c
−1/(σ−1)
0 .

Later, using the Karamata regular variation theory, Zhang et al. [21] obtained the
exact blow-up rate of the unique solution ψ(t) of (1.5) for a more general nonlinear
term f . Let b satisfy (A1) and

√
b ∈ Λ (see the definition of Λ below), f satisfy

(A2) and

(iii)
∫ 1

0
dν
f(ν) =∞;

(iv) lims→∞ sf ′(s)/f(s) = σ > 1.
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Then, the unique solution ψ(t) of (1.5) satisfies

lim
t→0+

ψ(t)
ϕ(K(t))

=
(2(Ck(σ − 1) + 2)

σ − 1

)σ−1

,

where K(t) =
∫ t

0

√
b(s)ds and ϕ is uniquely determined by the problem∫ ∞

ϕ(t)

dν

f(ν)
= t, t > 0.

However, there are fewer results for the exact blow-up rate of the unique solution
to (1.1) at zero when f(u) grows more slowly than up (p > 1) at infinity. This case
is more difficult to handle than those foregoing cases, since the blow-up behavior
of the solution depends more subtly on the behavior of b(t) and f(u).

Next we explain our assumption on b(x). Let Λ denote the set of positive non-
decreasing functions in C1(0, δ0) which satisfy

lim
t→0+

d

dt

(K(t)
k(t)

)
:= Ck ∈ [0,∞), K(t) =

∫ t

0

k(s)ds.

We see that for each k ∈ Λ,

lim
t→0+

K(t)
k(t)

= 0, Ck ∈ [0, 1]

and

lim
t→0+

K(t)k′(t)
k2(t)

= 1− lim
t→0+

d

dt

(K(t)
k(t)

)
= 1− Ck. (1.6)

The set Λ was first introduced by Ĉırstea and Rǎdulescu [4] for studying the bound-
ary behavior and uniqueness of solutions of problem (1.4).

Inspired by the above ideas, the main purpose of this article is to establish blow-
up rate of the unique solution l(t) at zero to (1.1) under appropriate conditions on
the weight function b and the nonlinear term f . In this article, we assume that
f growths more slowly than any up (p > 1) at infinity. In particular, we consider
functions f which satisfy (A2) and (A3) and the following conditions hold:

(A4) there exist two functions f1 ∈ C1[S0,∞) for some large S0 > 0 and f2 such
that

f(s) := f1(s) + f2(s), s ≥ S0;
(A5)

f ′1(s)s
f1(s)

:= 1 + g(s), s ≥ S0, (1.7)

with g ∈ C1[S0,∞) satisfying

g(s) > 0, s ≥ S0, lim
s→∞

g(s) = 0, (1.8)

lim
s→∞

sg′(s)
g(s)

= 0, lim
s→∞

sg′(s)
g2(s)

= Cg ∈ R, lim
s→∞

√
s/f1(s)
g(s)

= 0; (1.9)

(A6) either there exists a constant E1 6= 0 such that

lim
s→∞

f2(s)
g(s)f1(s)

= E1 (1.10)

or

lim
s→∞

f2(s)
g(s)f1(s)

= 0 (1.11)
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and there exists a constant µ ≤ 1 such that

lim
s→∞

f2(ξs)
f2(s)

= ξµ, ∀ξ > 0. (1.12)

Our main results are summarized as follows.

Theorem 1.1. Assume (A1)–(A6) are satisfied. If b(t) also satisfies
(A7) there exist k ∈ Λ and a positive constant b0 such that

lim
t→0+

b(t)
k2(t)

= b20,

then the unique solution l(t) of (1.1) satisfies

l(t) ∼ exp(ξ0)φ(b0K(t)), (1.13)

where

ξ0 =
1
2
− E2 − (1− Ck)

(1
2

+ Cg
)
,

E2 =

{
E1 if (1.10) holds;
0, if (1.11) and (1.12) hold,

(1.14)

and φ is the unique solution of the problem∫ ∞
φ(t)

ds√
sf1(s)

= t, ∀t > 0. (1.15)

By f1(t) ∼ f1(t) as t→ t0 ∈ R̄ we mean limt→t0
f1(t)
f2(t) = c, where c is a constant.

2. Preliminaries

Our approach relies on Karamata regular variation theory established by Kara-
mata in 1930 which is a basic tool in stochastic process (see Bingham, Goldie and
Teugels [1], Haan [10], Geluk and Haan [11], Maric [15], Resnick [19], Seneta [20]
and the references therein.). In this section, we present some bases of Karamata
regular variation theory which come from the Introductions and the Appendix in
Maric [15], and Preliminaries in Resnick [19], Seneta [20].

Definition 2.1. A positive measurable function f defined on [a,∞), for some a >
0, is called regularly varying at infinity with index ρ, written f ∈ RVρ, if for each
ξ > 0 and some ρ ∈ R,

lim
t→∞

f(ξt)
f(t)

= ξρ. (2.1)

In particular, when ρ = 0, f is called slowly varying at infinity.

Clearly, if f ∈ RVρ, then L(t) := f(t)/tρ is slowly varying at infinity. Some basic
examples of slowly varying functions at infinity are

(i) every measurable function on [a,∞) which has a positive limit at infinity;
(ii) (ln t)q and

(
ln(ln t)

)q, q ∈ R;
(iii) e(ln t)q

, 0 < q < 1.
We also say that a positive measurable function h defined on (0, a) for some a > 0,
is regularly varying at zero with index ρ (written h ∈ RV Zρ) if t→ h(1/t) belongs
to RV−ρ.
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Proposition 2.2 (Uniform convergence). If f ∈ RVρ, then (2.1) holds uniformly
for ξ ∈ [c1, c2] with 0 < c1 < c2. Moreover, if ρ < 0, then uniform convergence holds
on intervals of the form (a1,∞) with a1 > 0; if ρ > 0, then uniform convergence
holds on intervals (0, a1] provided f is bounded on (0, a1] for all a1 > 0.

Proposition 2.3 (Representation theorem). A function L is slowly varying at
infinity if and only if it can be written in the form

L(t) = ϕ(t) exp
(∫ t

a1

y(τ)
τ

dτ
)
, t ≥ a1, (2.2)

for some a1 ≥ a, where the functions ϕ and y are measurable and as t → ∞,
y(t)→ 0 and ϕ(t)→ c0, with c0 > 0.

We call

L̂(t) = c0 exp
(∫ t

a1

y(τ)
τ

dτ
)
, t ≥ a1, (2.3)

its normalized slowly varying at infinity and

f(t) = tρL̂(t), t ≥ a1, (2.4)

its normalized regularly varying at infinity with index ρ (and write f ∈ NRVρ).
Similarly, h is called normalized regularly varying at zero with index ρ, written

h ∈ NRV Zρ if t→ h(1/t) belongs to NRV−ρ.
A function f ∈ RVρ belongs to NRVρ if and only if

f ∈ C1[a1,∞), for some a1 > 0 and lim
t→∞

tf ′(t)
f(t)

= ρ. (2.5)

Proposition 2.4. If functions L,L1 are slowly varying at infinity, then
(i) Lρ (for every ρ ∈ R), c1L+ c2L1 (c1 ≥ 0, c2 ≥ 0 with c1 + c2 > 0), L ◦ L1

(if L1(t)→ +∞ as t→∞), are also slowly varying at infinity.
(ii) For every ρ > 0 and t→∞,

tρL(t)→ +∞, t−ρL(t)→ 0.

(iii) For ρ ∈ R and t→∞, ln(L(t))/ln t→ 0 and ln(tρL(t))/ln t→ ρ.

Proposition 2.5. If f1 ∈ RVρ1 , f2 ∈ RVρ2 with limt→∞ f2(t) = +∞, then f1◦f2 ∈
RVρ1ρ2 .

Proposition 2.6 (Asymptotic behavior). If a function L is slowly varying at in-
finity, then for a ≥ 0 and t→∞,

(i)
∫ t
a
sρL(s)ds ∼= (ρ+ 1)−1t1+ρL(t), for ρ > −1’

(ii)
∫∞
t
sρL(s)ds ∼= (−β − 1)−1t1+ρL(t), for ρ < −1.

3. Auxiliary results

In this section, we give some results to be used in the proof of Theorem 1.1.

Lemma 3.1 ([22, Lemma 2.1]). Let k ∈ Λ.
(i) When Ck ∈ (0, 1), k is normalized regularly varying at zero with index

(1− Ck)/Ck;
(ii) when Ck = 1, k is normalized slowly varying at zero;

(iii) when Ck = 0, k grows faster than any tp (p > 1) near zero.
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Denote

Θ(r) =
∫ ∞
r

ds√
2F (s)

, Θ1(r) =
∫ ∞
r

ds√
sf1(s)

, r > 0. (3.1)

Then

Θ′(r) = − 1√
2F (r)

, Θ′1(r) = − 1√
rf1(r)

, r > 0. (3.2)

Lemma 3.2. Under the hypotheses of Theorem 1.1:
(i) ∫ ∞

a

ds√
sf1(s)

<∞, ∀a > 0;

(ii)

lim
r→∞

Θ(λr)
Θ(r)

= lim
r→∞

Θ1(λr)
Θ1(r)

= 1, ∀λ ∈ (0, 1);

(iii)

lim
r→∞

(r/f1(r))1/2

Θ1(r)g(r)
=

1
2

+ Cg;

(iv)

lim
r→∞

f1(ξr)
ξf1(r) − 1

g(r)
= ln ξ

uniformly for ξ ∈ [c1, c2] with 0 < c1 < c2;
(v)

lim
r→∞

f2(ξr)
ξg(r)f1(r)

= E2

uniformly for ξ ∈ [c1, c2] with 0 < c1 < c2.

Proof. By (1.7), (1.8) and (2.5), we see that f1 ∈ NRV1, hence,√
sf1(s) ∈ NRV1

Then, there exist a1 > 0 and a function L̂ which is normalized slowly varying at
infinity such that √

sf1(s) = c0sL̂(s), s ≥ a1. (3.3)

(i) For arbitrary ρ ∈ (1,∞), it follows by Proposition 2.4 (ii) that

lim
s→∞

√
sf1(s)
sρ

= c0 lim
s→∞

s1−ρL̂(s) =∞.

Thus there exists S0 > 0 such that√
sf1(s) > sρ, s ≥ S0,

i.e.
1√
sf1(s)

<
1
sρ
, s ≥ S0,

and the results follow. The proof of (ii)–(v) can be found in [22, Lemma 2.6], we
omit here. �
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Lemma 3.3 ([22, Lemma 2.7]). Assume hypotheses of Theorem 1.1, and let φ be
the solution to the problem ∫ ∞

φ(t)

ds√
sf1(s)

= t, ∀t > 0.

Then
(i) −φ′(t) =

√
φ(t)f1(φ(t)), φ(t) > 0, t > 0, φ(0) := limt→0+ φ(t) = ∞,

φ′′(t) = 1
2

(
f1(φ(t)) + φ(t)f ′1(φ(t))

)
, t > 0;

(ii)

lim
t→0

(
g(φ(t))

)−1
(1

2
(
1 +

φ(t)f ′1(φ(t))
f1(φ(t))

)
− f1(ξφ(t))
ξf1(φ(t))

)
=

1
2
− ln ξ;

(iii)

lim
t→0

√
φ(t)f1(φ(t))

tg(φ(t))f1(φ(t))
=

1
2

+ Cg;

(iv)

lim
t→0

f2(ξφ(t))
ξg(φ(t))f1(φ(t))

= E2

uniformly for ξ ∈ [c1, c2] with 0 < c1 < c2.

4. Proof of Theorem 1.1

Since the nonlinear term f satisfies (A2) and (A3), by [2, Theorem 2.1], we
obtain under the assumptions on Theorem 1.1, that problem (1.1) has a unique
positive solution.

Lemma 4.1. Under the assumptions on Theorem 1.1, there are δ ∈ (0, δ0) and 0 <
ς0 < λ0 such that for every ς ∈ (0, ς0] and λ ∈ [λ0,∞), ū(t) = λ exp(ξ0)φ(b0K(t))
and u(t) = ς exp(ξ0)φ(b0K(t)) are a supersolution and a subsolution, respectively,
of the problem

u′′(t) = b(t)f(u(t)), u(t) > 0, t > 0, u(0) =∞, u(δ) = l(δ), (4.1)

where l(t) denotes the unique solution of (1.1).

Proof. Let

Υ0(t) =
(
g(φ(b0K(t)))

)−1
(1

2
(
1 +

φ(b0K(t))f ′1(φ(b0K(t)))
f1(φ(b0K(t)))

)
− b(t)
b20k

2(t)
f1(ωφ(b0K(t)))
ωf1(φ(b0K(t)))

)
−

√
φ(b0K(t))f1(φ(b0K(t)))

b0K(t)g(φ(b0K(t)))f1(φ(b0K(t)))
K(t)k′(t)
k2(t)

,

for t ∈ (0, δ0), ω > 0; and

Υ1(t) =
b(t)

b20k
2(t)

f2(ωφ(b0K(t)))
ωg(φ(b0K(t)))f1(φ(b0K(t)))

, t ∈ (0, δ0), ω > 0.

By (1.6), Lemma 3.3 and Proposition 2.2, we see that

lim
t→0+

Υ0(t) = θ0 :=
1
2
− lnω − (

1
2

+ Cg)(1− Ck),

and
lim
t→0+

Υ1(t) = E2,

which has uniform convergence on intervals (0, a1] for all a1 > 0 and ω ∈ (0, a1].
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Thus for each m0 ∈ (0, 1),M0 ∈ (1,∞) and ω > 0, there exists δ ∈ (0, δ0) such
that

m0θ0 < Υ0(t) < M0θ0, ∀t ∈ (0, δ);

m0E2 < Υ1(t) < M0E2, ∀t ∈ (0, δ).

Let λ and ς be positive constants satisfying

λ ≥ λ0 := max
{ l(δ) exp(−ξ0)

φ(b0K(δ))
, exp

(
E2 −

m0

M0
E2

)}
,

ς ≤ ς0 := min
{ l(δ) exp(−ξ0)

φ(b0K(δ))
, exp

(
E2 −

M0

m0
E2

)}
.

By a direct computation, we have

ū′′(t) ≤ b(t)f(ū(t)), t ∈ (0, δ), ū(0) =∞, ū(δ) ≥ l(δ);
u′′(t) ≥ b(t)f(u(t)), t ∈ (0, δ), u(0) =∞, u(δ) ≤ l(δ).

i.e., ū is a supersolution and u is a subsolution to (4.1). �

Lemma 4.2. Let δ > 0, ς0 > 0 and λ0 > 0 be the positive constants given by
Lemma 4.1. Then, for every ς ∈ (0, ς0] and λ ∈ [λ0,∞),

ς exp(ξ0)φ(b0K(t)) ≤ l(t) ≤ λ exp(ξ0)φ(b0K(t)), t ∈ (0, δ),

where l(t) denotes the unique solution of (1.1) and φ is defined by (1.15).

Proof. According to [2, Remark 1], l(t) provides us with the unique positive solution
of

u′′(t) = b(t)f(u(t)), t ∈ (0, δ), u(0) =∞, u(δ) = l(δ). (4.2)
Subsequently, given ς ∈ (0, ς0] and λ ∈ [λ0,∞), for each natural number n > δ−1

we consider the boundary value problem

u′′(t) = b(t)f(u(t)), t ∈ (n−1, δ),

u(n−1) =
ς + λ

2
exp(ξ0)φ(b0K(n−1)), u(δ) = l(δ).

(4.3)

Set u(t) = ς exp(ξ0)φ(b0K(t)) and ū(t) = λ exp(ξ0)φ(b0K(t)). By Lemma 4.1, (u, ū)
provides us with an ordered sub-supersolution pair of (4.3). Thus, this problem
possesses a solution un such that

u(t) ≤ un(t) ≤ ū(t), t ∈ [n−1, δ].

By a standard compactness argument, we can extract a subsequence of un, say
unm, m ≥ 1, approximating to a solution of (4.2); necessarily l, by uniqueness.
Therefore, passing to the limit as m→∞ in the estimates

u(t) ≤ unm(t) ≤ ū(t), t ∈ [n−1
m , δ],

we can get the result easily. �

Proof of Theorem 1.1. We consider the auxiliary function

h(t) =
l(t)

exp(ξ0)φ(b0K(t))
, t ∈ (0, δ].

By Lemma 4.2, h(t) satisfies the estimate

ς ≤ h(t) ≤ λ, t ∈ (0, δ],
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and, hence,
0 < ς ≤ h := lim inf

t→0+
h(t) ≤ h̄ := lim sup

t→0+
h(t) ≤ λ.

To show the existence of limt→0+ h(t), we argue by contradiction. Suppose h < h̄.
Then, there exist two sequences tn, sn, n ≥ 1, such that

lim
n→∞

tn = lim
n→∞

sn = 0, lim
n→∞

h(tn) = h̄, lim
n→∞

h(sn) = h,

and, for each n ≥ 1,

h′(tn) = h′(sn) = 0, h′′(tn) ≤ 0, h′′(sn) ≥ 0. (4.4)

Clearly,
l′(t) = exp(ξ0)

(
h′(t)φ(b0K(t)) + b0h(t)φ′(b0K(t))k(t)

)
,

and

l′′(t) = exp(ξ0)
(
h′′(t)φ(b0K(t)) + 2b0h′(t)φ′(b0K(t))k(t)

+ b20h(t)φ′′(b0K(t))k2(t) + b0h(t)φ′(b0K(t))k′(t)
)
.

Since l′′(t) = b(t)f(l(t)), we have

exp(ξ0)
(
h′′(t)φ(b0K(t)) + 2b0h′(t)φ′(b0K(t))k(t)

+ b20h(t)φ′′(b0K(t))k2(t) + b0h(t)φ′(b0K(t))k′(t)
)

= b(t)f(l(t)), t ∈ (0, δ].

(4.5)

By (1.6), Proposition 2.2, Lemma 3.3 and Lemma 4.1, we have

lim
t→0

(
g(φ(b0K(t)))

)−1
( b20φ

′′(b0K(t))
k2(t)f1(φ(b0K(t)))

+
b0φ
′(b0K(t))k′(t)

k2(t)f1(φ(b0K(t)))

− b(t)f1(l(t))
exp(ξ0)h(t)k2(t)f1(φ(b0K(t)))

)
> 0.

On the other hand, k2(t) > 0, g(φ(b0K(t))) > 0 and f1(φ(b0K(t))) > 0 for all
t ∈ (0, δ]. Hence, there exists δ1 ∈ (0, δ) such that

b20φ
′′(b0K(t))k2(t) + b0φ

′(b0K(t))k′(t)− b(t)f1(l(t))
exp(ξ0)h(t)

= k2(t)f1(φ(b0K(t)))
( b20φ

′′(b0K(t))
k2(t)f1(φ(b0K(t)))

+
b0φ
′(b0K(t))k′(t)

k2(t)f1(φ(b0K(t)))

− exp(−ξ0)b(t)f1(l(t))
h(t)k2(t)f1(φ(b0K(t)))

)
> 0, t ∈ (0, δ1].

Thus, by (4.4) and (4.5), we obtain that, for any n ≥ 1,

h(tn)

≥ h(tn) + h′′(tn)
φ(b0K(tn))

b20φ
′′(b0K(tn))k2(tn) + b0φ′(b0K(tn))k′(tn)− b(tn)f1(l(tn))

exp(ξ0)h(tn)

=
b(tn)f2(l(tn))

b20φ
′′(b0K(tn))k2(tn) + b0φ′(b0K(tn))k′(tn)− b(tn)f1(l(tn))

exp(ξ0)h(tn)

,

and

h(sn)
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≥ h(sn) + h′′(sn)
φ(b0K(sn))

b20φ
′′(b0K(sn))k2(sn) + b0φ′(b0K(sn))k′(sn)− b(sn)f1(l(sn))

exp(ξ0)h(sn)

=
b(sn)f2(l(sn))

b20φ
′′(b0K(sn))k2(sn) + b0φ′(b0K(sn))k′(sn)− b(sn)f1(l(sn))

exp(ξ0)h(sn)

.

Therefore, passing to the limit as n→∞ in these inequalities, it follows from (A7),
(1.6), (1.14) and Lemma 3.3 that

h̄ ≥ E2h̄

E2 − ln h̄
, and h ≤ E2h

E2 − lnh
.

Consequently, h̄ = h = 1, which contradicts the assumption h < h̄. Therefore, the
following limit exists

h0 := lim
t→0+

l(t)
exp(ξ0)φ(b0K(t))

∈ [ς, λ],

i.e. l(t) ∼ exp(ξ0)φ(b0K(t)). The proof is complete. �

5. Examples

In this section, we shw some basic cases of the nonlinear term f , and apply our
results to this examples.

Example 5.1. f(s) = C2
1s(ln s)

2α + f2(s), where α > 1, s > S0,

g(s) = 2α(ln s)−1; lim
s→∞

√
s/f1(s)
g(s)

=
1

2αC1
lim
s→∞

(ln s)−(α−1) = 0;

sg′(s)
g2(s)

≡ Cg = − 1
2α

; lim
s→∞

f2(s)
g(s)f1(s)

=
1

2αC2
1

lim
s→∞

f2(s)
s(ln s)2α−1

= E2;

φ(t) = exp
(
C1(α− 1)t

)−1/(α−1)
.

Then

l(t) ∼ exp
(1

2
− E2 −

(1− Ck)(α− 1)
2α

)
exp

(
C1(α− 1)b0K(t)

)−1/(α−1)

as t→ 0+.
In particular, when f2(s) = C2s

µ(ln s)β with β ≤ 2α − 1, E1 = 0 for µ < 1 or
µ = 1 and β < 2α− 1, and E1 = C2

2αC2
1

for µ = 1 and β = 2α− 1.

Example 5.2. f(s) = C2
1se

(ln s)q

+ f2(s), where q ∈ (0, 1), s > S0,

g(s) = q(ln s)−(1−q); lim
s→∞

√
s/f1(s)
g(s)

=
1
qC1

lim
s→∞

exp(− 1
2 (ln s)q)

(ln s)−(1−q) = 0;

lim
s→∞

sg′(s)
g2(s)

= −1− q
q

lim
s→∞

(ln s)−q = Cg = 0;

lim
s→∞

f2(s)
g(s)f1(s)

=
1
qC2

1

lim
s→∞

f2(s)
s(ln s)−(1−q) exp((ln s)q)

= E2;

Then

l(t) ∼ exp
(Ck

2
− E2

)
φ(b0K(t)) as t→ 0+,
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where φ(t) is defined by ∫ ∞
ln(φ(t))

exp(−sq/2)ds = C1t.

Example 5.3. f(s) = C2
1s(ln s)

2(ln(ln s))2α + f2(s), where α > 1, s > S0,

g(s) = 2(ln s)−1
(
1 + α(ln(ln s))−1

)
;

lim
s→∞

√
s/f1(s)
g(s)

=
1

2C1
lim
s→∞

(ln(ln s))−α

1 + α(ln(ln s))−1
= 0;

lim
s→∞

sg′(s)
g2(s)

= − lim
s→∞

1 + α(ln(ln s))−1 + α(ln(ln s))−2

2(1 + α(ln(ln s))−1)2
= Cg = −1

2
;

lim
s→∞

f2(s)
g(s)f1(s)

=
1

2C2
1

lim
s→∞

f2(s)
s ln s(ln(ln s))2α(1 + α(ln(ln s))−1)

= E2;

φ(t) = exp
(

exp
(
C1(α− 1)t

)−1/(α−1))
.

Then

l(t) ∼ exp
(1

2
− E2

)
exp

(
exp

(
C1(α− 1)b0K(t)

)−1/(α−1))
.
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