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SHAPE DERIVATIVE OF AN ENERGY ERROR FUNCTIONAL
FOR VOIDS DETECTION FROM SUB-CAUCHY DATA

EMNA JAÏEM

Abstract. We study a new framework for a geometric inverse problem in lin-
ear elasticity. This problem concerns the recovery of cavities from the knowl-

edge of partially overdetermined boundary data. The boundary data available
for the reconstruction are given by the displacement field and the normal com-

ponent of the normal stress, whereas there is lack of information about the

shear stress. We propose an identification method based on a Kohn-Vogelius
error functional combined with the shape gradient method. We put special

focus on the identification of cavities and prove uniqueness for the case of

monotonous cavities.

1. Introduction

This paper is devoted to the study of some geometric inverse problems related
to the identification of cavities which arises in many areas of industry [1]. Indeed,
flaws are introduced into materials during processing and in particular cavities can
appear as small gas bubbles [4]. These defects have a strong influence on the lifetime
of structural components [13, 14]. Nowadays, with the tremendous development of
numerical techniques, the identification of cavities has become possible. Therefore,
a major impetus has been given to this inverse problem and a lot of experimental,
theoretical and numerical investigations have been carried out [5, 7, 8, 11] to improve
damage resistance of mechanical components.

For the reconstruction of cavities, overdetermined boundary data are critically
important. To the best of our knowledge, all geometric inverse problems in linear
elasticity, investigated in the literature, are to be defined by complete overdeter-
mined boundary data (see for example [5, 7, 8]) with the exception of a recent work
[6] where data appear to be partial. Therefore, we focus our attention in this paper
on this specific case where only the displacement field and the normal component
of the normal stress are available. Indeed, it is the level of difficulty added when
studying a related problem in a previous work [5].

This article is organized as follows: in the next section, we formulate the geo-
metric inverse problem that will be investigated further in the following sections.
In the third section, we discuss the identifiability of cavities and prove a uniqueness
result only for monotonous cavities, highlighting the importance of the geometric
inverse problem under consideration. In the fourth section, the inverse problem is
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transformed into a shape optimization one using a Kohn-Vogelius error functional.
The fifth section is devoted to the shape sensitivity analysis. Some comments are
drawn in the last section.

2. Formulation of the inverse problem

In this section, we first review the standard case of cavities identification prob-
lem combined with complete overdetermined boundary data; then we focus our
discussion on the specific case of partially overdetermined boundary data.

We consider a linear elastic material which occupies an open bounded domain
B ⊂ R2 with boundary Υ, the medium being assumed to be homogeneous and
isotropic. We suppose that there is a cavity A namely a void inside B i.e. A ⊂ B.
For a given traction g acting on the boundary Υ, the displacement u satisfies the
linear elasticity direct problem

div σ(u) = 0 in Ω,

σ(u) = λ tr ε(u) Id +2µε(u) in Ω,

σ(u)n = 0 on Γ,

σ(u)nΥ = g on Υ,

where Ω = B \ A, Γ is the boundary of A and nΥ and n are the outward unit
normals to the boundary of Ω. ε is the strain tensor and σ is the Cauchy stress
tensor related by the following Hooke constitutive law

σ(u) = λ tr ε(u) Id +2µε(u)

and conversely

ε(u) =
1 + ν

E
σ(u)− ν

E
(trσ(u)) Id .

Above, tr denotes the trace of matrix and λ, µ are the Lamé coefficients related to
Young’s modulus E and Poisson’s ratio ν via

µ =
E

2(1 + ν)
and λ =

Eν

(1− 2ν)(1 + ν)
.

The inverse problem is then to recover the cavity A by applying some traction g
on Υ and then measuring the displacement f induced by g i.e. u = f on Υ.

However, in this work, we suppose that we have only access to the normal com-
ponent of the normal stress g. In other words, the inverse problem investigated in
this paper is the identification of a cavity A trapped in a material occupying the
domain B where the displacement u satisfies

div σ(u) = 0 in Ω,

σ(u) = λ tr ε(u) Id +2µε(u) in Ω,

σ(u)n = 0 on Γ,

(σ(u)nΥ) · nΥ = g · nΥ on Υ,
u = f on Υ.

(2.1)

We draw the reader’s attention to the fact that it is not a standard situation since
we have access to the displacement f and only to the normal component of the
normal stress whereas no information on the shear stress, namely (σ(u)nΥ) · τ is
available on Υ.



EJDE-2016/265 SHAPE DERIVATIVE OF AN ENERGY ERROR FUNCTIONAL 3

3. Identifiability

From a theoretical point of view, there are several relevant questions about
this geometric inverse problem because of, on the one hand, its ill-posedness and,
on the other hand, the missing boundary measurements. Indeed, solving such a
geometric inverse problem is a significant task since, to the best of our knowledge,
the question of uniqueness is at present far from being solved. Hence, it poses a
great challenge. In the following, we discuss the identifiability of cavities, i.e. the
uniqueness question of the inverse problem in the case of monotonous cavities.

For Ω ⊂ R2 an open and bounded domain with boundary Υ, let C1 and C2 be
two connected domains such that C1 ⊂ C2 and C2 ⊂ Ω (see Figure 1). For i = 1, 2,
let ui be the solution of the problem

−div σ(ui) = 0 in Ω \ Ci,
σ(ui)n = 0 on ∂Ci,

σ(ui)nΥ · nΥ = g on Σ,
ui · τ = f · τ on Σ,

σ(ui)nΥ = 0 on Υ \ Σ,

(3.1)

where ∂Ci is the boundary of Ci, Σ ⊂ Υ, nΥ respectively n are the outward unit
normals to the boundary of Ω\Ci on Υ respectively ∂Ci and τ is the tangent vector
to the boundary Υ.

Figure 1. Domain with monotonous cavities.

Proposition 3.1. Let C1 and C2 be two cavities such that C1 ⊂ C2 and for i =
1, 2, let ui be the solution of the direct problem (3.1) defined in Ω \ Ci. Then,
if C1 and C2 both lead to the same measured normal displacement on Σ, namely
u1 · nΥ = u2 · nΥ = f · nΥ on Σ, we have C1 = C2.
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Proof. We suppose for simplicity that f · τ = 0 on Σ. u2 is then the solution of the
problem

min
v∈V2

1
2

∫
Ω\C2

σ(v) : ε(v)dx−
∫

Σ

g(v · nΥ)ds,

where
V2 = {v ∈ [H1(Ω \ C2)]2 : v · τ = 0 on Σ}.

Hence, u2 satisfies

1
2

∫
Ω\C2

σ(u2) : ε(u2)dx−
∫

Σ

g(u2 · nΥ)ds 6
1
2

∫
Ω\C2

σ(v) : ε(v)dx−
∫

Σ

g(v · nΥ)ds,

for all v ∈ V2. In particular, since C1 ⊂ C2 and u1 · τ = f · τ = 0 on Σ, we have

1
2

∫
Ω\C2

σ(u2) : ε(u2)dx−
∫

Σ

g(u2 · nΥ)ds

6
1
2

∫
Ω\C2

σ(u1) : ε(u1)dx−
∫

Σ

g(u1 · nΥ)ds.
(3.2)

Then, since u1 · nΥ = u2 · nΥ on Σ, from (3.2) we obtain∫
Ω\C2

σ(u2) : ε(u2)dx 6
∫

Ω\C2

σ(u1) : ε(u1)dx,

6
∫

Ω\C1

σ(u1) : ε(u1)dx−
∫
C2\C1

σ(u1) : ε(u1)dx.
(3.3)

Using the Green formula, on the one hand from the problem (3.1) related to u2, we
have ∫

Ω\C2

σ(u2) : ε(v)dx =
∫

Σ

g(v · nΥ)ds, ∀v ∈ V2

and on the other hand from the problem (3.1) related to u1,∫
Ω\C1

σ(u1) : ε(v)dx =
∫

Σ

g(v · nΥ)ds, ∀v ∈ V1,

where
V1 = {v ∈ [H1(Ω \ C1)]2; v · τ = 0 on Σ}.

Then, from (3.3) we have∫
Σ

g(u2 · nΥ)ds 6
∫

Σ

g(u1 · nΥ)ds−
∫
C2\C1

σ(u1) : ε(u1)dx .

Hence, since u1 · nΥ = u2 · nΥ on Σ, it follows that

0 6 −
∫
C2\C1

σ(u1) : ε(u1)dx.

So, we obtain that meas(C2 \ C1) = 0, that is C2 = C1. �

So, one can distinguish two cavities C1 and C2 so that C1 ⊂ C2 from partially
overdetermined boundary data on Σ.
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4. Shape optimization problem

For a given Ω defined in the same way as in the second section, let (σD, uD) and
(σN , uN ) be the solutions of the Dirichlet problem

div σD = 0 in Ω,

εD =
1 + ν

E
σD −

ν

E
(trσD) Id in Ω,

σDn = 0 on Γ,
uD = f on Υ,

(4.1)

and the Neumann problem
div σN = 0 in Ω,

εN =
1 + ν

E
σN −

ν

E
(trσN ) Id in Ω,

σNn = 0 on Γ,

(σNnΥ) · nΥ = g · nΥ on Υ,
uN · τ = f · τ on Υ.

(4.2)

Here we have used the Hellinger-Reissner principle [5, 17], namely the formulation
in two fields. One can notice that the cavity to recover is reached when there is no
misfit between both Dirichlet and Neumann solutions, that is, when σD = σN and
uD = uN . According to this observation, the cavities identification problem (2.1)
can be transformed into a shape optimization one

Find Ω such that J(Ω) = min
Ω̃⊂B

J(Ω̃), (4.3)

by the minimization of the Kohn-Vogelius error functional, namely the energetic
least-squares functional

J(Ω) :=
1
2

∫
Ω

(σD − σN ) : (ε(uD)− ε(uN )) (4.4)

over a class of admissible domains.
The functional (4.4) is called Kohn-Vogelius cost functional since Kohn and

Vogelius were the first to use it in impedance computed tomography [12]. The
variational formulation in two fields of the Dirichlet problem (4.1) is the following
[5]: Find (σD, uD) ∈ L2

s(Ω)× [H1(Ω)]2;uD = f on Υ such that

∀τ ∈ L2
s(Ω),

∫
Ω

[1 + ν

E
tr(σDτ)− ν

E
tr(σD) tr(τ)

]
−
∫

Ω

tr(τ∇uD) = 0,

∀v ∈ VD,
∫

Ω

tr(σD∇v) = 0,
(4.5)

where
L2
s(Ω) =

{
τ = (ταβ) ∈ [L2(Ω)]4; ταβ = τβ α

}
and

VD =
{
v ∈ [H1(Ω)]2; v = 0 on Υ

}
.

Let us define for (σ, τ) ∈ [L2
s(Ω)]2 and v ∈ [H1(Ω)]2 the bilinear symmetric form

a(·, ·) and the bilinear form b(., .), needed in the sequel, as follows :

a(σ, τ) =
∫

Ω

[1 + ν

E
tr(στ)− ν

E
tr(σ) tr(τ)

]
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and

b(τ, v) = −
∫

Ω

tr(τ∇v).

The formulation in two fields (4.5) can be rewritten as: Find (σD, uD) ∈ L2
s(Ω) ×

[H1(Ω)]2;uD = f on Υ such that

∀τ ∈ L2
s(Ω), a(σD, τ) + b(τ, uD) = 0,

∀v ∈ VD, b(σD, v) = 0.
(4.6)

The first equation reflects the constitutive law and the second the equilibrium equa-
tion. Proceeding in the same way as in the Dirichlet problem, the formulation in two
fields of the Neumann problem (4.2) is: Find (σN , uN ) ∈ L2

s(Ω)× [H1(Ω)]2;uN ·τ =
f · τ on Υ such that

∀τ ∈ L2
s(Ω), a(σN , τ) + b(τ, uN ) = 0,

∀v ∈ VN , b(σN , v) = −
∫

Υ

(g · nΥ)(v · nΥ),
(4.7)

where
VN =

{
v ∈ [H1(Ω)]2; v · τ = 0 on Υ

}
.

The important point to note here is that in the optimization process, it is possible
to deal with the topological gradient method [6]. However, we resort in this paper
to the shape gradient method presented in the next section.

5. Shape sensitivity analysis

Nowadays, the shape optimization theory has achieved a high degree of success
from theoretical and numerical points of view ever since the development of one
of its famous tool: the shape gradient method. Due to the deep connection of the
Kohn-Vogelius misfit functional with the shape gradient method [2, 3, 5, 10, 11], we
focus in this paper on a shape sensitivity analysis of the Kohn-Vogelius functional
(4.4) subject to partially overdetermined boundary data.

In the sequel, some basic tools related to the shape gradient method [16] are
presented. Let us consider an open and bounded domain U and an initial domain
Ω so that Ω ⊂ U . In order to define the shape gradient of the misfit functional
(4.4), one needs to deform the so-called reference domain Ω using the perturbation
of identity operator to the first order, that is the mapping

Ft : U 7−→ R2

defined by Ft = id + th where id is the identity mapping. To make the exterior
boundary Υ of Ω clamp during the shape reconstruction process, we consider the
deformation field h belonging to the space

Q = {h ∈ C1,1(U)2; h = 0 on Υ}.

We should note that for sufficiently small t, the mapping Ft is a diffeomorphism
from Ω onto its image. Hence, the perturbed domains Ωt and Γt are defined by

Ωt := Ft(Ω) and Γt := Ft(Γ).

For t = 0, we have Ω0 = Ω (the reference domain). Once the diffeomorphism map
between the reference domain Ω and the perturbed one is constructed, one can
embed problems (4.1) and (4.2) into a family of perturbed problems defined in Ωt.
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More precisely, we consider the pairs (σDt, uDt) and (σNt, uNt) solutions for the
following Dirichlet, respectively the Neumann problem

div σDt = 0 in Ωt,

εDt =
1 + ν

E
σDt −

ν

E
(trσDt) Id in Ωt,

σDtnt = 0 on Γt,
uDt = f on Υ,

(5.1)

respectively
div σNt = 0 in Ωt,

εNt =
1 + ν

E
σNt −

ν

E
(trσNt) Id in Ωt,

σNtnt = 0 on Γt,

(σNtnΥ) · nΥ = g · nΥ on Υ,
uNt · τ = f · τ on Υ,

(5.2)

where nt is the outward unit normal to Ωt on Γt.

Definition 5.1. The first-order Eulerian derivative of a shape functional J : Ω 7−→
R at the domain Ω in the direction of the deformation field h ∈ Q is given by

J ′(Ω, h) = lim
t 7→0

J(Ωt)− J(Ω)
t

if the limit exists.

Remark 5.2. J is called shape differentiable at Ω if J ′(Ω, h) exists for all h ∈ Q
and if the mapping h 7→ J ′(Ω, h) is linear and continuous with respect to h.

Throughout the discussion, if ϕt is a function defined in the perturbed domain
Ωt, we denote by ϕt the function defined in the reference domain Ω by ϕt = ϕt ◦Ft.
In particular, we consider the pairs (σtD, u

t
D) and (σtN , u

t
N ) defined in Ω by

σtD = σDt ◦ Ft
utD = uDt ◦ Ft

and

σtN = σNt ◦ Ft
utN = uNt ◦ Ft.

For t = 0, (σ0
D, u

0
D) respectively (σ0

N , u
0
N ) is the solution of (4.1) respectively (4.2).

Lemma 5.3 ([16]). (i) If ϕt ∈ L1(Ωt), then ϕt ∈ L1(Ω) and we have∫
Ωt

ϕt =
∫

Ω

δt ϕ
t,

where δt = det(DFt) = det(Id +t∇hT).
(ii) If ϕt ∈ H1(Ωt), then ϕt ∈ H1(Ω) and we have

(∇ϕt) ◦ Ft = Mt∇ϕt,
with Mt = DF−Tt .

Above, DFt is the Jacobian matrix of Ft and DFTt is the transpose of DFt. It is
easy to see that (DFTt )−1 = (DF−1

t )T ; so for the sake of simplicity, we shall write
DF−Tt .
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5.1. Asymptotic expansions.

Dirichlet problem. Similarly to the variational formulation (4.5) of problem (4.1),
we can get the formulation in two fields of the perturbed Dirichlet probelm (5.1),
that is: Find (σDt, uDt) ∈ L2

s(Ωt)× [H1(Ωt)]2;uDt = f on Υ such that

∀τ ∈ L2
s(Ωt),

∫
Ωt

[1 + ν

E
tr(σDt τ)− ν

E
tr(σDt) tr(τ)

]
−
∫

Ωt

tr(τ∇uDt) = 0,

∀v ∈ VDt,
∫

Ω

tr(σDt∇v) = 0,

(5.3)
where

L2
s(Ωt) = {τ = (ταβ) ∈ [L2(Ωt)]4; ταβ = τβ α},
VDt = {v ∈ [H1(Ωt)]2; v = 0 on Υ}.

Then, one needs to transfer the variational formulation (5.3) defined in the per-
turbed domain Ωt to the reference domain Ω. Using Lemma 5.3 and that uDt =
utD = u0

D = f on Υ, the variational formulation in two fields of the perturbed
Dirichlet problem, brought to the reference domain is then: Find (σtD, u

t
D) ∈

L2
s(Ω)× [H1(Ω)]2;utD = f on Υ such that

∀τ ∈ L2
s(Ω),

∫
Ω

[1 + ν

E
tr(σtDτ)− ν

E
tr(σtD) tr(τ)

]
det(DFt)

−
∫

Ω

tr[τ(∇utD(DFt)−1)] det(DFt) = 0,

∀v ∈ VD,
∫

Ω

tr[σtD(∇v(DFt)−1)] det(DFt) = 0.

(5.4)

Theorem 5.4 (Related to the Dirichlet problem). There exists η0 > 0 such that,
if t < η0, we obtain

(σtD, u
t
D) = (σ0

D, u
0
D) + t(σ1

D, u
1
D) + to(t), (5.5)

where (σ0
D, u

0
D), (σ1

D, u
1
D) and o(t) are elements of L2

s(Ω)× [H1(Ω)]2 satisfying:
(i) (σ0

D, u
0
D) is the solution of the linear elasticity Dirichlet problem (4.6) in

Ω.
(ii) limt 7→0 ‖o(t)‖L2

s(Ω)×VD
= 0.

(iii) (σ1
D, u

1
D) ∈ L2

s(Ω)× VD is the unique solution of the following problem

∀τ ∈ L2
s(Ω), a(σ1

D, τ) + b(τ, u1
D) = −

∫
Ω

tr[τ(∇u0
D∇h)],

∀v ∈ VD, b(σ1
D, v) = −

∫
Ω

tr[σ0
D(∇v∇h)] +

∫
Ω

tr(σ0
D∇v) div h.

(5.6)

Proof. Let Φ be the function

Φ : R× L2
s(Ω)× [H1(Ω)]2 → L2

s(Ω)× ([H1(Ω)]2)′

defined as follows

Φ(t, σ, u) =

{
A(t)σ +B(t)u
B(t)σ
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where we adopt the following notation:

A(t)σ = (
1 + ν

E
σ − ν

E
(trσ) Id) det(DFt),

〈B(t)σ, v〉 = −
∫

Ω

[tr(σ∇v(DFt)−1)] det(DFt).

Then B(t) (which is the transpose of B(t)) will be defined by

B(t)v = −1
2

[(Id +t∇h)−1∇v +∇v(Id +t∇h)−1] det(DFt).

So, the equations (5.4) can be written as follows

Find (σtD, u
t
D) ∈ L2

s(Ω)× [H1(Ω)]2 such that utD = f on Υ,
and Φ(t, σtD, u

t
D) = 0.

(5.7)

Here Φ is a linear application on (σ, u) and differentiable on t. We also have
Φ(0, σ0

D, u
0
D) = 0, which reflects that (σ0

D, u
0
D) is the solution of (4.6) defined in

the reference domain Ω. The derivative of Φ, with respect to the variable (σ, u) is
Φ itself which leads to

∂Φ
∂(σ, u)

(0, σ0, u0)(σ, u) = Φ(0, σ, u)

=

{
A(0)σ +B(0)u
B(0)σ

=

{
( 1+ν
E σ − ν

E (trσ) Id)− 1
2 (∇u+∇u)

B(0)σ.

The partial derivative of Φ, with respect to (σ, u), is then, according to the theorem
of Breziz, a bijection from L2

s(Ω)×[H1(Ω)]2 to L2
s(Ω)×([H1(Ω)]2)′. In addition, Φ is

linear and continuous. The open mapping theorem states that Φ is an isomorphism
from L2

s(Ω)× [H1(Ω)]2 to L2
s(Ω)× ([H1(Ω)]2)′. It follows from the implicit function

theorem that there exists a positive number η0 and a neighborhood ϑ of (σ0
D, u

0
D) in

L2
s(Ω)× [H1(Ω)]2 such that for all t ∈]−η0, η0[, there exists a unique pair (σtD, u

t
D)

in L2
s(Ω)× [H1(Ω)]2 such that

Φ(t, σtD, u
t
D) = 0.

Moreover, the application t 7→ (σt, ut) is C1, from ]− η0, η0[ to ϑ. Then, we have

(σtD, u
t
D) = (σ0

D, u
0
D) + t(σ1

D, u
1
D) + to(t),

where
lim
t7→0
‖o(t)‖L2

s(Ω)×VD
= 0.

For (iii) by substituting equality (5.5) in (5.4), using the fact that (σ0
D, u

0
D) is

the solution of (4.6), and identifying the terms of the same order t, we show that
(σ1
D, u

1
D) is the solution of (5.6). �

Neumann problem. A similar result can be carried out for the pair (σtN , u
t
N ).

Theorem 5.5 (Related to the Neumann problem). There exists δ0 > 0 such that,
if t < δ0, we obtain

(σtN , u
t
N ) = (σ0

N , u
0
N ) + t(σ1

N , u
1
N ) + to(t), (5.8)

where (σ0
N , u

0
N ), (σ1

N , u
1
N ) and o(t) are elements of L2

s(Ω)× [H1(Ω)]2 satisfying:
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(i) (σ0
N , u

0
N ) is the solution of the linear elasticity Neumann problem (4.7) in

Ω.
(ii) limt 7→0 ‖o(t)‖L2

s(Ω)×VN
= 0.

(iii) (σ1
N , u

1
N ) ∈ L2

s(Ω)× VN is the unique solution of the following problem

∀τ ∈ L2
s(Ω), a(σ1

N , τ) + b(τ, u1
N ) = −

∫
Ω

tr[τ(∇u0
N∇h)],

∀v ∈ VN , b(σ1
N , v) = −

∫
Ω

tr[σ0
N (∇v∇h)] +

∫
Ω

tr(σ0
N∇v) div h.

(5.9)

5.2. Main result. Let us recall some useful lemmas.

Lemma 5.6 ([16]). The mappings t 7→ δt and t 7→ Mt with values in C(Ω) and
C(Ω)2×2 respectively, are C1 in a neighborhood of 0 and we have

dδt
dt

∣∣
t=0

= div h,

dMt

dt
|t=0= −∇h.

Lemma 5.7 ([9]).

div(σ0
D∇u0

D) =
1
2

grad[tr(σ0
D∇u0

D)],

div(σ0
N∇u0

N ) =
1
2

grad[tr(σ0
N∇u0

N )].

Using the asymptotic expansions exposed in the previous subsection, one can
express the shape gradient of J (4.4) with respect to the domain.

Theorem 5.8. The functional

J(Ωt) :=
1
2

∫
Ωt

(σDt − σNt) : (ε(uDt)− ε(uNt))

is shape differentiable at Ω and for h ∈ Q the Eulerian derivative is

J ′(Ω, h) =
∫

Γ

G(h · n), (5.10)

with
G =

1
2

[(σ0
D : ε(u0

D))− (σ0
N : ε(u0

N ))]. (5.11)

Proof. Using (5.5), (5.8), the transformation formulas (see Lemma 5.3) and the fact
that

det(DFt) = 1 + t div h+ o(t) and (DFt)−1 = Id−t∇h+ o(t),
(see Lemma 5.6), we obtain

J ′(Ω, h) =
∫

Ω

[
1 + ν

E
(σ0
D − σ0

N ) : (σ1
D − σ1

N )− ν

E
tr(σ0

D − σ0
N ) tr(σ1

D − σ1
N )]

+
1
2

∫
Ω

div h[
1 + ν

E
(σ0
D − σ0

N ) : (σ0
D − σ0

N )− ν

E
[tr(σ0

D − σ0
N )]2],

= a(σ0
D − σ0

N , σ
1
D − σ1

N )

+
1
2

∫
Ω

div h[
1 + ν

E
(σ0
D − σ0

N ) : (σ0
D − σ0

N )− ν

E
[tr(σ0

D − σ0
N )]2].
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Using (4.6), (4.7), (5.6) and (5.9), we obtain

a(σ0
D − σ0

N , σ
1
N ) = −b(σ1

N , u
0
D − u0

N )

=
∫

Ω

tr[σ0
N (∇(u0

D − u0
N )∇h)]−

∫
Ω

tr[σ0
N∇(u0

D − u0
N )] div h,

and

a(σ1
D, σ

0
D − σ0

N ) =
∫

Ω

tr[(σ0
D − σ0

N )∇u1
D]−

∫
Ω

tr[(σ0
D − σ0

N )(∇u0
D∇h)].

One can prove that ∫
Ω

tr[(σ0
D − σ0

N )∇u1
D] = 0.

Thus,

J ′(Ω, h) =
∫

Ω

tr[σ0
N (∇u0

N∇h)]−
∫

Ω

tr[σ0
D(∇u0

D∇h)]

− 1
2

∫
Ω

[ε(u0
N ) : σ0

N ] div h+
1
2

∫
Ω

[ε(u0
D) : σ0

D] div h.

Using generalized Green’s formula, we obtain
1
2

∫
Ω

[σ0
N : ε(u0

N )] div h =
1
2

∫
∂Ω

[σ0
N : ε(u0

N )]h · n− 1
2

∫
Ω

grad[tr(σ0
N∇u0

N )] · h,

1
2

∫
Ω

[σ0
D : ε(u0

D)] div h =
1
2

∫
∂Ω

[σ0
D : ε(u0

D)]h · n− 1
2

∫
Ω

grad[tr(σ0
D∇u0

D)] · h,∫
Ω

tr[σ0
N (∇u0

N∇h)] =
∫
∂Ω

(nTσ0
N ) · (∇u0

Nh)−
∫

Ω

div(σ0
N∇u0

N ) · h,

−
∫

Ω

tr[σ0
D(∇u0

D∇h)] = −
∫
∂Ω

(nTσ0
D) · (∇u0

D h) +
∫

Ω

div(σ0
D∇u0

D) · h.

Then, using Lemma 5.7, we can deduce a simple formula for the derivative of J ,

J ′(Ω, h) =
1
2

∫
∂Ω

[σ0
D : ε(u0

D)]h · n− 1
2

∫
∂Ω

[σ0
N : ε(u0

N )]h · n

+
∫
∂Ω

(nTσ0
N ) · (∇u0

N h)−
∫
∂Ω

(nTσ0
D) · (∇u0

Dh).

Hence, from the identities

h = (h · n)n+ (h · τ)τ, h = 0 on Υ,

σ0
Dn = σ0

Nn = 0 on Γ,

we obtain the desired result

J ′(Ω, h) =
∫

Γ

[
1
2

[(σ0
D : ε(u0

D))− (σ0
N : ε(u0

N ))]]h · n.

�

Remark 5.9. The shape derivative (5.10) depends only on the normal component
of the speed vector field h on the boundary of the cavity looking for. This property
of the shape derivative concept is crucial for an iterative descent method if one
aims to numerically solve the cavities identification problem. Indeed, in contrast to
the classical shape optimization, a fruitful approach can be numerically designed
to track domains changing the topology. The underlying technique behind this
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approach is to combine the shape gradient information (5.10) with the level set
method [15]. We refer the reader to [3, 5, 11] for more details about this technique.

Comments. The geometric inverse problem investigated in this article tries to
recover cavities from partially overdetermined boundary data. The problem is not
in its usual form because the lack of overdetermined boundary data; it is rather
the extension of a previous work [5] where data appeared to be complete. The
problem has been addressed by means of the so-called Kohn-Vogelius formulation
combined with the shape gradient method. The theoretical question related to the
identifiability is still open since the uniqueness result was only derived for the case
of monotonous cavities, which underlines the difficulty encountered when solving
such an inverse problem. Moreover, an efficient optimization algorithm can be
constructed. This algorithm can be seen as a descent method where the descent
direction is determined by the shape derivative of the Kohn-Vogelius functional
since it has been expressed in terms of a boundary integral. This will be a subject
for a forthcoming publication.
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[5] A. Ben Abda, E. Jäıem, S. Khalfallah, A. Zine; An energy gap functional: Cavities identifi-

cation in linear elasticity, Submitted, 2016.
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