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BLOW-UP AND EXTINCTION OF SOLUTIONS TO A FAST
DIFFUSION EQUATION WITH HOMOGENEOUS NEUMANN

BOUNDARY CONDITIONS

JIAN LI, YUZHU HAN, HAIXIA LI

Abstract. In this article, we study blow-up and extinction properties of so-

lutions to a fast diffusion p-Laplace equation with a nonlocal term under ho-
mogeneous Neumann boundary conditions. We first show that the solutions

with positive initial energy will blow up in finite time, and then give some suf-

ficient conditions for the solutions to vanish in finite time, using the method
of integral estimates. Moreover, the decay rates near the extinction time are

also derived.

1. Introduction

In this article, we consider the following p-Laplace equation under homogeneous
Neumann boundary conditions,

ut = div(|∇u|p−2∇u) + |u|q−1u− 1
|Ω|

∫
Ω

|u|q−1udx, x ∈ Ω, t > 0,

|∇u|p−2 ∂u

∂n
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

(1.1)

where Ω is a bounded domain in RN (N ≥ 2) with smooth boundary ∂Ω, 1 < p < 2,
q > 0, n is the unite outward normal on ∂Ω and the initial datum u0(x) satisfies

0 6≡ u0(x) ∈ L∞(Ω) ∩W 1,p(Ω),
∫

Ω

u0(x)dx = 0. (1.2)

It is immediately seen from the structure of the equation and the homogeneous
boundary condition that the integral of the solution u to (1.1) is conserved, that is∫

Ω
u(x, t)dx =

∫
Ω
u0(x)dx = 0 as long as u(x, t) exists.

Problem (1.1) can be used to describe many physical models. For example, when
p = 2, it arises from the nuclear science where the growth of the temperature is
known to be very fast, like uq, but some absorption catalytic material is put into
the system in such a way that the total mass is conserved. It can also be used to
model other phenomena in population dynamics and biological sciences where the
total mass is often conserved or known, but the growth of a certain cell is known
to be of some form [11].
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In the past few years, much effort has been devoted to the study of global exis-
tence and blow-up of solutions to such kinds of problems. Among the huge amount
of works, we only refer to [11], in which Hu et al established the blow-up result for
(1.1) with p = 2 under the condition that the initial energy satisfies

E(0) =
∫

Ω

[1
2
|∇u0|2 −

1
q + 1

|u0|q+1
]
dx ≤ −C,

by using a convexity argument, where C > 0 is a constant depending on the measure
of Ω. Later, Gao and Han [8] improved their results and showed that the solutions
with small positive initial energy can also blow-up in finite time for 1 < q ≤
(N + 2)/(N − 2).

In 2007, Soufi et al [18] studied a slightly different model

ut −∆u = |u|q − 1
|Ω|

∫
Ω

|u|qdx (1.3)

with the same initial and boundary conditions as those given in problem (1.1).
They established a new blow-up criterion for 1 < q ≤ 2 based on partial Maximum
Principles and on a Gamma-convergence argument, and proposed a conjecture that
the conclusion might also be valid for all q > 1, a positive answer to which was
given by Jazar et al in [12]. It is worth pointing out that (1.3) with q = 2 is also
related to Navier-Stokes equations on an infinite slab for other reasons explained
in [2]. Since mathematically we do not require that u(x, t) is nonnegative, we use
|u|q−1u instead of |u|q in our problem.

Extinction in finite time is another phenomenon shared by some evolution equa-
tions whereby the evolution of some nontrivial initial datum u0(x) produces a non-
trivial solution u(x, t) in a finite time interval 0 < t < T , but u(x, t) ≡ 0 for almost
every (x, t) ∈ Ω× (T,∞). In this case, T is called the extinction time. Extinction
via fast diffusion was first observed by Sabinina [17], and since then, there has been
increasing interest in this direction. Interested readers may refer to [3, 13, 14] for
sufficient and necessary conditions for the solutions of general diffusion equations
with or without reaction terms to vanish in finite time, to [1, 5, 6, 7] for the in-
vestigation of the asymptotic behaviors of solutions near the extinction time and
to [10, 15, 19, 20] for the critical extinction exponents for fast diffusive equations
with local or nonlocal sources. However, it is worth pointing out that most extinc-
tion results mentioned above concerns problems with Dirichlet boundary conditions
and there are much fewer extinction results for Neumann problems, especially for
problems with sign-changing solutions.

In [4], the authors considered the slow diffusion case, i.e. p > 2, and showed that
the corresponding solutions blow up in finite time for positive but suitably small
initial energy. In a recent paper [16], Qu et al considered a problem similar to (1.1),
and proved that the sign-changing solutions blow up in finite time when the initial
energy is non-positive and q > 1. As for the extinction results, they showed that if
p−1 < q < 1, then all the weak solutions vanish in finite time for small initial data;
if q ≥ 1, then the bounded weak solutions vanish in finite time for small initial
data. However, they did not show whether the problem admits extinction solutions
or not for the case 0 < q ≤ p − 1. Later, Guo et al [9] showed that there will be
non-extinction solutions provided that the initial energy is negative.

Motivated by the works mentioned above, we will consider both the blow-up
and extinction properties of solutions to (1.1). As for the blow-up results we will
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improve those obtained in [8, 16] and show that the solutions will blow up in finite
time for positive (but suitably small) initial energy. In the proof, some lower bound
of ‖∇u‖p (Lp norm ‖ · ‖Lp(Ω) will be denoted by ‖ · ‖p throughout this paper) plays
an essential role. When considering the extinction properties, we will show that
the solutions behave in quite different ways depending on the parameters p− 1 and
q as well as the initial energy. A Sobolev-Poincaré type inequality for functions
belonging to W 1,p(Ω) (not W 1,p

0 (Ω)) will be of great help.
The rest of this paper is organized as follows. We will show that the solutions

will blow up in finite time for positive initial energy in Section 2, and the extinction
properties of solutions will be investigated in Section 3.

2. Blow-up results

It is well known that the equation in (1.1) is singular at the points where ∇u = 0,
since 1 < p < 2. Therefore, we have to work with its weak solutions.

Definition 2.1. We say that a function u ∈ L∞(Ω × (0, T )) ∩ Lp(0, T ;W 1,p(Ω))
with ut ∈ L2(Ω× (0, T )) is a weak solution to (1.1) if∫ t

0

∫
Ω

[
uϕs − |∇u|p−2∇u · ∇ϕ+

(
|u|q−1u− 1

|Ω|

∫
Ω

|u|q−1udx
)
ϕ
]
dxds

=
∫

Ω

u(x, t)ϕ(x, t)dx−
∫

Ω

u0(x)ϕ(x, 0)dx
(2.1)

holds for all ϕ ∈ C1(Ω× [0, T ]).

The existence of local weak solutions can be obtained via the standard method
of regularization [20, 21]. For convenience, we might as well assume that the weak
solutions are appropriately smooth in what follows, or else, we can consider the
corresponding regularized problem and the same result can also be obtained through
an approximate process.

Denote byW 1,p
∗ (Ω) the subspace ofW 1,p(Ω), the elements u that satisfy

∫
Ω
udx =

0. We equip this subspace with the norm

‖u‖W 1,p
∗ (Ω) =

(∫
Ω

|∇u|pdx
)1/p

.

By using Poincaré’s inequality, we see that this norm is equivalent to the classical
norm equipped with W 1,p(Ω). Let B > 0 be the optimal constant of the embedding
inequality

‖u‖q+1 ≤ B ‖ ∇u ‖p, u ∈W 1,p
∗ (Ω), (2.2)

where 1 < q ≤ (Np−N + p)/(N − p), and set

α1 = B−
q+1
q−p+1 , E1 = (

1
p
− 1
q + 1

)B−
p(q+1)
q−p+1 > 0 (2.3)

and the energy functional

E(t) =
∫

Ω

[1
p
|∇u(x, t)|p − 1

q + 1
|u(x, t)|q+1

]
dx. (2.4)

Our main result in this section is as follows.
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Theorem 2.2 (Blow-up with positive initial energy). Assume that max{1, 2N
N+2} <

p < 2, 1 < q ≤ (Np − N + p)/(N − p) and that the initial datum u0(x) is chosen
to satisfy E(0) < E1 and ‖∇u0‖p > α1, where E1 and α1 are given in (2.3). Then
the weak solutions u(x, t) of (1.1) blow up in finite time.

For the proof of the above theorem we need the following lemma.

Lemma 2.3. The function E(t) defined in (2.4) is nonincreasing in t.

Proof. By direct computation, integration by parts and recalling the fact that∫
Ω
u(x, t)dx = 0 we immediately obtain

d

dt
E(t) =

∫
Ω

|∇u|p−2∇u · ∇utdx−
∫

Ω

|u|q−1uutdx

= −
∫

Ω

ut

[
div(|∇u|p−2∇u) + |u|q−1u

]
dx

= −
∫

Ω

u2
tdx−

1
|Ω|

∫
Ω

|u|q−1udx ·
∫

Ω

utdx

= −
∫

Ω

u2
tdx ≤ 0.

Thus, E(t) is non-increasing in t. The proof is complete. �

The next lemma gives a uniform positive lower bound of ‖∇u(·, t)‖p, which will
play an essential role in the proof of Theorem 2.2.

Lemma 2.4. Suppose that u(x, t) is a weak solution of (1.1), E(0) < E1 and
‖∇u0‖p > α1. Then there exists a positive constant α2 > α1, such that

‖∇u(·, t)‖p ≥ α2, ∀t ≥ 0, (2.5)

‖u‖q+1 ≥ Bα2, ∀t ≥ 0. (2.6)

Proof. It can be deduced from (2.2) and (2.4) that

E(t) ≥ 1
p
‖∇u‖pp −

1
q + 1

Bq+1‖∇u‖q+1
p

=
1
p
αp − 1

q + 1
Bq+1αq+1 =: l(α),

(2.7)

where α = α(t) = ‖∇u(·, t)‖p. It is easy to see that α = α1 is the only critical point
of l(α), that l is strictly increasing for 0 < α < α1, strictly decreasing for α > α1;
l(α) → −∞ as α → +∞ and l(α1) = E1, where α1 and E1 are defined in (2.3).
Since E(0) < E1, there exists an α2 > α1 such that l(α2) = E(0).

Set α0 = ‖∇u0‖p. From (2.7) we have l(α0) ≤ E(0) = l(α2), which implies that
α0 ≥ α2 since α0, α2 ≥ α1. To prove (2.5), we argue by contradiction. Suppose that
‖∇u(·, t0)‖p < α2 for some t0 > 0. By the continuity of ‖∇u(·, t)‖p with respect to
t we may choose t0 such that ‖∇u(·, t0)‖p > α1. Then it follows from (2.7) and the
monotonicity of l that

E(0) = l(α2) < l(‖∇u(·, t0)‖p) ≤ E(t0),

which contradicts Lemma 2.3. Hence (2.5) is proved.
To prove (2.6), we see from (2.4) and Lemma 2.3 that

1
p
‖∇u‖pp ≤ E(0) +

1
q + 1

∫
Ω

|u|q+1dx,
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which implies that
1

q + 1

∫
Ω

|u|q+1dx ≥ 1
p
‖∇u‖pp − E(0) ≥ 1

p
αp2 − E(0)

=
1
p
αp2 − g(α2)

=
1

q + 1
Bq+1αq+1

2 .

Therefore, (2.6) holds. The proof is complete. �

Let
H(t) = E1 − E(t), t ≥ 0. (2.8)

Lemma 2.5. For all t ≥ 0,

0 < H(0) ≤ H(t) ≤ 1
q + 1

∫
Ω

|u|q+1dx. (2.9)

Proof. It is easily seen from Lemma 2.3 that H ′(t) ≥ 0, which in turn implies
H(t) ≥ H(0) > 0, t ≥ 0. On the other hand, by the definition of E(t) and H(t) we
have

H(t) = E1 −
1
p
‖∇u‖pp +

1
q + 1

∫
Ω

|u|q+1dx.

Recalling (2.5) and (2.3) one obtains

E1 −
1
p
‖∇u‖pp ≤ E1 −

1
p
αp1 = − 1

q + 1
Bq+1αq+1

1 ≤ 0, t ≥ 0,

which completes the proof. �

We can now prove Theorem 2.2 on the basis of the above three lemmas.

Proof of Theorem 2.2. Define G(t) = 1
2

∫
Ω
u2(x, t)dx and take derivative with re-

spect to t to obtain

G′(t) =
∫

Ω

uutdx

=
∫

Ω

u
[
div(|∇u|p−2∇u) + |u|q−1u− 1

|Ω|

∫
Ω

|u|q−1udx
]
dx

=
∫

Ω

|u|q+1dx−
∫

Ω

|∇u|pdx

=
∫

Ω

|u|q+1dx− pE(t)− p

q + 1

∫
Ω

|u|q+1dx

=
q − p+ 1
q + 1

∫
Ω

|u|q+1dx− pE1 + pH(t)

≥ q − p+ 1
q + 1

∫
Ω

|u|q+1dx− pE1.

(2.10)

Recalling (2.3) and (2.6) we have

pE1 = p(
1
p
− 1
q + 1

)B−
p(q+1)
q−p+1

=
αq+1

1

αq+1
2

q − p+ 1
q + 1

Bq+1αq+1
2
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≤ αq+1
1

αq+1
2

q − p+ 1
q + 1

∫
Ω

|u|q+1dx.

Substituting the above inequality into (2.10) we obtain

G′(t) ≥
(

1− αq+1
1

αq+1
2

)q − p+ 1
q + 1

∫
Ω

|u|q+1dx = C0

∫
Ω

|u|p+1dx ≥ 0, (2.11)

where

C0 =
(

1− αq+1
1

αq+1
2

)q − p+ 1
q + 1

> 0.

On the other hand, by using Hölder’s inequality we have

G
q+1
2 (t) =

(1
2

∫
Ω

u2(x, t)dx
) q+1

2 ≤ C
∫

Ω

|u|q+1dx, (2.12)

where C > 0 is a constant depending only on |Ω| and q. By combining (2.11) with
(2.12) we have

G′(t) ≥ γG
q+1
2 (t), (2.13)

where γ = C0/C > 0. A direct integration of (2.13) from 0 to t yields

G
q−1
2 (t) ≥ 1

G(1−q)/2(0)− q−1
2 γt

.

Thus, G(t) blows up at a finite time T ∗ ≤ G(1−q)/2(0)
q−1
2 γ

, and so does u(x, t). The
proof is complete. �

3. Extinction results

In this section, we confine ourselves to the study of the extinction properties of
solutions to (1.1). More precisely, we will indicate whether or not the solutions
will vanish in finite time, depending on the parameters p and q as well as on
the initial energy E(0). Before proving the main results, a Sobolev-Poincaré type
inequality for functions belonging to W 1,p(Ω) (not W 1,p

0 (Ω)) will be established
first. This inequality is a generalization of Sobolev-Poincaré type inequality under
the assumption that

∫
Ω
v(x)dx = 0, and will play an critical role in the sequel.

Lemma 3.1. Let f(t) be a continuous function from R to R, and f(t) = 0 implies
t = 0. If

∫
Ω
f(v(x))dx = 0 and v ∈W 1,p(Ω) (p > 1), then

‖v‖q ≤ C‖∇v‖p (3.1)

for all 1 < q ≤ p∗, where p∗ = Np
N−p is the Sobolev conjugate of p, and C > 0 is a

constant depending only on p, q and Ω.

Proof. It is easily seen from the embedding W 1,p(Ω) ↪→ Lp
∗
(Ω) that we need only

to prove (3.1) for the case q = p. Assume on the contrary that there exists a
sequence {vn} such that

‖vn‖p > n‖∇vn‖p. (3.2)
Without loss of generality, we may assume that ‖vn‖p = 1. Since {vn} is bounded
in W 1,p(Ω), there exist a subsequence of {vn}, which we still denote by {vn} and
a v ∈ W 1,p(Ω) such that vn tends to v strongly in Lp(Ω), weakly in W 1,p(Ω) and
almost everywhere in Ω. In particular, we have ‖v‖p = 1.
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From (3.2) we know that ∇vn tends to 0 as n→∞, and ∇v = 0. Hence, v is a
constant that not equals 0. On the other hand, we can deduce from

∫
Ω
f(v(x))dx =

|Ω|f(v) = 0 that v ≡ 0, which is contradiction. The proof of this lemma is complete.
�

Corollary 3.2. Let 1 < p < 2 and s ≥ max{0, 1
p2 (2N−(N+2)p)}. If

∫
Ω
u(x)dx = 0

and ∇(|u|su) ∈ Lp(Ω), then

‖u‖p(s+1)
ps+2 ≤ γ‖∇(|u|su)‖pp, (3.3)

where γ > 0 is a constant depending only on p, s and Ω.

Proof. Taking f(t) = |t|−
s

1+s t, v = |u|su and q = ps+2
s+1 in Lemma 3.1, we can easily

prove this corollary. �

We are now in a position to prove the extinction properties of solutions to (1.1),
by combining the method of energy estimates with the above corollary.

Theorem 3.3. (I) If p − 1 < q < 1, then the weak solutions to (1.1) vanish in
finite time provided that u0 is suitably small;

(II) If q ≥ 1, then the bounded weak solutions to (1.1) vanish in finite time
provided that u0 is suitably small;

(III) If q = p− 1, then the weak solutions to (1.1) vanish in finite time provided
that |Ω| is suitably small.

Proof. Multiplying the first equation in (1.1) by |u|psu with s ≥ max
{

0, 1
p2 (2N −

(N + 2)p)
}

and integrating by parts over Ω, one obtains

1
ps+ 2

d

dt

∫
Ω

|u|ps+2dx +
ps + 1

(s + 1)p

∫
Ω

|∇(|u|su)|pdx

=
∫

Ω

|u|ps+q+1dx− 1
|Ω|

∫
Ω

|u|q−1udx
∫

Ω

|u|psudx.
(3.4)

(I) p − 1 < q < 1: Applying (3.3) to the second term on the left hand side of
(3.4) and using Hölder’s inequality on the right hand side, we arrive at

d

dt

∫
Ω

|u|ps+2dx + C
(∫

Ω

|u|ps+2dx
) ps+p

ps+2

≤ 2(ps+ 2)|Ω|
1−q
ps+2

(∫
Ω

|u|ps+2dx
) ps+q+1

ps+2
,

(3.5)

where C = (ps+2)(ps+1)
γ(s+1)p . Set J(t) =

∫
Ω
|u|ps+2dx, then the above inequality can be

rewritten as

J ′(t) ≤ −J
ps+p
ps+2

[
C − 2(ps+ 2)|Ω|

1−q
ps+2 J

q+1−p
ps+2 (t)

]
. (3.6)

Choose u0 sufficiently small such that

C − 2(ps+ 2)|Ω|
1−q
ps+2 J

q+1−p
ps+2 (0) > 0,

then we have
J ′(t) ≤ −C1J

ps+p
ps+2 , (3.7)
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where C1 = C − 2(ps+ 2)|Ω|
1−q
ps+2 J

q+1−p
ps+2 (0). Noticing that 0 < ps+p

ps+2 < 1, by direct
computation we have

J
2−p
ps+2 (t) ≤

[
J

2−p
ps+2 (0)− C1(2− p)

ps+ 2
t
]

+
.

Thus, J(t) vanishes in finite time and so does u(x, t).
(II) q ≥ 1: Suppose that ‖u‖∞ ≤M . Then it can be deduced from (3.4) that

d

dt

∫
Ω

|u|ps+2dx + C
(∫

Ω

|u|ps+2dx
) ps+p

ps+2 ≤ 2(ps + 2)Mq−1

∫
Ω

|u|ps+2dx. (3.8)

Thus, by using the argument similar to Case (I) we can prove the finite time ex-
tinction of u(x, t) provided that the initial datum u0(x) is suitably small.

(III) q = p− 1: In this case, (3.6) becomes

J ′(t) ≤ −J
ps+p
ps+2

[
C − 2(ps+ 2)|Ω|

2−p
ps+2

]
. (3.9)

Although the constant C in (3.9) depends on Ω, it does not tend to 0 as |Ω| tends
to 0. Thus, we can choose |Ω| so small that C2 := C − 2(ps + 2)|Ω|

2−p
ps+2 > 0 since

p < 2. The remaining argument is similar to that in Case (I) and therefore is
omitted. The proof is complete. �

When 0 < q ≤ p − 1, problem (1.1) may admit non-extinction solutions. To
prove this, we need the following lemma which gives a lower bound of the solutions
to an ordinary differential inequality (see [9] for its proof).

Lemma 3.4. Suppose that α,
beta, θ > 0 and h(t) is a non-negative and absolutely continuous function satisfying

h′(t) + αhθ(t) ≥ β, t ∈ (0,∞).

Then h(t) ≥ min{h(0), (βα )
1
θ }.

Theorem 3.5. If 0 < q < p − 1, then (1.1) admits no extinction solutions when
E(0) < 0; If q = p − 1, then (1.1) admits no extinction solutions when E(0) ≤ 0.
Here E(t) is defined in (2.4).

Proof. We define G(t) = 1
2

∫
Ω
u2(x, t)dx and take derivative with respect to t to

obtain

G′(t) =
∫

Ω

uutdx

=
∫

Ω

u
[
div(|∇u|p−2∇u) + |u|q−1u− 1

|Ω|

∫
Ω

|u|q−1udx
]
dx

=
∫

Ω

|u|q+1dx−
∫

Ω

|∇u|pdx

=
∫

Ω

|u|q+1dx− pE(0) + p

∫ t

0

∫
Ω

u2
sdxds− p

q + 1

∫
Ω

|u|q+1dx

≥ q − p+ 1
q + 1

∫
Ω

|u|q+1dx− pE(0).

(3.10)

When 0 < q < p− 1, Hölder’s inequality implies

q − p+ 1
q + 1

∫
Ω

|u|q+1dx ≥ q − p+ 1
q + 1

|Ω|
1−q
2

[ ∫
Ω

|u|2dx
] q+1

2
. (3.11)
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Substituting (3.11) into (3.10) and recalling E(0) < 0 and Lemma 3.4 we see that
G(t) > 0 for all t > 0.

When q = p− 1, it follows from (3.10) and E(0) ≤ 0 that G′(t) ≥ 0, which then
implies G(t) ≥ G(0) > 0 since u0 6≡ 0. Therefore, u(x, t) can not vanish in finite
time in each case. The proof is complete. �
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