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GLOBAL AND LOCAL BEHAVIOR OF THE BIFURCATION
DIAGRAMS FOR SEMILINEAR PROBLEMS

TETSUTARO SHIBATA

Abstract. We consider the nonlinear eigenvalue problem

u′′(t) + λ(u(t)p − u(t)q) = 0, u(t) > 0, −1 < t < 1,

u(1) = u(−1) = 0,

where 1 < p < q are constants and λ > 0 is a parameter. It is known in [13]

that the bifurcation curve λ(α) consists of two branches, which are denoted

by λ±(α). Here, α = ‖uλ‖∞. We establish the asymptotic behavior of the
turning point αp of λ(α), namely, the point which satisfies dλ(αp)/dα = 0 as

p → q and p → 1. We also establish the asymptotic formulas for λ+(α) and

λ−(α) as α→ 1 and α→ 0, respectively.

1. Introduction

We consider the nonlinear eigenvalue problem

u′′(t) + λ(u(t)p − u(t)q) = 0, t ∈ I := (−1, 1), (1.1)

u(t) > 0, t ∈ I, (1.2)

u(1) = u(−1) = 0, (1.3)

where 1 < p < q are constants and λ > 0 is a parameter.
Nonlinear elliptic eigenvalue problems have been studied by many authors from

the standpoint of bifurcation analysis . We refer to [1, 2, 3, 4, 5, 6, 7, 8, 12, 14] and
the references therein. In particular, it is quite significant to study the equations
which have fine structures of the bifurcation diagrams. Among other things, (1.1)–
(1.3) is well known as the model equation which has the parabola-like bifurcation
curve (cf. Figure 1 below). More precisely, it has been proved in [9, Theorem 2.15]
and [13, Theorem 6.19] the following basic properties of the structure of bifurcation
diagram for (1.1)–(1.3).

Theorem 1.1 ([9, 13]). Assume that 1 < p < q. Then there exists a critical λ0

such that (1.1)–(1.3) has no positive solution for 0 < λ < λ0, exactly one positive
solution at λ = λ0, and exactly two positive solutions for λ > λ0. Furthermore, all
solutions lie on a smooth solution curve, and λ is parameterized by α := ‖uλ‖∞
as λ = λ(α). Further, λ(α) consists of two branches λ±(α) and is a parabola-like
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curve with exactly one turn to the right at α = αp ∈ (0, 1), namely, αp is the unique
point which satisfies λ′(αp) = 0. Furthermore,

λ−(α)→∞ as α→ 0, (1.4)

u−(λ, 0)→ 0, (1.5)

λ+(α)→∞ as α→ 1, (1.6)

u+(λ, t)→ 1 (t ∈ I) as λ→∞, (1.7)

where u±(λ, t) is a solution of (1.1)–(1.3) corresponding to λ = λ±(α).

-
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Figure 1. Bifurcation curve λ±(α)

On the other hand, if p = 1, then we know from [1] that the shape of the
bifurcation curve looks as in Figure 2.
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Figure 2. Bifurcation curve for p = 1

Consider now the relationship between Figures 1 and 2. It is quite natural to
expect that if p→ 1, then the shape of the graph in Figure 1 will approach to the
graph in Figure 2 in some sense. To obtain the evidence of this expectation, it is
important to investigate the asymptotic behavior of the graph in Figure 1 as p→ 1.
Related to the observation above, it is worth studying the asymptotic behavior of
the graph in Figure 1 as p→ q.

Now we study the global behavior of λ±(α).

Theorem 1.2. Let 1 < p < q be fixed constants. Let an arbitrary 0 < δ � 1 be
fixed. (i) As α→ 1,√

λ+(α) =
√

1
q − p

(1 +O(δ))α(1−p)/2| log(1− αq−p)|+O(δ−1). (1.8)

(ii) As α→ 0,√
λ−(α) =

√
p+ 1

2
α(1−p)/2(b0 + b1α

q−p +O(α2(q−p)), (1.9)
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where

b0 =
∫ 1

0

1√
1− sp+1

ds, (1.10)

b1 =
p+ 1

2(q + 1)

∫ 1

0

1− sq+1

(1− sp+1)3/2
ds. (1.11)

Our main purpose is to study the local behavior of 0 < αp < 1, which is the
turning point of λ(α). We show how Figure 1 tends to Figure 2 as p → 1. To do
this, we establish the asymptotic formula for αp as p→ 1.

Theorem 1.3. Let q > 1 be a fixed constant. Then as p→ 1,

αq−pp =
b0(q + 1)

k0(p+ 1)(q − p)
(p− 1) +O((p− 1)2), (1.12)

where

k0 =
∫ 1

0

1− sq+1

(1− sp+1)3/2
ds. (1.13)

Furthermore, √
λ(αp) = Dp(p− 1)(1−p)/(2(q−p))(b0 +O(p− 1)), (1.14)

where

Dp :=

√
p+ 1

2
[ b0(q + 1)
k0(p+ 1)(q − p)

](1−p)/(2(q−p))
. (1.15)

Clearly, as p→ 1,

Dp → 1, (p− 1)(1−p)/(2(q−p)) → 1, b0 →
π

2
. (1.16)

Therefore, we see from (1.14) that λ(αp) → π2/4 as p → 1, and the shape of the
bifurcation curve when 0 < p− 1� 1 is as shown in Figure 3.

-
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Figure 3. Bifurcation curve for 0 < p− 1� 1

Finally, we establish the asymptotic formula for αp as p→ q.

Theorem 1.4. Let q > 1 be fixed. Then

αq−pp = 1−O
( q − p
| log(q − p)|2/3

)
as p→ q. (1.17)

It should be mentioned that as far as the author knows, the results such as
Theorems 1.3 and 1.4 seem to be new.

Our methods to prove Theorems 1.2–1.4 are based on the precise and complicated
calculation of the time map.
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-
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Figure 4. Bifurcation curve for 0 < q − p� 1

2. Proof of Theorem 1.2

In this section, we let 0 < p − 1 � 1. We know that if (λ, u) ∈ R+ × C2(Ī)
satisfies (1.1)–(1.3), then

u(t) = u(−t), 0 ≤ t ≤ 1, (2.1)

u(0) = max
−1≤t≤1

u(t), (2.2)

u′(t) < 0, 0 < t ≤ 1. (2.3)

We parameterize the solution pair by using the L∞ norm of the solution α = ‖uλ‖∞
such as (λ, u) = (λ(α), uα) (0 < α < 1). By (1.1), for t ∈ Ī,

[u′′α(t) + λ(uα(t)p − uα(t)q)]u′α(t) = 0.

This implies that for t ∈ Ī,

d

dt

[1
2
u′α(t)2 + λ

( 1
p+ 1

uα(t)p+1 − 1
q + 1

uα(t)q+1
)]

= 0.

By this, (2.2) and putting t = 0, for −1 ≤ t ≤ 1, we obtain

u′α(t)2 + 2λ
( 1
p+ 1

uα(t)p+1 − 1
q + 1

uα(t)q+1
)

= constant = 2λ
( 1
p+ 1

αp+1 − 1
q + 1

αq+1
)
.

By (2.3), for −1 ≤ t ≤ 0, we obtain

u′α(t) =
√

2λ
√

1
p+ 1

(αp+1 − uα(t)p+1)− 1
q + 1

(αq+1 − uα(t)q+1). (2.4)

By this and putting αs = uα(t), we obtain

√
λ =

1√
2

∫ 0

−1

u′α(t)√
(αp+1 − uα(t)p+1)/(p+ 1)− (q + 1)(αq+1 − uα(t))/(q + 1)

dt

=

√
p+ 1

2
α(1−p)/2

∫ 1

0

1√
1− sp+1 − (p+ 1)αq−p(1− sq+1)/(q + 1)

ds.

(2.5)
We put

Ap(α) :=
∫ 1

0

1√
1− sp+1 − (p+ 1)αq−p(1− sq+1)/(q + 1)

ds. (2.6)
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Furthermore, we put for 0 ≤ s ≤ 1,

h(s) := 1− sp+1 − p+ 1
q + 1

αq−p(1− sq+1). (2.7)

It is clear that

h′(s) = −(p+ 1)sp + (p+ 1)sqαq−p, (2.8)

h′′(s) = (p+ 1)sp−1(qsq−pαq−p − p). (2.9)

Lemma 2.1. Let an arbitrary 0 < δ � 1 be fixed. Then as α→ 1,

Ap(α) =

√
2

(p+ 1)(q − p)
(1 +O(δ))| log(1− αq−p)|+O(δ−1). (2.10)

Proof. In what follows, C denotes various positive constants independent of α and
δ. We apply the argument of [15, Theorem 1.1] to the proof of (2.10). By (2.6), we
put

Ap(α) = K1 +K2 :=
∫ 1−δ

0

1√
h(s)

ds+
∫ 1

1−δ

1√
h(s)

ds. (2.11)

We first calculate K1. For 0 ≤ s ≤ 1, we have

h(s) > h1(s) := 1− sp+1 − p+ 1
q + 1

(1− sq+1). (2.12)

Then for 0 ≤ s ≤ 1,

h′1(s) = (p+ 1)sp(−1 + sq−p) ≤ 0. (2.13)

This implies that for 0 ≤ s < 1− δ, by Taylor expansion,

h(s) > h1(s) > h1(1− δ) ≥ Cδ2. (2.14)

By this and (2.11), we obtain

K1 ≤ C
∫ 1−δ

0

1√
δ2
ds = O(δ−1). (2.15)

We next calculate K2. By (2.8), (2.9) and Taylor expansion, for 1 − δ < s < 1,
there exists s < ξs < 1 such that

h(s) = h(1) + h′(1)(s− 1) +
1
2
h′′(ξs)(s− 1)2

= (p+ 1)(1− αq−p)(1− s) +
1
2

(p+ 1)ξp−1
s (qξq−ps αq−p − p)(1− s)2

= d1(1− s)2 + d2(1− s),

(2.16)

where

d1 :=
1
2

(p+ 1)ξp−1
s (qξq−ps αq−p − p), d2 := (p+ 1)(1− αq−p). (2.17)
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By this, (2.16) and putting x = 1− s, we obtain

K2 =
∫ δ

0

1√
d1x2 + d2x

dx

=
1√
d1

[
log |2d1x+ d2 + 2

√
d1(d1x2 + d2x)|

]δ
0

=
1√
d1

(
log(2d1δ + d2 + 2

√
d1(d1δ2 + d2δ))− log |d2|

)
=

1√
d1

(| log(Cδ + C(1− αq−p))| − log(p+ 1) + | log(1− αq−p)|)

=
1√
d1

(O(| log δ|) + | log(1− αq−p)|).

(2.18)

We have
1√
d1

=

√
2

(p+ 1)(q − p)
+
√

2
p+ 1

L1, (2.19)

where

L1 :=

√
1

ξp−1
s (qξq−ps αq−pp − p)

−
√

1
q − p

. (2.20)

Then by direct calculation, as α→ 1, we obtain

L1 ≤ C(1− αq−p + δ) ≤ Cδ. (2.21)

By this, (2.11), (2.15), (2.18) and (2.19), we obtain (2.10). The proof is complete
�

Proof of Theorem 1.2. By (2.5), (2.6) and Lemma 2.1, we obtain (1.8). We next
prove (1.9). By (2.6) and Taylor expansion theorem, for 0 < α� 1, we obtain

Ap(α) =
∫ 1

0

1
√

1− sp+1
√

1− p+1
q+1α

q−p 1−sq+1

1−sp+1

ds

=
∫ 1

0

1√
1− sp+1

{
1 +

p+ 1
2(q + 1)

αq−p
1− sq+1

1− sp+1
+O(α2(q−p))

}
ds

= b0 + b1α
q−p +O(α2(q−p)).

(2.22)

By this and (2.5), we obtain (1.9). Thus the proof is complete. �

3. Proof of Theorem 1.3

In this section, we study the asymptotic behavior of αp as p→ 1. We put

Bp(α) :=
∫ 1

0

1− sq+1

{1− sp+1 − (p+ 1)αq−p(1− sq+1)/(q + 1)}3/2
ds. (3.1)

By this, (2.5) and (2.6), we have

(
√
λ(α))′ =

√
p+ 1

2
α−(1+p)/2

{
− p− 1

2
Ap(α) +

(p+ 1)(q − p)
2(q + 1)

Bp(α)αq−p
}
. (3.2)

Lemma 3.1. αp → 0 as p→ 1.
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Proof. Since λ′(α) = 2
√
λ(α)(

√
λ(α))′, by (3.2), we consider the equation

− p− 1
2

Ap(αp) +
(p+ 1)(q − p)

2(q + 1)
Bp(αp)αq−pp = 0. (3.3)

Then there are three cases to consider. Let an arbitrary 0 < δ � 1 be fixed.

Case 1. Assume that there exists a subsequence of {αp}, denoted by {αp} again,
and constants c0 and c1 such that 0 < c0 < αp < c1 < 1 for λ � 1. Then for
0 < p− 1� 1,

Bp(αp) =
∫ 1−δ

0

1− sq+1

h(s)3/2
ds+

∫ 1

1−δ

1− sq+1

h(s)3/2
ds

=: I1 + I2

> I1 > C

∫ 1−δ

0

(q + 1)δ
[1− (p+ 1)cq−p0 /(q + 1)]3/2

ds

= C1,δ > 0.

(3.4)

By (2.11), we also obtain

Ap(αp) = K1 +K2 :=
∫ 1−δ

0

1√
h(s)

ds+
∫ 1

1−δ

1√
h(s)

ds

< C2,δ +K2.

(3.5)

By Taylor expansion and (2.8), for 1− δ < s < 1, we have

h(s) = h(1) + h′(s̃)(s− 1) = (p+ 1)s̃p(1− αq−pp s̃q−p)(1− s)
> (p+ 1)(1− δ)p(1− αq−pp )(1− s)

> (p+ 1)(1− δ)p(1− cq−p1 )(1− s),
(3.6)

where s < s̃ < 1. By this and (3.5), we obtain

Ap < C2,δ +K2

< C2,δ +
∫ 1

1−δ

1√
(p+ 1)(1− δ)p(1− cq−p1 )(1− s)

ds = C3,δ.
(3.7)

By this and (3.3), we obtain

p− 1
2

C3,δ >
p− 1

2
Ap =

(p+ 1)(q − p)
2(q + 1)

Bpα
q−p
p >

(p+ 1)(q − p)
2(q + 1)

C1,δc
q−p
0 . (3.8)

This is a contradiction, since 0 < p− 1� 1.

Case 2. We assume that αp → 1 and derive a contradiction. By (2.18), (3.4),
Taylor expansion and putting x = 1− s, we obtain

I2 ≥ C
∫ δ

0

(q + 1)x
(d1x2 + d2x)3/2

dx

= C
[ 2d2(q + 1)x
d2
2

√
d1x2 + d2x

]δ
0

=
2C(q + 1)δ

d2

√
d1δ2 + d2δ

.

(3.9)
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By this, (2.17) and (3.2), as αp → 1, we obtain

0 = (
√
λ(αp))′ ≥ −C| log(1− αq−pp )|+ Cδ

1
1− αq−pp

→∞. (3.10)

This is a contradiction. Thus the proof is complete. �

Proof of Theorem 1.3. By (2.7), Lemma 3.1 and Taylor expansion, we obtain

Bp(αp)

=
∫ 1

0

1− sq+1

(1− sp+1)3/2(1− p+1
q+1α

q−p
p

1−sq+1

1−sp+1 )3/2
ds

=
∫ 1

0

1− sq+1

(1− sp+1)3/2
{

1 +
3(p+ 1)
2(q + 1)

αq−pp

1− sq+1

1− sp+1
+O(α2(q−p))

}
ds

= k0 + k1α
q−p +O(α2(q−p)),

(3.11)

where k0 is a constant defined in (1.13) and

k1 =
3(p+ 1)
2(q + 1)

∫ 1

0

(1− sq+1)2

(1− sp+1)5/2
ds. (3.12)

By this, (2.22) and (3.3), for 0 < p− 1� 1, we obtain

αq−pp =
b0(q + 1)

k0(p+ 1)(q − p)
(p− 1) +O((p− 1)2). (3.13)

This implies (1.12). Finally, we show (1.14). By (3.13), as p→ 1, we obtain

logα(1−p)/2
p =

1− p
2

logαp

=
1− p

2(q − p)

(
log(p− 1) + log

(b0(q + 1)(1 + o(1))
k0(p+ 1)(q − p)

))
→ 0.

(3.14)

This implies that α(1−p)/2
p → 1 as p→ 1. By this, (1.9), (2.5) and (3.12), we obtain√

λ(αp) =
√
λ−(αp)

=

√
p+ 1

2

[ b0(q + 1)
k0(p+ 1)(q − p)

(p− 1) +O((p− 1)2)
](1−p)/(2(q−p))

× (b0 + b1α
q−p
p +O(α2(q−p)

p )

=

√
p+ 1

2

[ b0(q + 1)
k0(p+ 1)(q − p)

](1−p)/(2(q−p))
× (p− 1)(1−p)/(2(q−p))(b0 +O(p− 1)).

(3.15)

The proof is complete. �

4. Proof of Theorem 1.4

In this section, we prove Theorems 1.4 by following the strategy of the proof of
Theorems 1.2 and 1.3.

Lemma 4.1. αp → 1 as p→ q.
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Proof. As in the proof of Lemma 3.1, we consider (3.3). There are two cases to be
considered.

Case 1. Assume that there exists a subsequence of {ap}, denoted by {ap} again,
and constants c0 and c1 such that 0 < c0 < αp < c1 < 1 for λ� 1. Let 0 < δ � 1
be a fixed constant. By (3.1), we obtain

Bp(αp) <
∫ 1

0

1− sq+1

(1− sp+1 − (p+ 1)cq−p1 (1− sq+1)/(q + 1))3/2
ds < C. (4.1)

Since Ap(αp) > C4,δ by (3.5), by (3.3) and (4.1), we have

− p− 1
2

Ap(αp) +
(p+ 1)(q − p)

2(q + 1)
Bp(αp)αq−pp

< −p− 1
2

C4,δ +
(p+ 1)(q − p)

2(q + 1)
C < 0.

(4.2)

This is a contradiction.

Case 2. Assume that there exists a subsequence of {αp}, denoted by {αp} again,
such that αp → 0. Then clearly, we have

Ap →
∫ 1

0

1√
1− sp+1

ds, Bp →
∫ 1

0

1− sq+1

(1− sp+1)3/2
ds. (4.3)

This implies

− p− 1
2

Ap(αp) +
(p+ 1)(q − p)

2(q + 1)
Bp(αp)αq−pp < 0. (4.4)

This is a contradiction that completes the proof. �

Proof of Theorem 1.4. We calculate Bp(αp) by using (3.4). Let 0 < δ0 � 1 be a
fixed constant. Then for 0 < δ < δ0, we put

I1 := I1,1 + I1,2 =
∫ 1−δ0

0

1− sq+1

h(s)3/2
ds+

∫ 1−δ

1−δ0

1− sq+1

h(s)3/2
ds. (4.5)

It is cleat that I1,1 = O(1). By (2.16), (2.17), (2.18) and Taylor expansion, we have

I1,2 ≤ C
∫ δ0

δ

(q + 1)x
(d1x2 + d2x)3/2

dx

≤ C
∫ δ0

δ

(q + 1)x
d1x2 + d2x

1√
d1x2 + d2x

dx ≤ Cδ−1

∫ δ0

δ

1√
d1x2 + d2x

dx

≤ Cδ−1| log δ|.

(4.6)

By mean value theorem, for 1− δ < s < 1, we have

sq+1 = 1 + (q + 1)ηqs(s− 1), (4.7)
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where 1− δ < ηs < 1. By this, (2.16) and (2.17), we obtain

I2 =
∫ 1

1−δ

(q + 1)ηqs(1− s)
(d1(1− s)2 + d2(1− s))3/2

ds

=
∫ δ

0

(q + 1)ηqsx
(d1x2 + d2x)3/2

dx

= (q + 1)(1 +O(δ))
[ 2d2x

d2
2

√
d1x2 + d2x

]δ
0

= 2(q + 1)(1 +O(δ))
δ

d2

√
d1δ2 + d2δ

=
2(q + 1)

(p+ 1)(1− αq−pp )
(1 +O(δ))Mδ,

(4.8)

where

Mδ :=
δ√

d1δ2 + d2δ
. (4.9)

By this and (3.3), we obtain

p− 1
2

Ap(αp) = (q − p)
(
Mδ

αq−pp

1− αq−pp

+O(δ−1| log δ|)
)
. (4.10)

This implies

αq−pp =
1

1 +O((q − p)Mδ/Ap)
= 1−O

( (q − p)Mδ

Ap

)
. (4.11)

By (2.17) and (4.9), we have

Mδ ≤
√

δ

d2
≤ C 1√

1− αq−pp

. (4.12)

By this, Lemma 2.1, (2.17) and (4.11), we obtain

1− αq−pp ≤ C (q − p)3/2

| log(1− αq−pp )|
√

1− αq−pp

. (4.13)

This implies 1− αq−pp ≤ C(q − p)� 1, namely,

1
| log(1− αq−pp )|

≤ C 1
| log(q − p)|

. (4.14)

By this and (4.13), we obtain Theorem 1.4. Thus the proof is complete. �
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