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MATHEMATICAL MODELS OF SEISMICS IN COMPOSITE
MEDIA: ELASTIC AND PORO-ELASTIC COMPONENTS

ANVARBEK MEIRMANOV, MARAT NURTAS

Abstract. In the present paper we consider elastic and poroelastic media
having a common interface. We derive the macroscopic mathematical models

for seismic wave propagation through these two different media as a homog-

enization of the exact mathematical model at the microscopic level. They
consist of seismic equations for each component and boundary conditions at

the common interface, which separates different media. To do this we use the

two-scale expansion method in the corresponding integral identities, defining
the weak solution. We illustrate our results with the numerical implementa-

tions of the inverse problem for the simplest model.

1. Introduction

This article is devoted to a description of seismic wave propagation in composite
media Q ⊂ R3, consisting of the elastic medium Ω(0), poroelastic medium Ω, which
is perforated by a periodic system of pores filled with a fluid, and common interface
S(0) between Ω(0) and Ω (see Figures 1, 2). That is, Q = Ω ∪ S(0) ∪ Ω(0) and
Ω = Ωf ∪ Γ ∪ Ωs, where Ωs is a solid skeleton, Ωf is a pore space (liquid domain),
and Γ is a common boundary “solid skeleton-liquid domain”.

The structure of the heterogeneous medium Q is too complicated and makes
hard a numerical simulation of seismic waves propagation in multiscale media. The
main difficulty here is a presence of both components (solid and liquid) in each
sufficiently small subdomain of Q. It requires to change the governing equations
(from Lame’s equations to the Stokes equations) at the scale of some tens microns.

There are two basic methods to describe physical processes in such media: the
phenomenological method and the asymptotical one which is based on the upscal-
ing approaches. The phenomenological approach for waves propagation through a
poroelastic medium [4, 5] leads, in particular, to Biot model [1]-[3]. It based on
the system of axioms (relations between the parameters of the medium), which
define the given physical process. But, there can be another system of axioms
defining the same process. Thus, it is necessary choose the correct authenticity
criterion of the mathematical description of the process. It can be, for example,
the physical experiment. As a rule, each phenomenological model contains some
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set of phenomenological constants. Therefore, one can achieve agreement between
the suggested theory and selected series of experiments changing these parameters.

Figure 1. Domain in consideration

The second method, suggested by Burridge and Keller [6] and Sanchez-Palencia
[7], based on the homogenization. It consists of:

(1) an exact description of the process at the microscopic level based on the
fundamental laws of continuum mechanics,and

(2) the rigorous homogenization of the obtained mathematical model.
To explain the method we consider a characteristic function χ0(x) of the pore

space Ωf . Let L is the characteristic size of the physical domain in consideration,
τ is the characteristic time of the physical process, ρ0 is the mean density of water,
and g is acceleration due gravity. In dimensionless variables

x→ x
L
, w→ ατ

w
L
, t→ t

τ
, F→ F

g
, ρ→ ρ

ρ0
,

the dynamic system for the displacements w and pressure p of the medium takes
the form [6, 7, 8]:

%
∂2w
∂t2

= ∇ · P + %F, (1.1)

P = χ0 αµD(x,
∂w
∂t

) + (1− χ0)αλ D(x,w) +
(
χ0αν(∇ · ∂w

∂t
)− p

)
I, (1.2)

p+ αp∇ ·w = 0. (1.3)

Equations (1.1)-(1.3) are understood in the sense of distributions as corresponding
integral identities. They are equivalent to the Stokes equations

%f
∂v
∂t

= ∇ · Pf + %fF,
∂p

∂t
+ αp,f∇ · v = 0, (1.4)

Pf = αµD(x,v) +
(
αν(∇ · v)− p

)
I (1.5)

for the velocity v = ∂w
∂t and pressure p in the pore space Ωf and the Lame equations

%s
∂2w
∂t2

= ∇ · Ps + %sF, p+ αp,s∇ ·w = 0, (1.6)

Ps = αλD(x,w)− pI (1.7)

for the solid displacements w and pressure p in Ωs.
At the common boundary Γ velocities and normal tensions are continuous:

∂w
∂t

= v, Ps · n = Pf · n. (1.8)

Here n is a unit normal to Γ.
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In (1.1)-(1.8), D(x,u) = 1
2 (∇u +∇u∗) is the symmetric part of ∇u, I is a unit

tensor, F is a given vector of distributed mass forces,

αp = αp,fχ0 + αp,s(1− χ0), % = %f χ0 + %s(1− χ0),

ατ =
L

gτ2
, αµ =

2µ
αττLg ρ0

, αλ =
2λ

ατLg ρ0
,

αν =
2ν

αττLg ρ0
, αp,f =

%fc
2
f

ατLg
, αp,s =

%sc
2
s

ατLg
,

where µ is the dynamic viscosity, ν is the bulk viscosity, λ is the elastic constant,
%f and %s are the respective mean dimensionless densities of the liquid in pores and
the solid skeleton, correlated with the mean density of water ρ0, and cf and cs are
the speed of compression sound waves in the pore liquid and in the solid skeleton
respectively.

Figure 2. The pore structure

The mathematical model (1.1)–(1.3) can not be useful for practical needs, since
the function χ0 changes its value from 0 to 1 on the scale of a few microns. Fortu-
nately, the system possesses a natural small parameter ε = l

L , where l is the average
size of pores. Thus, the most suitable way to get a practically significant math-
ematical model, which approximate (1.1)–(1.3), is a homogenization or upscaling.
That is, we suppose the ε-periodicity of the solid skeleton, let ε to be variable, and
look for the limit in (1.1)–(1.3) as ε→ 0.

There are different homogenized (limiting) systems, depending on of αµ, αλ,
. . . Some of these numbers might be small and some might be large. We may
represent them as a power of ε, or as functions depending on ε.

Let

µ0 = lim
ε↘0

αµ(ε), ν0 = lim
ε↘0

αν(ε), λ0 = lim
ε↘0

αλ(ε),

c2f,0 = lim
ε↘0

αp,f (ε), c2s,0 = lim
ε↘0

αp,s(ε),

µ1 = lim
ε↘0

αµ
ε2
, λ1 = lim

ε↘0

αλ
ε2
.

It is clear that the choice of these limits depend on our willing. For example, for
ε = 10−2 and α = 2 · 10−1 we may state that α = 2 · ε− 1

2 , or α = 0.02 · ε0. It is
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usual procedure when we neglect some terms in differential equations with small
coefficients and get more simple equations, still describing the physical process.

The detailed analyses of all possible limiting regimes has been done in [8, 9].
To describe the seismic in two different media (elastic and poroelastic), having a
common interface we must chose one of the two methods discussed above. The first
method suggests only some guesses, while the second method has a clear algorithm
for the derivation of the boundary conditions. That is why we choose here the
second method.

We derive new seismic equations in each component (elastic and poroelastic) and
the boundary conditions on the common boundary. For these boundary conditions
the very little is known and only for the liquid filtration (see for example [10]).

For three different sets of µ0, λ0, . . . for each component we derive three dif-
ferent mathematical models, which describe the process with different degrees of
approximation.

We start with the integral identities, defining the weak solution wε and pε, and
use the two-scale expansion method [11, 12], when we look for the solution in the
form

wε(x, t) = w(x, t) + W0(x, t,
x
ε

) + εW1(x, t,
x
ε

) + o(ε),

pε(x, t) = p(x, t) + P0(x, t,
x
ε

) + ε P1(x, t,
x
ε

) + o(ε)

with 1-periodic in the variable y functions Wi(x, t,y), Pi(x, t,y), i = 0, 1, . . .
This method is rather heuristic and may lead to the wrong answer. But our

guesses are based upon the strong theory, suggested by G. Nguetseng [13, 14]. For
the rigorous derivation of seismic equations in poroelastic media, which dictate the
correct two-scale expansion, see [8].

Finally, to calculate limits as ε→ 0 in corresponding integral identities, we apply
the well-known result

lim
ε→0

∫
Ω

F (x,
x
ε
, t) dx dt =

∫
Ω

( ∫
Y

F (x,y, t)dy
)
dx dt (1.9)

for any smooth 1-periodic in the variable y ∈ Y function F (x,y, t).

2. Statement of the problem

For the sake of simplicity we suppose that Q = {x = (x1, x2, x3) ∈ R3 : x3 > 0},
Ω(0) = {x = (x1, x2, x3) ∈ R3 : 0 < x3 < H}, Ω = {x = (x1, x2, x3) ∈ R3 : x3 >
H}, F = 0, and

αp,f = c̄2f , αp,s = c̄2s.

Let Y be a unit cube in R3, Y = Yf ∪ γ ∪ Ys. We assume that pore space Ωεf
is a periodic repetition in Ω of the elementary cell εYf , the solid skeleton Ωεs is a
periodic repetition in Ω of the elementary cell εYs, and the boundary Γε between
a pore space and a solid skeleton is a periodic repetition in Ω of the boundary εγ.
Detailed description of the sets Yf and Ys is done in [8]. From these suppositions,

χ0(x) = χε(x) = χ(
x
ε

),

where χ(y) is a 1-periodic function such that χ(y) = 1 for y ∈ Yf and χ(y) = 0 for
y ∈ Ys.
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For a fixed ε > 0 the displacement vector wε and pressure pε satisfy Lame’s
system

%(0)
s

∂2wε

∂t2
= ∇ · P(0)

s , pε + c̄2s,0∇ ·wε = 0, (2.1)

P(0)
s = α

(0)
λ D(x,wε)− pεI (2.2)

in the domain Ω(0) for t > 0, and the system (1.1)-(1.3) with χ0 = χε(x), % = %ε =
%f χ

ε + %s(1−χε), and αp = αεp = αp,fχ
ε +αp,s(1−χε) in the domain Ω for t > 0.

On the common boundary S(0) = {x = (x1, x2, x3) ∈ R3 : x3 = H} the displace-
ment vector and normal tensions are continuous:

lim
x→x0

x∈Ω(0)

wε(x, t) = lim
x→x0

x∈Ω

wε(x, t), x0 ∈ S(0), (2.3)

lim
x→x0

x∈Ω(0)

P(0)(x, t) · e3 = lim
x→x0

x∈Ω

P(x, t) · e3, ,x0 ∈ S(0), (2.4)

where e3 = (0, 0, 1).
The problem is complemented with the boundary condition

P(0)
s · e3 = −p0(x′, t)e3, x′ = (x1, x2) (2.5)

on the outer boundary S = {x = (x1, x2, x3) ∈ R3 : x3 = 0} for t > 0 and
homogeneous initial conditions

wε(x, 0) =
∂wε

∂t
(x, 0) = 0. (2.6)

Let ς(x) be the characteristic function of the domain Ω and

%̃ε = (1− ς)%(0)
s + ς%ε, α̃εp = (1− ς)c̄2s,0 + ς αεp.

Then the above formulated problem takes the form

%̃ε
∂2wε

∂t2
= ∇ ·

(
(1− ς)P(0)

s + ςP
)
, (2.7)

pε + α̃εp∇ ·wε = 0, (2.8)

P = χε αµD(x,
∂wε

∂t
) + (1− χε)αλ D(x,wε)−

(
χε
αν
c̄2f

∂pε

∂t
+ pε

)
I, (2.9)

where in (2.9) we have used the consequence of (2.8) in the form

ς χεαν(∇ · ∂w
ε

∂t
) = −ς χεαν

c̄2f

∂pε

∂t
.

Equation (2.7) is understood in the sense of distributions. That is, for any smooth
functions ϕ with a compact support in Q the following integral identity∫

QT

(
%̃ε
∂2wε

∂t2
· ϕ+

(
(1− ς)P(0)

s + ςP
)

: D(x, ϕ) +∇ · (p0ϕ)
)
dx dt = 0 (2.10)

holds. We call such solution the weak solution.
In (2.10) QT = Q × (0, T ) and the convolution A : B of two tensors A = (Aij)

and B = (Bij) is defined as A : B = tr(A · B) =
∑3
i,j=1AijBji.

Using standard methods one can prove that for any positive ε > 0 and given
smooth function p0 there exists a unique weak solution of the problem (2.7)-(2.9)
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which makes sense to the integral identity (2.10). We look for the limit of the weak
solutions for the following cases:

(I) µ0 = λ0 = λ
(0)
0 = 0, µ1 = λ1 =∞, 0 6 ν0 <∞, λ(0)

0 = limε→0 α
(0)
λ ;

(II) µ0 = λ0 = λ
(0)
0 = µ1 = ν0 = 0, λ1 =∞;

(III) µ0 = ν0 = 0, 0 < λ0, λ(0)
0 , µ1 <∞.

3. Homogenization: case (I)

According to [9], the two-scale expansion for the weak solution of the problem
(2.7)-(2.9) under conditions (I) has the form

wε(x, t) = w(x, t) + o(ε), pε(x, t) = p(x, t) + o(ε), (3.1)

where limε→0 o(ε) = 0.
The substitution (3.1) into (2.10) results in the integral identity∫

ΩT

((
χ(

x
ε

)%f +
(
1− χ(

x
ε

)
)
%s
)∂2w
∂t2
· ϕ− (χ(

x
ε

)
αν
c̄2f

∂p

∂t
+ p)∇ · ϕ

)
dx dt

+
∫
QT

∇ · (p0ϕ) dx dt+
∫

Ω
(0)
T

(
%(0)
s

∂2w
∂t2
· ϕ− p(∇ · ϕ)

)
dx dt = o(ε).

(3.2)

Now we use (1.9) and after the limit in (3.2) as ε→ 0 arrive at the integral identity∫
ΩT

(
%̂
∂2w
∂t2
· ϕ− (m

ν0

c̄2f

∂p

∂t
+ p)∇ · ϕ

)
dx dt+

∫
QT

∇ · (p0ϕ) dx dt

+
∫

Ω
(0)
T

(
%(0)
s

∂2w
∂t2
· ϕ− p(∇ · ϕ)

)
dx dt = 0,

(3.3)

where %̂ = m%f + (1−m)%s and m =
∫
Y
χ(y)dy.

Next we rewrite (2.8) as( (1− ς)
c̄2s,0

+
ς χ(x

ε )
c̄2f

+
ς
(
1− χ(x

ε )
)

c̄2s

)
pε +∇ ·wε = 0 . (3.4)

We multiply the result by a smooth function ψ(x, t) with a compact support in Q,
and integrate by parts over domain QT :∫

QT

(
ψ
( (1− ς)
c̄2s,0

+
ς χ(x

ε )
c̄2f

+
ς
(
1− χ(x

ε )
)

c̄2s

)
pε −∇ψ ·wε

)
dx dt = 0. (3.5)

As above, we substitute (3.1) into (3.5) and pass to the limit as ε→ 0:∫
QT

(
ψ
( (1− ς)
c̄2s,0

+
ς m

c̄2f
+
ς(1−m)

c̄2s

)
p−∇ψ ·w

)
dx dt = 0. (3.6)

Integral identities (3.3) and (3.6), complemented with initial conditions

w(x, 0) =
∂w
∂t

(x, 0) = 0, (3.7)

form mathematical model (I) of seismic in composite media.
In fact, these identities contain the differential equations in Ω and Ω(0) and the

boundary conditions on S and S(0).
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Let ϕ be a smooth function with a compact support in Ω(0). Rewriting (3.3) as∫
Ω

(0)
T

(%(0)
s

∂2w
∂t2

+∇p) · ϕdx dt = 0

and using the arbitrary choice of ϕ we conclude that

%(0)
s

∂2w
∂t2

= −∇p (3.8)

in the domain Ω(0) for t > 0.
For functions ϕ with a compact support in Ω, (3.3) implies

%̂
∂2w
∂t2

= −∇(p+m
ν0

c̄2f

∂p

∂t
), %̂ = m%f + (1−m)%s (3.9)

in the domain Ω for t > 0.
Now, if we choose ϕ = (ϕ1, ϕ2, ϕ3) with a compact support in Q and ϕ3(x, t) 6= 0

for x ∈ S(0), then the integration by parts in (3.3) together with (3.8) and (3.9)
result in ∫

S
(0)
T

(
p− − (p+ +m

ν0

c̄2f

∂p+

∂t
)
)
ϕ3 dx dt = 0,

where

p−(x1, x2, t) = p(x1, x2, H − 0, t), p+(x1, x2, t) = p(x1, x2, H + 0, t).

Therefore,

lim
x→x0

x∈Ω(0)

p(x, t) = lim
x→x0

x∈Ω

(
p(x, t) +m

ν0

c̄2f

∂p

∂t
(x, t)

)
, x0 ∈ S(0). (3.10)

Finally, for functions ϕ with a compact support in Ω(0) and ϕ3(x, t) 6= 0 for x ∈ S
the integration by parts in (3.3) together with (3.8) result in∫

ST

(p− p0)ϕ3 dx dt = 0,

or
p(x, t) = p0(x, t), x ∈ S. (3.11)

In the same way as above, it can be shown that (3.6) implies continuity equations
1
c̄2s,0

p+∇ ·w = 0 (3.12)

and (m
c̄2f

+
(1−m)
c̄2s

)
p+∇ ·w = 0 (3.13)

in the domains Ω(0) and Ω respectively, and the boundary condition

lim
x→x0

x∈Ω(0)

e3 ·w(x, t) = lim
x→x0

x∈Ω

e3 ·w(x, t), x0 ∈ S(0) (3.14)

on the common boundary S(0).
Differential equations (3.8), (3.9), (3.12), and (3.13), boundary conditions (3.10),

(3.11), and (3.14), and initial conditions (3.7) constitute the mathematical model
(I) in its differential form.
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4. Homogenization: case (II)

For this case we put

wε(x, t) = (1− ς)w(x, t) + ςχ(
x
ε

)w(f,ε)(x, t) + ς
(
1− χ(

x
ε

)
)
ws(x, t) + o(ε),

pε(x, t) = p(x, t) + o(ε),
(4.1)

where
w(f,ε)(x, t) = W(f)(x, t,

x
ε

),

and W(f)(x, t,y) is a 1-periodic in the variable y function.
The substitution (4.1) into (2.10) results in the integral identity∫
QT

∇ · (p0ϕ) dx dt+
∫

Ω
(0)
T

(
%(0)
s

∂2w
∂t2
· ϕ− p(∇ · ϕ)

)
dx dt

+
∫

ΩT

((
%fχ(

x
ε

)
∂2W(f)

∂t2
(x, t,

x
ε

) + %s
(
1− χ(

x
ε

)
)∂2ws

∂t2
)
· ϕ− p(∇ · ϕ)

)
dx dt

= −
∫

ΩT

αµ χ(
x
ε

)D(x,
∂w(f,ε)

∂t
) : D(x, ϕ) dx dt+ o(ε),

(4.2)
which holds for any smooth function ϕ(x, t). Let

w(f)(x, t) = ς lim
ε→0

χ(
x
ε

)W(f)(x, t,
x
ε

) = ς

∫
Yf

W(f)(x, t,y)dy

be the weak limit of the sequence {wε}. Then after the limit as ε→ 0 we arrive at
the integral identity∫

QT

∇ · (p0ϕ) dx dt+
∫

Ω
(0)
T

(
%(0)
s

∂2w
∂t2
· ϕ− p(∇ · ϕ)

)
dx dt

=
∫

ΩT

((
%f
∂2w(f)

∂t2
+ %s(1−m)

∂2ws

∂t2
)
· ϕ− p(∇ · ϕ)

)
dx dt = 0.

(4.3)

Note that the term αµD(x, ∂w
(f,ε)

∂t ) in the right-hand side of (4.2) converges to zero
due to the supposition limε↘0 αµ = limε↘0

αµ
ε = 0:

αµD
(
x,
∂w(f,ε)

∂t
(x, t)

)
= αµD

(
x,
∂W(f)

∂t
(x, t,

x
ε

)
)

+
αµ
ε

D
(
y,
∂W(f)

∂t
(x, t,

x
ε

)
)
.

The substitution of (4.1) into the continuity equation (2.8) leads to the integral
identity∫

QT

(
ψ
( (1− ς)
c̄2s,0

+
ς χε

c̄2f
+
ς(1− χε)

c̄2s

)
p

−∇ψ ·
(
(1− ς)w + ςχεW(f)(x, t,

x
ε

) + ς(1− χε)ws

))
dx dt = o(ε).

(4.4)

The limit here as ε→ 0 results in∫
QT

(
ψ
( (1− ς)
c̄2s,0

+
ς m

c̄2f
+
ς(1−m)

c̄2s

)
p+

∇ψ ·
(
(1− ς)w + ςw(f) + ς(1−m)ws

))
dx dt = 0.

(4.5)
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As in previous section we conclude that integral identities (4.3) and (4.5) imply
differential equations in Ω(0) and Ω and boundary conditions on the boundaries
S(0) and S.

Namely, in the domain Ω(0) the displacements vector w and pressure p of the
solid component satisfy the seismic system

%(0)
s

∂2w
∂t2

= −∇p, (4.6)

1
c̄2s,0

p+∇ ·w = 0. (4.7)

In the domain Ω the displacements vector ws of the solid component, displacements
vector w(f) of the liquid component, and pressure p of the medium satisfy the
seismic system

%f
∂2w(f)

∂t2
+ %s(1−m)

∂2ws

∂t2
= −∇p, (4.8)(m

c̄2f
+

(1−m)
c̄2s

)
p+∇ ·

(
w(f) + (1−m)ws

)
= 0. (4.9)

On the common boundary S(0) the displacements vectors w, ws, and w(f) and
pressure p satisfy continuity conditions

lim
x→x0

x∈Ω(0)

p(x, t) = lim
x→x0

x∈Ω

p(x, t), (4.10)

lim
x→x0

x∈Ω(0)

e3 ·w(x, t) = lim
x→x0

x∈Ω

e3 ·
(
w(f)(x, t) + (1−m)ws(x, t)

)
. (4.11)

Finally, on the outer boundary S,

p(x, t) = p0(x, t). (4.12)

As above, we have to add the initial conditions:

w(x, 0) =
∂w
∂t

(x, 0) = ws(x, 0) =
∂ws

∂t
(x, 0)

= w(f)(x, 0) =
∂w(f)

∂t
(x, 0) = 0.

(4.13)

The obtained system of differential equations and boundary and initial conditions
is still incomplete. We have no differential equation for the liquid displacements
w(f). To find the missing equation we pass to the limit ε → 0 in (4.2) with test
functions ϕε in the form

ϕε(x, t) = h(x, t)ϕ0(
x
ε

),

where h is a smooth function with a compact support in Ω and ϕ0(y) is a smooth
function with a compact support in Yf (that is ϕε vanishes outside of the pore
space Ωf ).

For an arbitrary function ϕ0(y) the term p∇ · ϕε becomes unbounded as ε→ 0:

∇ · ϕε =
(
∇x h(x, t)

)
· ϕ0(

x
ε

) +
1
ε
h(x, t)

(
∇y · ϕ0(

x
ε

)
)
.

Therefore, we require that conditions

∇y · ϕ0(y) = 0, y ∈ Yf , (4.14)
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ϕ0(y) = 0, y ∈ γ (4.15)

hold.
The term αµD(x, ∂w

(f,ε)

∂t ) : D(x, ϕε) in the right-hand side of (4.2) converges to
zero because of the assumptions limε↘0 αµ = limε↘0

αµ
ε = limε↘0

αµ
ε2 = 0:

αµD
(
x,
∂w(f,ε)

∂t
(x, t)

)
: D(x, ϕε)

= αµ

(
D
(
x,
∂W(f)

∂t
(x, t,

x
ε

)
)

+
1
ε

D
(
y,
∂W(f)

∂t
(x, t,

x
ε

)
))

:(1
2
(
(∇h)⊗ ϕ0 + ϕ0 ⊗ (∇h)

)
+
h

ε
D
(
y, ϕ0(

x
ε

)
))

= o(ε).

Here a matrix a⊗ b is defined as

(a⊗ b) · c = a(b · c),

for any vectors a, b, and c.
Thus, the limit as ε→ 0 in (4.2) results in the integral identity∫

ΩT

(∫
Yf

(
%f
∂2W(f)

∂t2
h− p (∇ · h)

)
· ϕ0dy

)
dx dt

=
∫

ΩT

h(x, t)
(∫

Yf

(
%f
∂2W(f)

∂t2
+∇p

)
· ϕ0dy

)
dx dt = 0,

(4.16)

which holds for any smooth function h(x, t) with a compact support in Ω and for
any smooth solenoidal function ϕ0(y) with a compact support in Yf .

By arbitrary choice of h(x, t), (4.16) implies∫
Yf

(
%f
∂2W(f)

∂t2
+∇p

)
· ϕ0dy = 0. (4.17)

This identity means that the function
(
%f

∂2W(f)

∂t2 +∇p
)

is orthogonal to any solenoidal
function. Therefore there exists some 1-periodic in the variable y function Π(x, t,y)
such that

%f
∂2W(f)

∂t2
+∇p = −∇y Π (4.18)

in the domain Yf for any parameters (x, t) ∈ ΩT .
There is one equation (4.18) for two unknown functions W(f) and Π. To derive

the second equation we put in (4.4) ψ = ε h(x, t)ψ0(x
ε ) with arbitrary smooth

function h(x, t) and arbitrary smooth 1-periodic function ψ0(y) and pass to the
limit as ε→ 0:∫

ΩT

h(x, t)
(∫

Y

χ(y)∇ψ0(y) ·W(f)(x, t,y)dy
)
dx = 0.

After reintegration we obtain the desired microscopic continuity equation

∇ ·W(f) = 0, y ∈ Yf . (4.19)

A rigorous theory (see [13, 8, 9]) supplies the system (4.18), (4.19) with the bound-
ary condition (

W(f)(x, t,y)−ws(x, t)
)
· n(y) = 0 (4.20)
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on the boundary γ with the unit normal n(y), and the homogeneous initial condi-
tions

W(f)(x, 0,y) =
∂W(f)

∂t
(x, 0,y) = 0. (4.21)

Problem (4.18)-(4.21) has been solved in [9]:

%f
∂2W(f)

∂t2
= %f

∂2ws

∂t2
−
(
I−

3∑
i=1

∇y Πi ⊗ ei
)
·
(
∇ p+ %f

∂2ws

∂t2
)
, (4.22)

where Πi(y), i = 1, 2, 3 are solutions to the periodic boundary value problems

4yΠi = 0, y ∈ Yf , (∇y Πi − ei) · n(y) = 0, y ∈ γ.

Thus,

%f
∂2w(f)

∂t2
= m%f

∂2ws

∂t2
− B(f)

2 ·
(
∇ p+ %f

∂2ws

∂t2
)
, (4.23)

where

B(f)
2 = mI−

3∑
i=1

∫
Yf

∇y Π(f)
i dy ⊗ ei. (4.24)

Differential equations (4.6)-(4.9), (4.23), boundary conditions (4.10)-(4.12), and
initial conditions (4.13) form the mathematical model (II) of seismics in composite
media.

5. Homogenization: case (III)

According to [8] the set of criteria (III) dictates the form of the two-scale expan-
sion:

wε(x, t) = (1− ς)w(x, t) + ς χ(
x
ε

)w(f,ε)(x, t) + ς
(
1− χ(

x
ε

)
)(

ws(x, t)

+ εwε
s(x, t)

)
+ o(ε),

pε(x, t) = (1− ς)p(x, t) + ς χ(
x
ε

)pf (x, t) + ς
(
1− χ(

x
ε

)
)
pεs(x, t) + o(ε),

(5.1)

where

w(f,ε)(x, t) = W(f)(x, t,
x
ε

), wε
s(x, t) = Ws(x, t,

x
ε

), pεs(x, t) = Ps(x, t,
x
ε

),

and W(f)(x, t,y), Ws(x, t,y), Ps(x, t,y) are 1-periodic in the variable y functions.
Next we express the pressure pεs in the solid component in Ω using the continuity

equation (2.8) and two-scale expansion (5.1):

pεs(x, t) = −c̄2s
(
∇ ·ws(x, t) +∇y ·Ws(x, t,

x
ε

)
)

+ o(ε). (5.2)



12 A. MEIRMANOV, M. NURTAS EJDE-2016/184

The substitution of (5.1) and (5.2) into (2.10) results in the integral equality∫
QT

∇ · (p0ϕ) dx dt+
∫

Ω
(0)
T

(
%(0)
s

∂2w
∂t2
· ϕ+

(
λ

(0)
0 D(x,w)− pI

)
: D(x, ϕ)

)
dx dt

+
∫

ΩT

((
%fχ(

x
ε

)
∂2W(f)

∂t2
(x, t,

x
ε

) + %s
(
1− χ(

x
ε

)
)∂2ws

∂t2
)
· ϕ
)
dx dt

+
∫

ΩT

λ0

(
1− χ(

x
ε

)
)(

N(0) :
(
D(x,ws) + D

(
y,Ws(x, t,

x
ε

)
)))

: D(x, ϕ) dx dt

= −
∫

ΩT

χ(
x
ε

)
(αµ
ε

D
(
y,
∂W(f)

∂t
(x, t,

x
ε

)
)
− pf I

)
: D(x, ϕ) dx dt+ o(ε),

(5.3)
which holds for any smooth function ϕ(x, t). In (5.3)

N(0) =
3∑

i,j=1

Jij ⊗ Jij +
c̄2s
λ0

I⊗ I, Jij =
1
2
(
ei ⊗ ej + ej ⊗ ei

)
,

{e1, e2, e3} is a standard Cartesian basis, and the fourth-rank tensor A ⊗ B is the
tensor (direct) product of the second-rank tensors A and B:

(A⊗ B) : C = A(B : C)

for any second-rank tensor C.
After the limit in (5.3) as ε→ 0 we arrive at the integral identity∫

Ω
(0)
T

(
%(0)
s

∂2w
∂t2
· ϕ+

(
λ

(0)
0 D(x,w)− pI

)
: D(x, ϕ)

)
dx dt

+
∫
QT

∇ · (p0ϕ) dx dt+
∫

ΩT

((
%f
∂2w(f)

∂t2
+ %s(1−m)

∂2ws

∂t2
)
· ϕ
)
dx dt

+
∫

ΩT

λ0

(
N(0) :

(
(1−m)D(x,ws) + 〈D(y,Ws)〉Ys

))
: D(x, ϕ) dx dt

=
∫

ΩT

(
mpf I

)
: D(x, ϕ) dx dt,

(5.4)

where

w(f) = 〈W(f) 〉Yf , 〈F 〉A =
∫
A

F (y)dy, A ⊆ Y.

To pass to the limit as ε → 0 in the continuity equation (2.8) we rewrite it as an
integral identity and use the representation (5.1):∫

QT

ψ
( (1− ς)

c̄2s,0
p+ ς χ(

x
ε

)
pf
c̄2f

+ ς
(
1− χ(

x
ε

)
pεs
c̄2s

))
dx dt

−
∫
QT

∇ψ ·
(
(1− ς)w + ς χ(

x
ε

)Wf + ς
(
1− χ(

x
ε

)
)
ws

)
dx dt = o(ε).

(5.5)

In the limit as ε→ 0 results in the integral equality∫
QT

ψ
( (1− ς)
c̄2s,0

p+
ς m

c̄2f
pf +

ς

c̄2s
〈Ps〉Ys

)
) dx dt

−
∫
QT

∇ψ ·
(
(1− ς)w + ςw(f) + ς(1−m)ws

)
dx dt = 0,

(5.6)
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which holds for any smooth function ψ vanishing at S.
Finally, we rewrite the continuity equation in the pore space Ωf as the corre-

sponding integral identity∫
ΩT

ψ
(χε
c̄2f
pε + χε∇ ·wε

)
dx dt

=
∫

ΩT

ψ
(χε
c̄2f
pε +∇ ·wε − (1− χε)∇ ·wε

)
dx dt

=
∫

ΩT

(
ψ
χε

c̄2f
pε − (∇ψ) ·wε − ψ(1− χε)∇ ·wε

)
dx dt,

and apply the two-scale expansion (5.1):∫
ΩT

( ψ
c̄2f
χ(

x
ε

)pf − (∇ψ) ·
(
χ(

x
ε

)Wε
f +

(
1− χ(

x
ε

)
)
ws

)
− ψ

(
1− χ(

x
ε

)
)(
∇ ·ws +∇y ·Ws

))
dx dt = o(ε).

(5.7)

In the limit as ε→ 0 results in the desired integral equality∫
ΩT

(
ψ
m

c̄2f
pf −∇ψ ·w(f) − ψ 〈∇y ·Ws〉Ys

)
dx dt = 0. (5.8)

The localization of (5.4), (5.6), and (5.8) gives as the Lame system

%(0)
s

∂2w
∂t2

= ∇ · P(0)
s , P(0)

s = λ
(0)
0 D(x,w)− pI, (5.9)

p+ c̄2s,0∇ ·w = 0 (5.10)

in the domain Ω(0) for t > 0, the macroscopic dynamic equation

%f
∂2w(f)

∂t2
+ %s(1−m)

∂2ws

∂t2
= ∇ · P̂, (5.11)

P̂ = λ0 N(0) :
(
(1−m)D(x,ws) + 〈D(y,Ws)〉Ys

)
−mpf I (5.12)

for the solid component and the macroscopic continuity equation
m

c̄2f
pf +∇ ·w(f) = 〈∇y ·Ws〉Ys (5.13)

for the liquid component in the domain Ω for t > 0.
The same localization of (5.4) and (5.6) also provides the boundary condition

P(0)
s · e3 = p0 · e3 (5.14)

on the outer boundary S with the unit normal e3, and the continuity conditions

lim
x→x0

x∈Ω(0)

P(0)(x, t) · e3 = lim
x→x0

x∈Ω

P̂(x, t) · e3, (5.15)

lim
x→x0

x∈Ω(0)

w(x, t) · e3 = lim
x→x0

x∈Ω

(
w(f)(x, t) + (1−m)ws(x, t)

)
· e3 (5.16)

on the common boundary S(0) 3 x0 with the unit normal e3.
More detailed mathematical analysis shows that

lim
x→x0

x∈Ω(0)

w(x, t) = lim
x→x0

x∈Ω

(1−m)ws(x, t) (5.17)
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for x0 ∈ S(0). Unfortunately we have no possibility to prove the statement due
technical reasons.

Differential equations and boundary conditions are supplemented with initial
conditions

w(x, 0) =
∂w
∂t

(x, 0) = ws(x, 0) =
∂ws

∂t
(x, 0)

= w(f)(x, 0) =
∂w(f)

∂t
(x, 0) = 0.

(5.18)

However, the obtained system (5.9)-(5.18) is still incomplete. We need two more
differential equations for Ws and W(f). More precisely, we have to express the
terms 〈D(y,Ws)〉Ys and 〈∇y ·Ws〉Ys by means of functions D(x,ws) and pf and
rewrite (5.12) and (5.13) as

P̂ = λ0 Ns : D(x,ws)− pfCs, (5.19)
m

c̄2f
pf +∇ ·w(f) = Cs0 : D(x,ws) +

cs0
λ0
pf . (5.20)

To find the missing equation for the function Ws let us consider the integral identity
(5.3). As in previous section, we choose test functions in the form ϕε(x, t) =
ε h(x, t)ϕ0(x

ε ), where h is an arbitrary smooth function with a compact support
in Ω vanishing on S, and ϕ0(y) is an arbitrary 1-periodic smooth function with a
compact support in Ys.

The limit in (5.3) as ε→ 0 with chosen test functions results in∫
ΩT

h
(∫

Y

(
λ0

(
1− χ(y)

)(
N(0) : (D(x,ws)

+ D(y,Ws)
)
− χ(y)mpf I

)
: D(y, ϕ0)dy

)
dx dt = 0

After a localization we obtain the differential equation

∇y ·
(
λ0

(
1− χ(y)

)
N(0) :

(
D(x,ws) + D(y,Ws)

)
−mpf χ(y)

)
= 0 (5.21)

in the domain Y , which is understood in the sense of distributions. That is, as a
usual differential equation

∇y ·
(
N(0) :

(
D(x,ws) + D(y,Ws)

))
= 0 (5.22)

in the domain Ys. In the same way using test functions with a compact support
localizes at γ we derive the boundary condition(

λ0N
(0) :

(
D(x,ws) + D(y,Ws)

))
· n = −mpf n (5.23)

on the boundary γ. Here n is a unit normal to γ.
The problem (5.18), (5.19) is completed with the periodicity conditions on the

remaining part ∂Ys\γ of the boundary ∂Ys.
Let U(ij)

2 (y) and U(0)
2 (y) be solutions of periodic problems

∇y ·
(

(1− χ)
(
N(0) :

(
J(ij) + D(y,U(ij)

2 )
)))

= 0, (5.24)

∇y ·
(

(1− χ)
(
N(0) : D(y,U(0)

2 ) + I
))

= 0 (5.25)
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in Y . Then

Ws(x, t,y) =
3∑

i,j=1

U(ij)
2 (y)Dij(x, t) +

m

λ0
pf (x, t) U(0)

2 (y),

where

Dij =
1
2

( ∂ui
∂xj

+
∂uj
∂xi

)
, ws = (u1, u2, u3), D(x,ws) =

3∑
i,j=1

DijJ(ij).

Thus

〈D(y,Ws)〉Ys

=
3∑

i,j=1

〈D(y,U(ij)
2 )〉YsDij +

m

λ0
pf 〈D(y,U(0)

2 )〉Ys

=
( 3∑
i,j=1

〈D(y,U(ij)
2 )〉Ys ⊗ J(ij)

)
: D(x,ws) +

m

λ0
pf 〈D(y,U(0)

2 )〉Ys ,

λ0 N(0) :
(
(1−m)D(x,ws) + 〈D(y,Ws)〉Ys

)
−mpf I

= λ0 Ns : D(x,ws)− pfCs,

〈∇y ·Ws〉Ys =
3∑

i,j=1

〈∇y ·U(ij)
2 〉YsDij +

m

λ0
pf 〈∇y ·U(0)

2 〉Ys

=
( 3∑
i,j=1

〈∇y ·U(ij)
2 〉YsJij

)
: D(x,ws) +

(m
λ0
〈∇y ·U(0)

2 〉Ys
)
pf ,

where

Ns = N(0) :
(

(1−m)
3∑

i,j=1

Jij ⊗ Jij +
3∑

i,j=1

〈D(y,U(ij)
2 )〉Ys ⊗ J(ij)

)
, (5.26)

Cs = mI− 〈D(y,U(0)
2 )〉Ys , (5.27)

Cs0 =
3∑

i,j=1

〈∇y ·U(ij)
2 〉YsJij , cs0 = 〈∇y ·U(0)

2 〉Ys . (5.28)

The derivation of the equation for W(f) repeats in its main features the arguments
of the previous section. We choose the test functions ϕε in (5.3) as

ϕε(x, t) = h(x, t)ϕ0(
x
ε

),

where h is a smooth function with a compact support in Ω and ϕ0(y) is a smooth
1-periodic solenoidal function with a compact support in Yf . After the limit as
ε→ 0 and localisation we arrive at the differential equation

%f
∂2W(f)

∂t2
= µ1∇ · D

(
y,
∂W(f)

∂t

)
−∇yΠ(f) −∇pf (5.29)

in the domain Yf for t > 0. Here, as in previous section, we also must define a 1-
periodic in y function Π(f)(x, t,y), which appears due to the choice of test functions.



16 A. MEIRMANOV, M. NURTAS EJDE-2016/184

The missing equation is derived from the continuity equation in its integral form
(5.5) in the same way as in the previous section and coincides with (4.19).

According to [8] and [9] the system (5.29), (4.19) supplies with the boundary
condition

W(f)(x, t,y) = ws(x, t) (5.30)

on the boundary γ, and the homogeneous initial conditions

W(f)(x, 0,y) =
∂W(f)

∂t
(x, 0,y) = 0. (5.31)

Problem (4.19), (5.29)-(5.31) has been solved in [9]:

W(f) = ws(x, t) +
3∑
i=1

∫ t

0

W(f)
i (y, t− τ)

(∂pf
∂xi

(x, τ) + %f
∂2ws,i
∂τ2

(x, τ)
)
dτ

= ws(x, t) +
3∑
i=1

∫ t

0

(
W(f)

i (y, t− τ)⊗ ei
)
·
(
∇pf (x, τ) + %f

∂2ws

∂τ2
(x, τ)

)
dτ,

Π(f)(x, t,y) =
3∑
i=1

∫ t

0

Π(f)
i (y, t− τ)

(∂pf
∂xi

(x, τ) + %f
∂2ws,i
∂τ2

(x, τ)
)
dτ,

where ws = (ws,1, ws,2, ws,3) and {W(f)
i , Π(f)

i } , i = 1, 2, 3, are solutions to the
following periodic initial boundary value problem

%f
∂2W(f)

i

∂t2
= µ1∇ · D

(
y,
∂W(f)

i

∂t
)−∇yΠ(f)

i , (y, t) ∈ Yf × (0, T ), (5.32)

∇y ·W(f)
i (y, t) = 0, (y, t) ∈ Yf × (0, T ), (5.33)

W(f)
i (y, 0) = 0, %f

∂W(f)
i

∂t
(y, 0) = −ei, y ∈ Yf , (5.34)

W(f)
i (y, t) = 0, (y, t) ∈ γ × (0, T ). (5.35)

Thus,

w(f)(x, t) =
∫
Yf

W(f)(x, t,y)dy

= mws(x, t) +
∫ t

0

B(f)
3 (t− τ) ·

(
∇p(x, τ) + %f

∂2ws

∂τ2
(x, τ)

)
dτ,

(5.36)

where

B(f)
3 (t) =

3∑
i=1

∫
Yf

W(f)
i (y, t)dy ⊗ ei. (5.37)

Differential equations (5.9)-(5.11), (5.20), and (5.36), boundary conditions (5.14)-
(5.17), initial conditions (5.18) and state equations (5.19) and (5.26)-(5.28) consti-
tute the mathematical model (III) of seismics in composite media.

6. One dimensional model for the case (I): numerical implementations

Direct problem. For the sake of simplicity we consider the space, which consists
of the following subdomains: Ω1 = {x ∈ R : 0 < x < H1}, Ω2 = {x ∈ R : H1 < x <
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H2}, and Ω3 = {x ∈ R : x > H2}. Differential equations (3.8), (3.9), (3.12), and
(3.13) result in

1
ĉ2(x)

∂2p

∂t2
= div

( 1
ρ̂(x)
∇(p+m

ν0

c̄2f

∂p

∂t
)
)

where
1
ĉ2

=
m

c̄2f
+

(1−m)
c̄2s

and ρ̂ = mρf + (1 −m)ρs are respectively average wave propagation velocity and
average density of the medium.

Applying now the Fourier transformation we arrive at

d2P̂

dX2
+

ρ̂ω2

(1− mν0
c2f
iω)ĉ2

P̂ = 0 (6.1)

where P̂ (x, ω)-the pressure obtained after Fourier transform.

maratainur.jpg

Figure 3. Scheme of arrangement of layers

Depending on the exact physical properties, the sedimentary rock zone is divided
into three subdomains. The value of the geometry of pores, viscosity of fluid, density
of rock, and velocity of seismic wave considered in each layers to be different. In the
experiment in order to get numerical solution, it’s assumed that the first medium
is a shale, the second medium is oil saturated sandstone, and the third medium is
a limestone (see Fig.3).

Let us suppose that there is a plane wave which propagates from ∞. Then the
general solution of equation (6.1) for −∞ < X ≤ H1 in the case ν0 = 0 is written
down as:

P̂1 = exp
{ iω√ρ̂1

ĉ1
x
}

+A2 exp
{−iω√ρ̂1

ĉ1
x
}
. (6.2)

The general solution of equation (6.1) for H1 ≤ x < H2 in the case ν0 > 0 is
represented as:

P̂2 = B1 exp
{ iω

√
ρ̂2

ĉ2
√

1− mν0
c2f
iω
x
}

+B2 exp
{ −iω

√
ρ̂2

ĉ2
√

1− mν0
c2f
iω
x
}
. (6.3)

Finally the general solution for x ≥ H2 in the case ν0 = 0 will be the following:

P̂3 = D1 exp
{
iω

√
ρ̂3

ĉ3
x
}
. (6.4)
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Continuity condition in contact media will be:

[P̂1 − iω
mν0

c2f
P̂1]H1−0 = [P̂2 − iω

mν0

c2f
P̂2]H1+0 (6.5)

ĉ21
d

dx
[P̂1 − iω

mν0

c2f
P̂1]H1−0 = ĉ22

d

dx
[P̂2 − iω

mν0

c2f
P̂2]H1+0 (6.6)

[P̂2 − iω
mν0

c2f
P̂2]H2−0 = [P̂3 − iω

mν0

c2f
P̂3]H2+0 (6.7)

ĉ22
d

dx
[P̂2 − iω

mν0

c2f
P̂2]H2−0 = ĉ23

d

dx
[P̂3 − iω

mν0

c2f
P̂3]H2+0 (6.8)

These relations are nothing else but the system of linear algebraic equations for
the coefficients A2, B1, B2, D1 which can be easily resolved by any direct method.
These coefficients are used in order to construct the solution in time frequency
domain and after inverse Fourier transform in time the solution in the time domain
can be easily recovered (see Fig.4).

Figure 4. Propagation of seismic waves in different layers

Inverse problem. In inverse problem [15] except P̂ (x, ω) the values H1, H2, ĉ2,
ν0, m are unknown as well. To determine these values one needs some additional
information about solution of the direct problem - data of inverse problem. Usually
they are given as function P (ω) at X = 0. The most widespread way is to search
for these values by minimization of the data misfit functional being L2 norm of
the difference of given functions and computed for some current values of unknown
parameters:

Fi(Hi
1, H

i
2) =

∫ ωn

ω1

|P̂i(ω,Hi
1, H

i
2)− P (ω,H1, H2)|2dω → 0 (6.9)

Fi(Hi
1, ĉ

i
2) =

∫ ωn

ω1

|P̂i(ω,Hi
1, ĉ

i
2)− P (ω,H1, ĉ2)|2dω → 0 (6.10)

Fi(Hi
2, ĉ

i
2) =

∫ ωn

ω1

|P̂i(ω,Hi
2, ĉ

i
2)− P (ω,H2, ĉ2)|2dω → 0 (6.11)

Here P (ω, . . . , . . .) is the given wave fields at X = 0, while P̂ (ω, . . . , . . .) are wave
fields computed for some current values of the desired parameters.

In our numerical experiments the minimum is searched by the Nelder-Mead
technique ([17], Fig.5).
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Figure 5. Simple scheme of Nelder-Mead for two variables regular simplex

Recovery of H1 and H2. Behavior of the data misfit functional for this statement
is represented in Figures 6 and 7. As one can see this functional is convex and has
the unique minimum point. Therefore this inverse problem is well resolved.

surfWsveteng.jpg

Figure 6. Minimization of the functional F (H1, H2).

contour200eng.jpg

Figure 7. Level line of the functional F (H1, H2).

Recovery of H1 and c2. Now we come to the non convex functional and therefore
inverse problem may have few solutions (see Figures 8 and 9).

Recovery of H2 and c2. This statement also generates non convex functional, but
now it has excellent resolution with respect to H2 (see Figures 10 and 11).
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Figure 8. Minimization of the functional F (H1, ĉ2).

Figure 9. Level line functional F (H1, ĉ2).

Figure 10. Minimization of the functional F (H2, ĉ2).

Conclusions. In this publication we have shown how to derive mathematical mod-
els for composite media using its microstructure. As a rule, there is some set of
models depending on given criteria µ0, λ0, . . . of the physical process in considera-
tion. For a fixed set of criteria the corresponding model describes some of the main
features of the process.

In the paper the simplest inverse problem was dealt with - recovery of elastic
parameters of the layer by Nelder-Mead algorithm. In the future we are planning
to establish connection upscaling procedure and scattered waves and apply on this
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Figure 11. Level line functional F (H2, ĉ2).

base recent developments of true-amplitude imaging on the base of Gaussian beams
for both reflected and scattered waves [18, 19].
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Addendum posted on November 28, 2016

The editor from Zentralblatt informed us that a big portion of this article coin-
cides with the article

“Seismic in composite media: elastic and poroelastic components” by Anvarbek
Meirmanov; Saltanbek Talapedenovich Mukhambetzhanov and Marat Nurtas (Sib.
Elekron. Mat. Izv. 13, 75-88) (2016) (Zbl 06607056).

The Electron. J. Differential Equations requested an explanation from the au-
thors. They replied that two co-authors submitted the manuscript to two different
journals, and each eventually published it without consulting the other. They write,

It’s my fault that I did not control the process. There is not any
other explanation. Now I do not know what I should do. Maybe the
best way here is to remove the paper from the site, if it is possible.
I apologize once again,
yours sincerely,
Anvarbek Meirmanov.

Since the article is already published, the EJDE editor posted this explanation.
We recommend that co-authors inform each other about their submissions. End of
addendum.
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