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KIRCHHOFF TYPE PROBLEMS WITH POTENTIAL WELL AND
INDEFINITE POTENTIAL

YUANZE WU, YISHENG HUANG, ZENG LIU

ABSTRACT. In this article, we study the Kirchhoff type problem
- (a/ |Vu|?dz + 1>Au + (Za(z) + ao)u = |uP~2u  in R®,
R3
u € HY(R®),
where 4 < p < 6, @ and A are two positive parameters, ag € R is a (possibly
negative) constant and a(x) > 0 is the potential well. Using the variational

method, we show the existence of nontrivial solutions. We also obtain the
concentration behavior of the solutions as A — +oo.

1. INTRODUCTION

In this article, we will study the Kirchhoff type problem

f(oz/ |Vu|?de + I)Au + (Na(z) + ap)u = |uP"2u  in R,
R3 (1.1)

u € HY(R?),
where 4 < p < 6, @ and X\ are two positive parameters, ag € R is a constant and
a(z) is a potential satisfying some conditions to be specified later.

The Kirchhoff type problems in bounded domains is one of most popular nonlocal
problems in the study areas of elliptic equations (cf. [5} [0 16l 18] [22] 23], 28] and the
references therein). One motivation comes from the very important application to
such problems in physics. Indeed, The Kirchhoff type problem in bounded domains
is related to the stationary analogue of the model

Ugp — (a/ |Vu|2dz —|—ﬂ>Au = h(z,u) in Q x (0,7),
o

u=0 ondQx(0,T), (1.2)
u(z,0) =up(z), wu(z,0) =u"(x),

where T > 0 is a constant, ug,u* are continuous functions. Such model was first
proposed by Kirchhoff in 1883 as an extension of the classical D’Alembert’s wave
equations for free vibration of elastic strings, Kirchhoff’s model takes into account
the changes in length of the string produced by transverse vibrations. In , U
denotes the displacement, h(z,u) the external force and § the initial tension while
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« is related to the intrinsic properties of the string (such as Youngs modulus). For
more details on the physical background of Kirchhoff type problems, we refer the
readers to [I} [13].

The Kirchhoff type nonlocal term was introduced to the elliptic equations in R?
by He and Zou in [II], where, by using the variational method, some existence
results of the nontrivial solutions were obtained. Since then, many papers have
been devoted to such topic, see for example [2 10, 12, 15, 17, 24, 26] and the
references therein. In particular, in a recent article [24], Sun and Wu have studied
the Kirchhoff type problem

—(,u/ |Vul?dx + V)Au +Xa(z)u = f(z,u) in R?,
RS
u € HY(RY),
where p, v, A > 0 are parameters and a(z) satisfies the following conditions:
(A1) a(x) € C(R?) and a(x) > 0 on R3.
(A2) There exists as, > 0 such that [Ay| < +00, where Ao, = {z € R3 : a(x) <
(oo} and | Ao is the Lebesgue measure of the set Ax.
(A3) Q =inta—1(0) is a bounded domain and has smooth boundaries with Q =
a=1(0).
Using the variational method, they obtain some existence and non-existence results
of the nontrivial solutions when f(z,w) is 1-asymptotically linear, 3-asymptotically
linear or 4-asymptotically linear at infinity.

Under the conditions (A1)—(A3), Aa(x) is called as the steep potential well for
A sufficiently large and the depth of the well is controlled by the parameter .
Such potentials were first introduced by Bartsch and Wang in [3] for the scalar
Schrédinger equations. An interesting phenomenon for this kind of Schrédinger
equations is that, one can expect to find the solutions which are concentrated at the
bottom of the wells as the depth goes to infinity. Because this interesting property,
such topic for the scalar Schrodinger equations was studied extensively in the past
decade. We refer the readers to [4} [7, 14}, 21], 25] and the references therein. Recently,
the steep potential well was also considered for some other elliptic equations and
systems, see for example [8 [9, 19, 27, 29] and the references therein. To our best
knowledge, most of the literatures on this topic are devoted to the definite case
while the indefinite case was only considered in [4, [7] for the the scalar Schrodinger
equations and in [29] for the Schrédinger-Poisson systems.

Inspired by the above facts, we wonder what will happen for the Kirchhoff type
problem with steep potential wells in the indefinite case of a < 0?7 To our best
knowledge, this kind of problems has not been studied yet in the literatures. Thus,
the purpose of this paper is to explore the preceding problems.

Before stating our results, we shall introduce some notation. By condition (A3),
it is well known that in the case of ag # 0, all the eigenvalues {~;} of the problem

— Au = ~laolu u € H(Q) (1.3)

satisfy 11 < 72 <3 <-+- <7y < ... with 7; — 400 as i — oo and the multiplicity
of ~y; is finite for every ¢ € N. In particular, v, is simple. For each i € N, denote
the corresponding eigenfunctions and the eigenspace of v; by {¢; ;};=12,. & and
N; =span{; ; };=12,. k respectively, where k; are the multiplicity of ;, then ¢; ;
can be chosen so that ||¢; | r2) = ﬁ and {p; ;} can form a basis of H} ().
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Let

ky = inf{k : v, > 1}, (1.4)
then our main result in this paper can be stated as follows.
Theorem 1.1. Suppose that (A1)—(A3) hold. If either ag > 0 or ag < 0 with
Yer—1 < 1 then there exist positive constants o and A, such that (Pa,n) has a
nontrivial solution uq, x for all X > A, and o € (0,a.). Moreover, ug x — Uq

strongly in HY(R3) as A — 400 up to a subsequence and u,, is a nontrivial solution
of the following Kirchhoff type problem.:

—(a/ |Vul?dx + 1>Au—|—a0u = [ulP"?u  in Q,
Q
u=0 on 0.

(1.5)

Remark 1.2. (a) If ag < 0 with |ag| large enough then it is easy to see that k§ > 1.
It follows that is indefinite in a suitable Hilbert space (see Lemma 2.5 for more
details). To out best knowledge, Theorem is the first result for the Kirchhoff
type problem in R? for the indefinite case.

(b) Theorem also gives the existence of nontrivial solutions to . Note
that is also indefinite if ag < 0 with |ag| large enough. Thus, to our best
knowledge, it is also the first result for the Kirchhoff type problem on bounded
domains in the indefinite case.

Through this paper, C and C; (i = 1,2,...) will be indiscriminately used to
denote various positive constants. o0,(1) and 0, (1) will always denote the quantities
tending towards zero as n — oo and A — 400 respectively.

2. VARIATIONAL SETTING

By condition (A1), we see that for every ag € R and A > max{0, —*2},

E = {uec D"(R3): / a(z)u*dr < +oo}
R3

equipped with the inner product
(u,v)) = / (VuVov + (Aa(x) + ag) Tuv)dz
R3

is a Hilbert space, which we will denote by E, where (Aa(z)+ag)" = max{\a(z)+
ag,0}. The corresponding norm on E) is

ully = (/quw2 + (alz) + a0)+u2)dm)1/2.

It follows from the Holder inequality, the Sobolev inequality and the conditions
(A1)—(A2) that for every u € E) with A > max{0, —a¢/t},

/ u2dx:/ u2dx+/ uldx
R3 A R3\ Ao

oo

1
< 2/3g—1 2 +,2
< |As PS8 /RS\VU\ da:—&—ao_'_aoo)\/ﬂkg()\a(x)-l-ao) u’dz

. 1
< maX{|AOO|2/3571, m} /RS(‘VUF + (Aa(z) + aO)JruQ)dx
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and
1/p 1/2
(/ uprdz) " < 551/2(/ (VuP +?)dz)
R3 R3

< 551/2\/1 + max{| A [2/351,

1
ag + Aoo A

1/2
x (/ (19uP + (Aa(2) + ao) Fu?)da)
R3
where S and S, are the best Sobolev embedding constant from D!?(R3) to L°(R?)
and H'(R?) to LP(R3) respectively; that is,
= inf{|[Vul|Z2 gs) : w € DVA(R?), [Juffoms) =1}
and
Sp = inf{”VU’”%?(R?’) + ||U||%2(1R3) cue H'(RY), ||UH%P(R3) =1},
where || - || Lr(gs) is the usual norm in LP(R?) for all p > 1.
Let dy = \/max{|Aoo|2/3S !

s +a 5 }. Then we have

Jull 2y < dallullx and full gy < 8,201+ d [l (2.1)

which yields that E,\ is embedded continuously into H'(R?) for A > max{0, 7% }.
Moreover, by using , the conditions (A1)-(A2) and by following a standard
argument, we can show that corresponding energy functional J,, x(u) to the Problem

(L1), given by

a 1 1
Ja (W) = ZIVulbags) + 5 / (190 + Qha(a) + o)) = [l

is C? in Ej for A\ > max{0, =% }. For the sake of convenience, we re-write the
energy functional Jy(u) by

Jax(u) HVUHL2(R3)+ a3~ *Dx(u u) - IIUII’LP(Rs),

where Dy (u,v) = [gs(Aa(x)+ag)  uvdz and (Aa(x)+ao)” = max{—(Aa(x)+ag),0}.
In what follows, inspired by [7, 29], we shall make some further observations on the
functional D,\(u w).

By condition (A1), [ps(Xa(z) + ag)u 2dx > 0 for all u € E) with A > 0 in the
case of ag > 0. It follows that Dy (u,u) is definite on E) with A > 0 in the case of
ag > 0. Let us consider the case of ag < 0 in what follows. Let

Ay = {2 € R®: \a(z) + ap < 0},
then by the condition (A3), we have Q C A, which means that Ay # 0 for every
A > 0, and moreover, by the conditions (A1)—(A2), the real number
Ag :=inf{X > 0: |A\| < +o0}.
we define

Fr:={u € E) :suppu C R*\ A }.

It follows from the conditions (A1)-(A3) that F is nonempty, closed and convex
with Fy # E\. Hence, E\ = F) @fi‘ and ]:f‘ # () for A > Ag in the case of ag < 0,
where ]-'/{- is the orthogonal complement of F) in F).

satisfies 0 < Ag <




EJDE-2016/178 KIRCHHOFF TYPE PROBLEMS 5

Lemma 2.1. Let
BA) = inf ulf3,
A

weF5-ND
where Dy := {u € Ey : Dy(u,u) = 1}. If the conditions (A1)-(A3) hold, then
B(X) is nondecreasing as the function of A on (Ag,+00) and B(N\) can be attained
by some e()\) € Fi-. Furthermore, (e(X), B(A\)) — (p1,71) strongly in H'(R?) x R
as A — +oo up to a subsequence.

Proof. First, thanks to the definition of Ag, we see that Dy(u,u) and ||ul|3 are
weakly continuous and weakly low semi-continuous on Fi- respectively. Thus, we
can use a standard argument to show that $(\) can be attained by some e(\) €
.7-"/{‘ N D, for all A > Ag.

Next, we show that S(A) is nondecreasing as the function of A on (Ag,+00).
Indeed, let Ay > Ag, then by the definition of E), we have E), = E,, in the
sense of sets. It follows that F), C F),, which implies .7-}1 - .7:)%2. Note that
[ull3, > llull3, and Dy, (u,u) < Dz,(u,u) for all u € Ey, by the condition (A1),
Thus, due to the definition of S(A1) and 5(A2), we can see that B(A2) < 8(A1); that
is, B(\) is nondecreasing as a functional of A on (Ag, 4+00).

Finally, we shall prove that (e(\), 3(\)) — (¢1,71) strongly in H!(R3) x R as
A — 400 up to a subsequence. In fact, since [p(Aa(z) + ag)~[e(N)]?dz = 1, it
implies that

ao

lim (a(z) + <) Fle(N)]?dz = 0. (2.2)

A—+oo JRr3 A
Note that H}(2) C Fi- for all A > Ag due to the condition (A3), we can easily show
that 0 < B(\) < 1 for all A > Ag. It follows from that {e(A)} is bounded
in H*(R3) for \. Without loss of generality, we assume that e(\) — e* weakly
in H'(R?) and B(\) — B* as A — +oco. By the Sobolev embedding theorem, the
condition (A2) and (2.2), we must have (e*,3*) € HJ(2) x RT satisfying e* = 0
outside Q and |ag|? [, |e*|?dz = 1 and (e(\), B(X)) — (e*, B*) strongly in L?(R?) xR
as A — +o0o up to a subsequence, which gives

= [ (Ve + (Nafa) + o) (] da

> /Q|Ve*\2da:+o>\(1) (2.3)

> 71 +ox(1).

Hence, (e(M), B(\)) — (e*,71) strongly in H!(R3) x R as A — 400 up to a subse-
quence and (e*, ;) satisfies

Vul?d
7 :/ |Ve*|2dz = inf M
Q ueHY(D\{0} |aol? [ [ul*dx
Thus, e}, = 1 and the proof is complete. (Il
We re-denote the above (e(A), B(A)) by (e1(A\), 81(N\)) and define
Lo oo luly
.7'-)\71 = {U S FA : D)\(u’u) = ﬁl(A)}

Since 2 > y1 > B1(A) for A > A, it is easy to see that }'j:l # Fi-. Thus, we have
Fx=Fu1 @ fi’l*, where fi’f is the orthogonal complement of Fy-; in Fy .
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Lemma 2.2. Suppose that (A1)—(A3) hold. Then there exists Ay > Ao such that
}'/{-,1 = span{e;(A\)} and B2(N) can be attained by some ez (\) € .7-';’1* for A > Ay,
where
B2(A) = Linf w3

Fiy NDa
Furthermore, (e2(N), B2(N)) — (p2.5,72) strongly in HY(R3) x R as A\ — 400 up to
a subsequence for some j € N with 1 < j < ks.
Proof. Since Dy(u,u) and |[ul|3 are weakly continuous and weakly low semi-con-
tinuous on F /\L 1" respectively, by the fact that .7-')%,’1* is weakly closed for A > Ay,
we can also use a standard argument to show that (3(\) can be attained by some
ea(N) € .7-‘;"’1* for A > Ag. For the sake of clarity, the remaining proof will be
performed through the following steps.
Step 1. We prove that there exists A; > Ay such that .7-'/\%1 = span{e;(A\)} for
A > A;. Indeed, suppose on the contrary that there exist ej(\,),ed(\,) € fj’)\’l
with

<e>1k()‘n)ae(1)()‘n>>Exn’Exn =0,
/ (Anal2) + a0)” [} (An) 2z = / (Anal2) + o)~ [0(An) 2d = 1
R3 R3

for {\,} satisfying A,, — +00 as n — co. By Lemma[2.1] we can see that e}(\,) —
o1 and eJ(\,) — @1 strongly in H!(R3) as n — oo up to a subsequence. It follows

from and Lemma once more that
271 = 2B1(An) +0n(1)
= et ()R, + YA, +on(1) (2.4)
= [V(e1(An) = S (A2 (gs) + 0n(1) = 0a(1),
which is a contradiction.

Step 2. We show that limsup,_,, ., f2(A) < v2. In fact, by Step 1, we have
P21 = dye1(N) + ¢5 1y, where dj is a constant and ¢j ;  is the projection of s
in .7-";‘,’1*. Thus, (e1(\), p2.1) By 5y, = d}ller(V)]|3. It follows from the condition (A3)
and Lemma @ that di — 0 as A — 400 up to a subsequence. Now, by the
definition of B2()), we can see from Lemma and a variant of the Lebesgue
dominated convergence theorem (cf. [20, Theorem 2.2]) that

3.1 )\”i
limsup B2(\) < lim sup =
A— 400 A— 400 DA(‘PE,L)HQO;’L)\)
—dier(M)])?
— limsup ||<P2;1 rer (VIS i
Atoo Dalpa1 —dye1(N), a1 — dyei(N))
||V<P2,1||%2(R3)

 ao 2|2,

:’y2'

2
L2 (R3)

Step 3. We prove that limsupy_, . B2(A) > 72 and (e2(A), 52(N)) — (¥2,5,72)
strongly in H!(R3) xR as A\ — 400 up to a subsequence for some j € Nwith 1 < j <
ko. Actually, by Step 2, we know that {ez(\)} is bounded in D*?(R3). Similarly
as in the proof of Lemma[2.1] we can see that (ea()), B2(A)) — (€3, B3) strongly in
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L?(R3) x R as A — +00 up to a subsequence with e3 € H}(Q) and e} = 0 outside
Q. Since Dy (u,u) is weakly continuous on Fy-, we also have |ao|? [, [e3]*dz = 1.
Furthermore, by the theory of Lagrange multipliers, we can also see that (e}, 53)
satisfies . It follows from a variant of the Lebesgue dominated convergence
theorem (cf. [20, Theorem 2.2]) that

||V6§||2L2(R3) = 55\%\”@3”%2@@3)
= B2(A)Dale2(A), e3(A)) + oa(1)
:/ Vea(N)|2da + ox(1)
R3
> ||Ves |72 gsy-

Thus, (e2(N), B2(\)) — (e5, 83) strongly in H'(R3) x R as A — +o00 up to a subse-
quence. By Step 2, we must have 33 = 1 or 35 = 2. If limsup,_,  f2(\) < 72
then there exists {\,} such that (ea(\,), B2(An)) — (91, 71) strongly in L?(R3) x R
as n — 0o up to a subsequence. It follows from Lemma, and Step 2 that

0= {e1(An), e2(An))x,n, = IVL L2 (gs) + 0 (1),

which is a contradiction. O

Let
ful}
Dy(u,u) BN}

Since 73 > 72, it yields from Lemma and condition (A3) that .7:/\%1 69.7:)\%2 # Fy.

fiQZ{UEf)\L

Lemma 2.3. Suppose that (A1)—(A3) hold. Then there exists Ay > A1 such that
dim(]—'iQ) < kg for A > As.

Proof. Let e3()),e5(X) € Fiy. By Lemma [2.2) e3()) — o and e5(X) — a5
strongly in H'(R?®) x R as A — +oco up to a subsequence for some 7,5’ € N with
1 < 4,7 < ko. Clearly, two cases may occur:

(1) 2,5 = @253
(2) w2,j # a2, and [, w2 52 jrdz = 0.

If case (1) happens then by a similar argument used in the proof of (2.4), we can
get that v2 = 0, which is a contradiction. Thus, we must have case (2). It follows

that there exists Ay > A; such that dim(f/\%Q) < kg for A > As. O
Now, by iterating, for m = 3,4, ..., we can define (,,(\) as follows:
BN i= it [ull,
xom DX
where

Far={u€ F: (u,v)y =0, for all v € @ Fi,},
[k

A,m
Di(u,u) - ﬁlo\)}

Similarly as Lemmas and we can obtain the following result.

fii::{uef)%:
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Lemma 2.4. Suppose that (A1)—(A3) hold. Then there exists Ay, > N1 such
that Bm(X) can be attained by some e () € f;‘n’; for A > A,,. Furthermore,
(em(N), Bm(N) = (@m.jsym) strongly in HY(R?) x R as A — +oo up to a sub-
sequence for some j € N with 1 < j < ky, and dim(]-"im) < kpy for X > Ay,
where 2

A
Da(u,u) m(>\)}

Let k§ be given by (L.4), then by Lemmas and @fﬁ;lfii and fi}%

are well defined for A > Ak(»;.

]-'jjm = {ue]-'j‘:

Lemma 2.5. Suppose that (A1)—(A3) hold. If yix—1 < 1 then there exists Kko >

Ay; such that for A > Kka«, it holds that
L kr—1
(1) )y = Pt w) < 30— )l in @ L

1
(2) llully = Dalu,u) > 5(1 = =)

Tk

. 1,
|UH§ m fA,kE'

The proof of the above lemma follows immediately from Lemmas 2.1] [2:2] and
24

Remark 2.6. By Lemmas we also have @fi;lfii = () in the case of
~v1 > 1 while @fil_lfj:i # () and dim(@fil_l}'/{:i) < Zfil_l k; in the case of 71 < 1.

3. NONTRIVIAL SOLUTION

We first consider the case of ag < 0. By the decomposition of Ey, we will find
the nontrivial solution by the linking theorem. Let us first verify that J, (u) has
a linking structure in F) in the case of ag < 0.

Lemma 3.1. Suppose that (A1)—(A3) hold and ay < 0. For every o > 0, if
Brz—1 < 1 then there exists p > 0 independent of A such that

inf Ja)\(u) 2 do (31)

L,*
Fiis S

forall X > Kks, where Sy , = {u € Ej : ||u|lx = p} and dy is a constant independent
of A and «.

Proof. By (2.1) and Lemma for every u € fi}%, we have

o 1 1 1
Jan(u) = IVl 12 gs) + 5 [ullX = 5Da(u,u) - Il o)

2
1 1 2 _ g% 2\E 11,17
> (0= i = 55 (1 d) g (3.2)
2 (1 1 -% 2\2 ), 1p—2
> [l (71— =) = S F(1+ ) F ulg?).
Yk

Note that dy = \/max{|Aoo|2/3S—1, araox ) S0 that

1

ao + oo Mgy

dy < \/max{|Aoo|2/351,
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for A > 1~\k3. It follows from (3.2)) that there exists p > 0 independent on A\ such
that (3-1) holds for all A > Aye. 0

Let
Ok = {u=v+ teka(/\) :t>0and v € @fil_lfii}.

Lemma 3.2. Suppose that (A1)-(A3) hold and ag < 0. If ykz—1 < 1 then there
exist ag > 0 and Ry > p independent of A such that

1
sup Jaa(u) < =dp
R 2

«
AkE

for all A > /Nng in the case of a € (0, a), where dy is given in lemma Qf‘;cg =
QAJCS HBA,RO and B)\,Ro = {u e by : ||u||)\ < RO}

Proof. Let uy € 0Q§, ke Then one of the following two cases must happen:

(a) uy = Ruy, with @y € @fiflfii and [Juy][x < 1.

(b) uy = Riiy with @iy € Q) .\ @18, " Fyt, and ||z ][5 = 1.

If the case (b) happens then by Lemma[2.5] we deduce that

1 1 1

~ @ ~
Joéy)\(U)\) = Ja7)\(RU)\) < ZR4 —+ 5(1 — %)RQ — 1;||RU)\||I£P(R3) (33)

0
Since uy € @fﬁlfii, by Lemmas and ux = U+ ox(1) strongly in
~ i=1,2, kg ~ ~
H'(R3) for some u € span{goi’j}j:ll’2 ____ w and [, |[Vu|*dz = 1. Thus, [@AN7 0 sy =

||ﬁ||1£p(R3) + 0x(1) by the Sobolev embedding theorem.

Note that dim span{¢y; ; }321122];‘:) < Zfil_l ki +1 for all A > /N\kg by Remark

Therefore, there exists a constant M > 0 such that |luprrs) > M for all

u Gspan{gau};jlélfj with [, [Vul?dz = 1. In particular, |[a]1o@s) > M. It

follows from 4 < p < 6 and (3.3)) that there exists a constant Ry(> p) such that
Jax(Rouy) <0 for all A > Ag-. Now, we consider the case of (a). By Lemma
once more, we know that

~ (6%
Ja(12) = Ja(Rin) < S RE,

Thus, there exists ap > 0 such that J, x(uy) < %do for A > INX;CS and « € (0,0). O

From Lemmas and we can see that J, x(u) has a linking structure in
E, with A\ > K% and « € (0, ap) in the case of ag < 0. By the linking theorem,
there exists {u,} C Ey such that (1 + [lup|x)J;, \(un) = 0,(1) strongly in E and
Jax(Un) = cax + 0n(1), where EY is the dual space of Ey. Furthermore, ¢, \ €

[do, $R§+3(1— %)R%] Note that in the special case y; > 1, the linking structure
0

is actually the mountain pass geometry. Thus, the linking theorem can be replaced
by the mountain pass theorem and we can also obtain a sequence {u, } C E) such
that (1 + [Junl[x)J} 5 (un) = 0n(1) strongly in EY and Jo (un) = ca,x + 0n(1). In
the case ap > 0, since 4 < p < 6 and the fact that Dy(u,u) = 0 in E), by using
a standard argument, we can verify that J, »(u) has a mountain pass geometry in
E) for A > 0; that is,

(a) infs, _ Jo,x(u) > C for some p > 0;
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(b) Jax(Ro¢) <0 for some Ry > p and ¢ € HE(Q).
This also gives the existence of a sequence {u,} C E) such that
(L4 flunll3) TG 5 (un) = 0n(1)

strongly in EY and Ju \(un) = ca,x + 0n(1) with ¢ € [Co, CL], where Cy, C), are
two positive constants independent of A. In a word, in both cases of ¢y < 0 and
ap > 0, for A\ > Ay, there exists {u,} C Ex such that (1+ [lun[x)J}, \(un) = 0n(1)
strongly in Ef and Jo (un) = ca,x + 0, (1) with cq x € [Cq, C).
Lemma 3.3. Suppose that (A1)—(A3) hold. For every a > 0, if either ag > 0 or
ag < 0 with Bz 1 < 1 then {||lu,||x} is bounded.

Proof. Since A\ > 7\1@3, by the condition (A2) and the Holder and the Sobolev
inequalities, we obtain that

2
1AWmmJ§md/ funl?ds < Jao|lAoo| 3 S| Vetn |22 g,
Aso

Note that (1 + |lunl[x)J;, \(un) = 0n(1) strongly in EY and Jo,\(un) = ca,x +0n(1),
by the Young inequality and the fact that 4 < p < 6, we deduce that

Cax + 0 (1)

1
= a,/\(un) - I;< é,,\(un)wn,)E;,&

1 1 1 1

1
= a(= — 2)||Vun| 4 S
o = PIVunllias) + (5 =

Muall3 = (5 =

9 )DA(unv un)

RSN

p—2
2p

2(p B 2)2 2 4 49

————lao| [ Ax[3577,

afp—4)p

where (-, -) E:,E, 15 the duality pairing of EY and E). The preceding inequality,

together with cq x € [Cy, Cl] and 4 < p < 6, implies {||u,|[»} is bounded. O

2 4
> (ol Vun| 72 gs) + lunl3) — |aol | Aso| 5 S7H[[Vunl|E gs)

> —— (ol Vunllz2@s) + lual3) ~

By Lemma we can see that u, = uqx + o,(1) weakly in F\ for some
Uq,x € E up to a subsequence. Without loss of generality, we may assume that
Up, = Ug,x + 0, (1) weakly in E}.

Lemma 3.4. Suppose that (A1)—(A3) hold. For every a > 0, if either ag > 0 or
ag < 0 with Brz—1 < 1 then there exists K’fS > Ay such that ua x is a nontrivial

solution of (L)) for X > Ay;.

Proof. We first prove that u x # 0 in E\. Indeed, suppose on the contrary, then by
the Sobolev embedding theorem, we can see that u,, = 0,(1) strongly in L? (R3),

which, together with (A2), implies u,, = 0, (1) strongly in L?(Ay). It follows from
Lemma conditions (A1)-(A2) and the Holder and the Sobolev inequality that

/]R3 |t [Pda < (/RS |un|2dx>6%p (/RB |un|6dx)pT_2

6—p
3(p

—2) 3(1); ) 9 =
; ||Vun||L2(R3)( - |t dx+0n(1)> (3.4)

<S5

3(p—2) 5p—10 1 o7
<S- Cy + o, (1)) (7) WlI2 + on(1).
< 575204 )7 () Tl o)
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On the other hand, by conditions (A1)—(A2) once more, we have
D (i, up) < |a0|/ [un|?dz = 0,(1). (3.5)
Aoc

Therefore, we deduce from the fact that (1 + [lun[[x)J}, \(un) = on(1) strongly in
E that

ol V|72 @) + lual3

6—p

: - 1
< §730=2)(Cy + 0, (1)) T (m) " unll3 + on(1),

which yields that there exists Kkg > /~\k;; dependent of a such that w, = 0,(1)

strongly in F) with A > Kkg. It is impossible since ¢4,y > C, > 0 for all A > [~\k3.
Therefore uy, x # 0 in Ey. It remains to show that J;, 5(ua,s) = 0 in E5. In fact,

without loss of generality, we may assume that HUnH%Z(ﬁs) = A+o0,(1) and consider
the following energy functional

aA 1 1 1
Taa () = = ullfers) + 5llul} = 5PA(w,w) = Il go)-

Clearly, by (2.1)), I (u) is of C* in Ex for A > Ags. Since (1 + [lun[|x)J) \(un) =
0n(1) strongly in EY, it is easy to see from ||u,||3 = A+0,(1) and u,, = ua,\+0n(1)
weakly in B that (I}, \ (un), un —Ua,p) 55, By = 0n(1) and I}, , (uy) = 0, (1) strongly
in B3, so that I}, \ (ua,x) = 0 in E3. In particular, (I}, ) (ua,x), Un — ta,p) 5,5, = 0.
Now, we obtain

on(1) = <I(Ix,)\(un) - I(/I,A(Ua,h)a Up — ua,ﬁ>E§,Ex

aAlun =t plliz@s) + [un — a3

— Dx(uy — Uq, By Un — Ua,ﬁ) — [lun — U, 8 |;ZP(R3)-

Since u,, — Uq,3 = 0,(1) weakly in E), by using similar arguments in the proofs of
(3-4) and (3.5)), we can see that u,, — uq,g = 0,(1) strongly in Ej for A sufficiently
large, say A > Kk;;. Thus, we must have that J&,ﬁ(ua’g) = 0in EY for A > Kk(*]. O

The following lemma will give a description on the concentration behavior of the
nontrivial solutions uq,x as A — +oo0.

Lemma 3.5. Suppose that (A1)-(A3) hold. For every o > 0, if either ag > 0 or
ag < 0 with Bz —1 <1 then we have uq x — uqa strongly in HY(R3) as A\ — +oo up
to a subsequence. Furthermore, u,, is a nontrivial solution of (L.5)).

Proof. Let uq,y, be the nontrivial solution obtained in Lemma [3.4] with A, — 400
as n — oo. By Lemma[3.3] we can see that

/ (|Vuan, [* + (Ana(x) + ao) Tuanx, [*)de < Cy for all n € N,
R3
It follows that {u, »,} is bounded in D'?(R?) for n and

a
[ 0@+ 52 o,

n

2dx = 0,(1).

Without loss of generality, we may assume that us,x, = uqo + 0,(1) weakly in
DY2(R3). Thanks to the Sobolev embedding theorem and conditions (A1)—(A3),
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we can see that uq,x, = U +0,(1) strongly in L?(R?) and u, € H(Q) with uq =0
on R3\Q. Therefore, by the Holder and the Sobolev inequality, we obtain

e, — uocHLP(lR3)
&2 3p—6
< [tan, = tall 2igs) (luan, | Lo@s) + [[tallLoms)) 2 = on(1).

On the other hand, by a variant of the Lebesgue dominated convergence theorem
(cf. [20, Theorem 2.2]) and the condition (A1), we also have Dy, (uq, 1, —Uas Ua,x, —
Uq) = 0p(1). Therefore,

[ ol = sy + 0n(1)

= Dy, (Ua,x, Uar,) + [[tan, |13

A, T a”VUa,)\n

4
L2(R3)
2/oz|Vua|4+\Vua|2—|—a0\ua\2dx+on(1).

Q

Note that u, € Hg(Q) C H'(R?), it is easy to see from J,  (ua,,) = 0 in B}
that u, is a solution of (1.5). In particular,

/ a|Vua|* + | Vua|? + aolua|*de = / |t [Pda.
Q Q
Thus, uq,, = U + 0,(1) strongly in D12(R?) and

/ Ana(@)ul , dz = o, (1).
R3

It follows that u, ., = ua + 0, (1) strongly in H'(R?). Thanks to c, ) > Cy > 0,
U, must be nonzero. Hence, u,, is a nontrivial solution of (1.5]). [l

Proof of Theorem[I.1]. The statement of the theorem follows immediately from
Lemmas B.4] and 3.5 O
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