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KIRCHHOFF TYPE PROBLEMS WITH POTENTIAL WELL AND
INDEFINITE POTENTIAL

YUANZE WU, YISHENG HUANG, ZENG LIU

Abstract. In this article, we study the Kirchhoff type problem

−
“
α

Z
R3
|∇u|2dx+ 1

”
∆u+ (λa(x) + a0)u = |u|p−2u in R3,

u ∈ H1(R3),

where 4 < p < 6, α and λ are two positive parameters, a0 ∈ R is a (possibly

negative) constant and a(x) ≥ 0 is the potential well. Using the variational

method, we show the existence of nontrivial solutions. We also obtain the
concentration behavior of the solutions as λ→ +∞.

1. Introduction

In this article, we will study the Kirchhoff type problem

−
(
α

∫
R3
|∇u|2dx+ 1

)
∆u+ (λa(x) + a0)u = |u|p−2u in R3,

u ∈ H1(R3),
(1.1)

where 4 < p < 6, α and λ are two positive parameters, a0 ∈ R is a constant and
a(x) is a potential satisfying some conditions to be specified later.

The Kirchhoff type problems in bounded domains is one of most popular nonlocal
problems in the study areas of elliptic equations (cf. [5, 6, 16, 18, 22, 23, 28] and the
references therein). One motivation comes from the very important application to
such problems in physics. Indeed, The Kirchhoff type problem in bounded domains
is related to the stationary analogue of the model

utt −
(
α

∫
Ω

|∇u|2dx+ β
)

∆u = h(x, u) in Ω× (0, T ),

u = 0 on ∂Ω× (0, T ),

u(x, 0) = u0(x), ut(x, 0) = u∗(x),

(1.2)

where T > 0 is a constant, u0, u
∗ are continuous functions. Such model was first

proposed by Kirchhoff in 1883 as an extension of the classical D’Alembert’s wave
equations for free vibration of elastic strings, Kirchhoff’s model takes into account
the changes in length of the string produced by transverse vibrations. In (1.2), u
denotes the displacement, h(x, u) the external force and β the initial tension while

2010 Mathematics Subject Classification. 35B38, 35B40, 35J10, 35J20.
Key words and phrases. Kirchhoff type problem; indefinite potential; potential well;

variational method.
c©2016 Texas State University.

Submitted February 19, 2016. Published July 6, 2016.

1



2 Y. WU, Y. HUANG, Z. LIU EJDE-2016/178

α is related to the intrinsic properties of the string (such as Youngs modulus). For
more details on the physical background of Kirchhoff type problems, we refer the
readers to [1, 13].

The Kirchhoff type nonlocal term was introduced to the elliptic equations in R3

by He and Zou in [11], where, by using the variational method, some existence
results of the nontrivial solutions were obtained. Since then, many papers have
been devoted to such topic, see for example [2, 10, 12, 15, 17, 24, 26] and the
references therein. In particular, in a recent article [24], Sun and Wu have studied
the Kirchhoff type problem

−
(
µ

∫
R3
|∇u|2dx+ ν

)
∆u+ λa(x)u = f(x, u) in R3,

u ∈ H1(RN ),

where µ, ν, λ > 0 are parameters and a(x) satisfies the following conditions:
(A1) a(x) ∈ C(R3) and a(x) ≥ 0 on R3.
(A2) There exists a∞ > 0 such that |A∞| < +∞, where A∞ = {x ∈ R3 : a(x) <

a∞} and |A∞| is the Lebesgue measure of the set A∞.
(A3) Ω = inta−1(0) is a bounded domain and has smooth boundaries with Ω =

a−1(0).
Using the variational method, they obtain some existence and non-existence results
of the nontrivial solutions when f(x, u) is 1-asymptotically linear, 3-asymptotically
linear or 4-asymptotically linear at infinity.

Under the conditions (A1)–(A3), λa(x) is called as the steep potential well for
λ sufficiently large and the depth of the well is controlled by the parameter λ.
Such potentials were first introduced by Bartsch and Wang in [3] for the scalar
Schrödinger equations. An interesting phenomenon for this kind of Schrödinger
equations is that, one can expect to find the solutions which are concentrated at the
bottom of the wells as the depth goes to infinity. Because this interesting property,
such topic for the scalar Schrödinger equations was studied extensively in the past
decade. We refer the readers to [4, 7, 14, 21, 25] and the references therein. Recently,
the steep potential well was also considered for some other elliptic equations and
systems, see for example [8, 9, 19, 27, 29] and the references therein. To our best
knowledge, most of the literatures on this topic are devoted to the definite case
while the indefinite case was only considered in [4, 7] for the the scalar Schrödinger
equations and in [29] for the Schrödinger-Poisson systems.

Inspired by the above facts, we wonder what will happen for the Kirchhoff type
problem with steep potential wells in the indefinite case of a < 0? To our best
knowledge, this kind of problems has not been studied yet in the literatures. Thus,
the purpose of this paper is to explore the preceding problems.

Before stating our results, we shall introduce some notation. By condition (A3),
it is well known that in the case of a0 6= 0, all the eigenvalues {γi} of the problem

−∆u = γ|a0|u u ∈ H1
0 (Ω) (1.3)

satisfy γ1 < γ2 < γ3 < · · · < γi < . . . with γi → +∞ as i→∞ and the multiplicity
of γi is finite for every i ∈ N. In particular, γ1 is simple. For each i ∈ N, denote
the corresponding eigenfunctions and the eigenspace of γi by {ϕi,j}j=1,2,...,ki and
Ni =span{ϕi,j}j=1,2,...,ki respectively, where ki are the multiplicity of γi, then ϕi,j
can be chosen so that ‖ϕi,j‖L2(Ω) = 1

|a0|2 and {ϕi,j} can form a basis of H1
0 (Ω).
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Let
k∗0 = inf{k : γk > 1}, (1.4)

then our main result in this paper can be stated as follows.

Theorem 1.1. Suppose that (A1)–(A3) hold. If either a0 ≥ 0 or a0 < 0 with
γk∗0−1 < 1 then there exist positive constants α∗ and Λ∗ such that (Pα,λ) has a
nontrivial solution uα,λ for all λ > Λ∗ and α ∈ (0, α∗). Moreover, uα,λ → uα
strongly in H1(R3) as λ→ +∞ up to a subsequence and uα is a nontrivial solution
of the following Kirchhoff type problem:

−
(
α

∫
Ω

|∇u|2dx+ 1
)

∆u+ a0u = |u|p−2u in Ω,

u = 0 on ∂Ω.
(1.5)

Remark 1.2. (a) If a0 < 0 with |a0| large enough then it is easy to see that k∗0 > 1.
It follows that (1.1) is indefinite in a suitable Hilbert space (see Lemma 2.5 for more
details). To out best knowledge, Theorem 1.1 is the first result for the Kirchhoff
type problem in R3 for the indefinite case.

(b) Theorem 1.1 also gives the existence of nontrivial solutions to (1.5). Note
that (1.5) is also indefinite if a0 < 0 with |a0| large enough. Thus, to our best
knowledge, it is also the first result for the Kirchhoff type problem on bounded
domains in the indefinite case.

Through this paper, C and Ci (i = 1, 2, . . . ) will be indiscriminately used to
denote various positive constants. on(1) and oλ(1) will always denote the quantities
tending towards zero as n→∞ and λ→ +∞ respectively.

2. Variational setting

By condition (A1), we see that for every a0 ∈ R and λ > max{0, −a0
a∞
},

E = {u ∈ D1,2(R3) :
∫

R3
a(x)u2dx < +∞}

equipped with the inner product

〈u, v〉λ =
∫

R3
(∇u∇v + (λa(x) + a0)+uv)dx

is a Hilbert space, which we will denote by Eλ, where (λa(x)+a0)+ = max{λa(x)+
a0, 0}. The corresponding norm on Eλ is

‖u‖λ =
(∫

R3
(|∇u|2 + (λa(x) + a0)+u2)dx

)1/2

.

It follows from the Hölder inequality, the Sobolev inequality and the conditions
(A1)–(A2) that for every u ∈ Eλ with λ > max{0,−a0/a∞},∫

R3
u2dx =

∫
A∞

u2dx+
∫

R3\A∞
u2dx

≤ |A∞|2/3S−1

∫
R3
|∇u|2dx+

1
a0 + a∞λ

∫
R3

(λa(x) + a0)+u2dx

≤ max
{
|A∞|2/3S−1,

1
a0 + a∞λ

}∫
R3

(|∇u|2 + (λa(x) + a0)+u2)dx
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and (∫
R3
|u|pdx

)1/p

≤ S−1/2
p

(∫
R3

(|∇u|2 + u2)dx
)1/2

≤ S−1/2
p

√
1 + max{|A∞|2/3S−1,

1
a0 + a∞λ

}

×
(∫

R3
(|∇u|2 + (λa(x) + a0)+u2)dx

)1/2

,

where S and Sp are the best Sobolev embedding constant from D1,2(R3) to L6(R3)
and H1(R3) to Lp(R3) respectively; that is,

S = inf{‖∇u‖2L2(R3) : u ∈ D1,2(R3), ‖u‖2L6(R3) = 1}

and
Sp = inf{‖∇u‖2L2(R3) + ‖u‖2L2(R3) : u ∈ H1(R3), ‖u‖2Lp(R3) = 1},

where ‖ · ‖Lp(R3) is the usual norm in Lp(R3) for all p ≥ 1.

Let dλ =
√

max{|A∞|2/3S−1, 1
a0+a∞λ

}. Then we have

‖u‖L2(RN ) ≤ dλ‖u‖λ and ‖u‖Lp(R3) ≤ S−1/2
p

√
1 + d2

λ‖u‖λ, (2.1)

which yields that Eλ is embedded continuously into H1(R3) for λ > max{0, −a0
a∞
}.

Moreover, by using (2.1), the conditions (A1)–(A2) and by following a standard
argument, we can show that corresponding energy functional Jα,λ(u) to the Problem
(1.1), given by

Jα,λ(u) =
α

4
‖∇u‖4L2(R3) +

1
2

∫
R3

(|∇u|2 + (λa(x) + a0)u2)dx− 1
p
‖u‖pLp(R3),

is C2 in Eλ for λ > max{0, −a0
a∞
}. For the sake of convenience, we re-write the

energy functional Jλ(u) by

Jα,λ(u) =
α

4
‖∇u‖4L2(R3) +

1
2
‖u‖2λ −

1
2
Dλ(u, u)− 1

p
‖u‖pLp(R3),

whereDλ(u, v) =
∫

R3(λa(x)+a0)−uvdx and (λa(x)+a0)− = max{−(λa(x)+a0), 0}.
In what follows, inspired by [7, 29], we shall make some further observations on the
functional Dλ(u, u).

By condition (A1),
∫

R3(λa(x) + a0)u2dx ≥ 0 for all u ∈ Eλ with λ > 0 in the
case of a0 ≥ 0. It follows that Dλ(u, u) is definite on Eλ with λ > 0 in the case of
a0 ≥ 0. Let us consider the case of a0 < 0 in what follows. Let

Aλ := {x ∈ R3 : λa(x) + a0 < 0},
then by the condition (A3), we have Ω ⊂ Aλ, which means that Aλ 6= ∅ for every
λ > 0, and moreover, by the conditions (A1)–(A2), the real number

Λ0 := inf{λ > 0 : |Aλ| < +∞}.
satisfies 0 < Λ0 ≤ −a0

a∞
. For λ > Λ0, we define

Fλ := {u ∈ Eλ : suppu ⊂ R3\Aλ}.
It follows from the conditions (A1)–(A3) that Fλ is nonempty, closed and convex
with Fλ 6= Eλ. Hence, Eλ = Fλ⊕F⊥λ and F⊥λ 6= ∅ for λ > Λ0 in the case of a0 < 0,
where F⊥λ is the orthogonal complement of Fλ in Eλ.
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Lemma 2.1. Let
β(λ) := inf

u∈F⊥λ ∩Dλ
‖u‖2λ,

where Dλ := {u ∈ Eλ : Dλ(u, u) = 1}. If the conditions (A1)–(A3) hold, then
β(λ) is nondecreasing as the function of λ on (Λ0,+∞) and β(λ) can be attained
by some e(λ) ∈ F⊥λ . Furthermore, (e(λ), β(λ)) → (ϕ1, γ1) strongly in H1(R3) × R
as λ→ +∞ up to a subsequence.

Proof. First, thanks to the definition of Λ0, we see that Dλ(u, u) and ‖u‖2λ are
weakly continuous and weakly low semi-continuous on F⊥λ respectively. Thus, we
can use a standard argument to show that β(λ) can be attained by some e(λ) ∈
F⊥λ ∩ Dλ for all λ > Λ0.

Next, we show that β(λ) is nondecreasing as the function of λ on (Λ0,+∞).
Indeed, let λ1 ≥ λ2, then by the definition of Eλ, we have Eλ1 = Eλ2 in the
sense of sets. It follows that Fλ2 ⊂ Fλ1 , which implies F⊥λ1

⊂ F⊥λ2
. Note that

‖u‖2λ1
≥ ‖u‖2λ2

and Dλ1(u, u) ≤ Dλ2(u, u) for all u ∈ Eλ1 by the condition (A1).
Thus, due to the definition of β(λ1) and β(λ2), we can see that β(λ2) ≤ β(λ1); that
is, β(λ) is nondecreasing as a functional of λ on (Λ0,+∞).

Finally, we shall prove that (e(λ), β(λ)) → (ϕ1, γ1) strongly in H1(R3) × R as
λ → +∞ up to a subsequence. In fact, since

∫
R3(λa(x) + a0)−[e(λ)]2dx = 1, it

implies that

lim
λ→+∞

∫
R3

(a(x) +
a0

λ
)+[e(λ)]2dx = 0. (2.2)

Note that H1
0 (Ω) ⊂ F⊥λ for all λ > Λ0 due to the condition (A3), we can easily show

that 0 < β(λ) ≤ γ1 for all λ > Λ0. It follows from (2.1) that {e(λ)} is bounded
in H1(R3) for λ. Without loss of generality, we assume that e(λ) ⇀ e∗ weakly
in H1(R3) and β(λ) → β∗ as λ → +∞. By the Sobolev embedding theorem, the
condition (A2) and (2.2), we must have (e∗, β∗) ∈ H1

0 (Ω) × R+ satisfying e∗ ≡ 0
outside Ω and |a0|2

∫
Ω
|e∗|2dx = 1 and (e(λ), β(λ))→ (e∗, β∗) strongly in L2(R3)×R

as λ→ +∞ up to a subsequence, which gives

γ1 ≥
∫

R3
(|∇e(λ)|2 + (λa(x) + a0)+[e(λ)]2)dx

≥
∫

Ω

|∇e∗|2dx+ oλ(1)

≥ γ1 + oλ(1).

(2.3)

Hence, (e(λ), β(λ)) → (e∗, γ1) strongly in H1(R3) × R as λ → +∞ up to a subse-
quence and (e∗, γ1) satisfies

γ1 =
∫

Ω

|∇e∗|2dx = inf
u∈H1

0 (Ω)\{0}

∫
Ω
|∇u|2dx

|a0|2
∫

Ω
|u|2dx

.

Thus, e∗α = ϕ1 and the proof is complete. �

We re-denote the above (e(λ), β(λ)) by (e1(λ), β1(λ)) and define

F⊥λ,1 :=
{
u ∈ F⊥λ :

‖u‖2λ
Dλ(u, u)

= β1(λ)
}
.

Since γ2 > γ1 ≥ β1(λ) for λ > Λ0, it is easy to see that F⊥λ,1 6= F⊥λ . Thus, we have
F⊥λ = F⊥λ,1 ⊕F

⊥,∗
λ,1 , where F⊥,∗λ,1 is the orthogonal complement of F⊥λ,1 in F⊥λ .
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Lemma 2.2. Suppose that (A1)–(A3) hold. Then there exists Λ1 ≥ Λ0 such that
F⊥λ,1 = span{e1(λ)} and β2(λ) can be attained by some e2(λ) ∈ F⊥,∗λ,1 for λ > Λ1,
where

β2(λ) := inf
F⊥,∗λ,1 ∩Dλ

‖u‖2λ.

Furthermore, (e2(λ), β2(λ))→ (ϕ2,j , γ2) strongly in H1(R3)×R as λ→ +∞ up to
a subsequence for some j ∈ N with 1 ≤ j ≤ k2.

Proof. Since Dλ(u, u) and ‖u‖2λ are weakly continuous and weakly low semi-con-
tinuous on F⊥,∗λ,1 respectively, by the fact that F⊥,∗λ,1 is weakly closed for λ > Λ0,
we can also use a standard argument to show that β2(λ) can be attained by some
e2(λ) ∈ F⊥,∗λ,1 for λ > Λ0. For the sake of clarity, the remaining proof will be
performed through the following steps.
Step 1. We prove that there exists Λ1 ≥ Λ0 such that F⊥λ,1 = span{e1(λ)} for
λ > Λ1. Indeed, suppose on the contrary that there exist e∗1(λn), e0

1(λn) ∈ F⊥α,λ,1
with

〈e∗1(λn), e0
1(λn)〉Eλn ,Eλn = 0,∫

R3
(λna(x) + a0)−[e∗1(λn)]2dx =

∫
R3

(λna(x) + a0)−[e0
1(λn)]2dx = 1

for {λn} satisfying λn → +∞ as n→∞. By Lemma 2.1, we can see that e∗1(λn)→
ϕ1 and e0

1(λn)→ ϕ1 strongly in H1(R3) as n→∞ up to a subsequence. It follows
from (2.3) and Lemma 2.1 once more that

2γ1 = 2β1(λn) + on(1)

= ‖e∗1(λn)‖2λn + ‖e0
1(λn)‖2λn + on(1)

= ‖∇(e∗1(λn)− e0
1(λn))‖2L2(R3) + on(1) = on(1),

(2.4)

which is a contradiction.
Step 2. We show that lim supλ→+∞ β2(λ) ≤ γ2. In fact, by Step 1, we have
ϕ2,1 = d∗λe1(λ) + ϕ∗2,1,λ, where d∗λ is a constant and ϕ∗2,1,λ is the projection of ϕ2,1

in F⊥,∗λ,1 . Thus, 〈e1(λ), ϕ2,1〉Eλ,Eλ = d∗λ‖e1(λ)‖2λ. It follows from the condition (A3)
and Lemma 2.1 that d∗λ → 0 as λ → +∞ up to a subsequence. Now, by the
definition of β2(λ), we can see from Lemma 2.1, (2.3) and a variant of the Lebesgue
dominated convergence theorem (cf. [20, Theorem 2.2]) that

lim sup
λ→+∞

β2(λ) ≤ lim sup
λ→+∞

‖ϕ∗2,1,λ‖2λ
Dλ(ϕ∗2,1,λ, ϕ

∗
2,1,λ)

= lim sup
λ→+∞

‖ϕ2,1 − d∗λe1(λ)‖2λ
Dλ(ϕ2,1 − d∗λe1(λ), ϕ2,1 − d∗λe1(λ))

=
‖∇ϕ2,1‖2L2(R3)

|a0|2‖ϕ2,1‖2L2(R3)

= γ2.

Step 3. We prove that lim supλ→+∞ β2(λ) ≥ γ2 and (e2(λ), β2(λ)) → (ϕ2,j , γ2)
strongly in H1(R3)×R as λ→ +∞ up to a subsequence for some j ∈ N with 1 ≤ j ≤
k2. Actually, by Step 2, we know that {e2(λ)} is bounded in D1,2(R3). Similarly
as in the proof of Lemma 2.1, we can see that (e2(λ), β2(λ))→ (e∗2, β

∗
2) strongly in
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L2(R3)× R as λ→ +∞ up to a subsequence with e∗2 ∈ H1
0 (Ω) and e∗2 ≡ 0 outside

Ω. Since Dλ(u, u) is weakly continuous on F⊥λ , we also have |a0|2
∫

Ω
|e∗2|2dx = 1.

Furthermore, by the theory of Lagrange multipliers, we can also see that (e∗2, β
∗
2)

satisfies (1.3). It follows from a variant of the Lebesgue dominated convergence
theorem (cf. [20, Theorem 2.2]) that

‖∇e∗2‖2L2(R3) = β∗2 |a0|‖e∗2‖2L2(R3)

= β2(λ)Dλ(e2(λ), e∗2(λ)) + oλ(1)

=
∫

R3
|∇e2(λ)|2dx+ oλ(1)

≥ ‖∇e∗2‖2L2(R3).

Thus, (e2(λ), β2(λ))→ (e∗2, β
∗
2) strongly in H1(R3)×R as λ→ +∞ up to a subse-

quence. By Step 2, we must have β∗2 = γ1 or β∗2 = γ2. If lim supλ→+∞ β2(λ) < γ2

then there exists {λn} such that (e2(λn), β2(λn))→ (ϕ1, γ1) strongly in L2(R3)×R
as n→∞ up to a subsequence. It follows from Lemma 2.1, (2.3) and Step 2 that

0 = 〈e1(λn), e2(λn)〉λn,λn = ‖∇ϕ1‖2L2(R3) + on(1),

which is a contradiction. �

Let

F⊥λ,2 :=
{
u ∈ F⊥λ :

‖u‖2λ
Dλ(u, u)

= β2(λ)
}
.

Since γ3 > γ2, it yields from Lemma 2.2 and condition (A3) that F⊥λ,1⊕F⊥λ,2 6= F⊥λ .

Lemma 2.3. Suppose that (A1)–(A3) hold. Then there exists Λ2 ≥ Λ1 such that
dim(F⊥λ,2) ≤ k2 for λ > Λ2.

Proof. Let e2(λ), e′2(λ) ∈ F⊥λ,2. By Lemma 2.2, e2(λ) → ϕ2,j and e′2(λ) → ϕ2,j′

strongly in H1(R3) × R as λ → +∞ up to a subsequence for some j, j′ ∈ N with
1 ≤ j, j′ ≤ k2. Clearly, two cases may occur:

(1) ϕ2,j = ϕ2,j′ ;
(2) ϕ2,j 6= ϕ2,j′ and

∫
Ω
ϕ2,jϕ2,j′dx = 0.

If case (1) happens then by a similar argument used in the proof of (2.4), we can
get that γ2 = 0, which is a contradiction. Thus, we must have case (2). It follows
that there exists Λ2 ≥ Λ1 such that dim(F⊥λ,2) ≤ k2 for λ > Λ2. �

Now, by iterating, for m = 3, 4, . . . , we can define βm(λ) as follows:

βm(λ) := inf
F⊥,∗λ,m∩Dλ

‖u‖2λ,

where

F⊥,∗λ,m := {u ∈ F⊥λ : 〈u, v〉λ = 0, for all v ∈ ⊕m−1
i=1 F

⊥
λ,i},

F⊥λ,i :=
{
u ∈ F⊥λ :

‖u‖2λ
Dλ(u, u)

= βi(λ)
}
.

Similarly as Lemmas 2.2 and 2.3, we can obtain the following result.
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Lemma 2.4. Suppose that (A1)–(A3) hold. Then there exists Λm ≥ Λm−1 such
that βm(λ) can be attained by some em(λ) ∈ F⊥,∗λ,m for λ > Λm. Furthermore,
(em(λ), βm(λ)) → (ϕm,j , γm) strongly in H1(R3) × R as λ → +∞ up to a sub-
sequence for some j ∈ N with 1 ≤ j ≤ km and dim(F⊥λ,m) ≤ km for λ > Λm,
where

F⊥λ,m :=
{
u ∈ F⊥λ :

‖u‖2λ
Dλ(u, u)

= βm(λ)
}
.

Let k∗0 be given by (1.4), then by Lemmas 2.1, 2.2 and 2.4, ⊕k
∗
0−1
i=1 F⊥λ,i and F⊥,∗λ,k∗0

are well defined for λ > Λk∗0 .

Lemma 2.5. Suppose that (A1)–(A3) hold. If γk∗0−1 < 1 then there exists Λ̃k∗0 ≥
Λk∗0 such that for λ > Λ̃k∗0 , it holds that

(1) ‖u‖2λ −Dλ(u, u) ≤ 1
2 (1− 1

γk∗0−1
)‖u‖2λ in ⊕k

∗
0−1
i=1 F⊥λ,i;

(2) ‖u‖2λ −Dλ(u, u) ≥ 1
2 (1− 1

γk∗0
)‖u‖2λ in F⊥,∗λ,k∗0

.

The proof of the above lemma follows immediately from Lemmas 2.1, 2.2 and
2.4.

Remark 2.6. By Lemmas 2.2–2.4, we also have ⊕k
∗
0−1
i=1 F⊥λ,i = ∅ in the case of

γ1 > 1 while ⊕k
∗
0−1
i=1 F⊥λ,i 6= ∅ and dim(⊕k

∗
0−1
i=1 F⊥λ,i) ≤

∑k∗0−1
i=1 ki in the case of γ1 < 1.

3. Nontrivial solution

We first consider the case of a0 < 0. By the decomposition of Eλ, we will find
the nontrivial solution by the linking theorem. Let us first verify that Jα,λ(u) has
a linking structure in Eλ in the case of a0 < 0.

Lemma 3.1. Suppose that (A1)–(A3) hold and a0 < 0. For every α > 0, if
βk∗0−1 < 1 then there exists ρ > 0 independent of λ such that

inf
F⊥,∗
λ,k∗0
∩Sλ,ρ

Jα,λ(u) ≥ d0 (3.1)

for all λ > Λ̃k∗0 , where Sλ,ρ := {u ∈ Eλ : ‖u‖λ = ρ} and d0 is a constant independent
of λ and α.

Proof. By (2.1) and Lemma 2.5, for every u ∈ F⊥,∗λ,k∗0
, we have

Jα,λ(u) =
α

4
‖∇u‖4L2(R3) +

1
2
‖u‖2λ −

1
2
Dλ(u, u)− 1

p
‖u‖pLp(R3)

≥ 1
4

(1− 1
γk∗0

)‖u‖2λ − S
− p2
p (1 + d2

λ)
p
2 ‖u‖pλ

≥ ‖u‖2λ
(1

4
(1− 1

γk∗0
)− S−

p
2

p (1 + d2
λ)

p
2 ‖u‖p−2

λ

)
.

(3.2)

Note that dλ =
√

max{|A∞|2/3S−1, 1
a0+a∞λ

}, so that

dλ ≤
√

max{|A∞|2/3S−1,
1

a0 + a∞Λ̃k∗0
}
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for λ > Λ̃k∗0 . It follows from (3.2) that there exists ρ > 0 independent on λ such
that (3.1) holds for all λ > Λ̃k∗0 . �

Let
Qλ,k∗0 := {u = v + tek∗0 (λ) : t ≥ 0 and v ∈ ⊕k

∗
0−1
i=1 F

⊥
λ,i}.

Lemma 3.2. Suppose that (A1)–(A3) hold and a0 < 0. If γk∗0−1 < 1 then there
exist α0 > 0 and R0 > ρ independent of λ such that

sup
∂QR0

λ,k∗0

Jα,λ(u) ≤ 1
2
d0

for all λ > Λ̃k∗0 in the case of α ∈ (0, α0), where d0 is given in lemma 3.1, QR0
λ,k∗0

:=
Qλ,k∗0 ∩ Bλ,R0 and Bλ,R0 := {u ∈ Eλ : ‖u‖λ ≤ R0}.

Proof. Let uλ ∈ ∂QRλ,k∗0 . Then one of the following two cases must happen:

(a) uλ = Rũλ with ũλ ∈ ⊕
k∗0−1
i=1 F⊥λ,i and ‖ũλ‖λ ≤ 1.

(b) uλ = Rũλ with ũλ ∈ Q1
λ,k∗0
\ ⊕k

∗
0−1
i=1 F⊥λ,i and ‖ũλ‖λ = 1.

If the case (b) happens then by Lemma 2.5, we deduce that

Jα,λ(uλ) = Jα,λ(Rũλ) ≤ α

4
R4 +

1
2

(1− 1
γk∗0

)R2 − 1
p
‖Rũλ‖pLp(R3). (3.3)

Since ũλ ∈ ⊕
k∗0
i=1F⊥λ,i, by Lemmas 2.1, 2.2 and 2.4, ũλ = ũ + oλ(1) strongly in

H1(R3) for some ũ ∈ span{ϕi,j}
i=1,2,...,k∗0
j=1,2,...,ki

and
∫

Ω
|∇ũ|2dx = 1. Thus, ‖ũλ‖pLp(R3) =

‖ũ‖pLp(R3) + oλ(1) by the Sobolev embedding theorem.

Note that dim span{ϕi,j}
i=1,2,...,k∗0
j=1,2,...,ki

) ≤
∑k∗0−1
i=1 ki + 1 for all λ > Λ̃k∗0 by Remark

2.6. Therefore, there exists a constant M > 0 such that ‖u‖Lp(R3) ≥ M for all

u ∈span{ϕi,j}
i=1,2,...,k∗0
j=1,2,...,ki

with
∫

Ω
|∇u|2dx = 1. In particular, ‖ũ‖Lp(R3) ≥ M . It

follows from 4 < p < 6 and (3.3) that there exists a constant R0(> ρ) such that
Jα,λ(R0ũλ) ≤ 0 for all λ > Λ̃k∗0 . Now, we consider the case of (a). By Lemma 2.5
once more, we know that

Jα,λ(uλ) = Jα,λ(Rũλ) ≤ α

4
R4

0.

Thus, there exists α0 > 0 such that Jα,λ(uλ) ≤ 1
2d0 for λ > Λ̃k∗0 and α ∈ (0, α0). �

From Lemmas 3.1 and 3.2, we can see that Jα,λ(u) has a linking structure in
Eλ with λ > Λ̃k∗0 and α ∈ (0, α0) in the case of a0 < 0. By the linking theorem,
there exists {un} ⊂ Eλ such that (1 + ‖un‖λ)J ′α,λ(un) = on(1) strongly in E∗λ and
Jα,λ(un) = cα,λ + on(1), where E∗λ is the dual space of Eλ. Furthermore, cα,λ ∈
[d0,

α
4R

4
0 + 1

2 (1− 1
γk∗0

)R2
0]. Note that in the special case γ1 > 1, the linking structure

is actually the mountain pass geometry. Thus, the linking theorem can be replaced
by the mountain pass theorem and we can also obtain a sequence {un} ⊂ Eλ such
that (1 + ‖un‖λ)J ′α,λ(un) = on(1) strongly in E∗λ and Jα,λ(un) = cα,λ + on(1). In
the case a0 ≥ 0, since 4 < p < 6 and the fact that Dλ(u, u) = 0 in Eλ, by using
a standard argument, we can verify that Jα,λ(u) has a mountain pass geometry in
Eλ for λ > 0; that is,

(a) infSλ,ρ Jα,λ(u) ≥ C for some ρ > 0;
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(b) Jα,λ(R0φ) ≤ 0 for some R0 > ρ and φ ∈ H1
0 (Ω).

This also gives the existence of a sequence {un} ⊂ Eλ such that

(1 + ‖un‖λ)J ′α,λ(un) = on(1)

strongly in E∗λ and Jα,λ(un) = cα,λ + on(1) with cα,λ ∈ [Cα, C ′α], where Cα, C ′α are
two positive constants independent of λ. In a word, in both cases of a0 < 0 and
a0 ≥ 0, for λ > Λ̃k∗0 , there exists {un} ⊂ Eλ such that (1 + ‖un‖λ)J ′α,λ(un) = on(1)
strongly in E∗λ and Jα,λ(un) = cα,λ + on(1) with cα,λ ∈ [Cα, C ′α].

Lemma 3.3. Suppose that (A1)–(A3) hold. For every α > 0, if either a0 ≥ 0 or
a0 < 0 with βk∗0−1 < 1 then {‖un‖λ} is bounded.

Proof. Since λ > Λ̃k∗0 , by the condition (A2) and the Hölder and the Sobolev
inequalities, we obtain that

Dλ(un, un) ≤ |a0|
∫
A∞
|un|2dx ≤ |a0||A∞|

2
3S−1‖∇un‖2L2(R3).

Note that (1 +‖un‖λ)J ′α,λ(un) = on(1) strongly in E∗λ and Jα,λ(un) = cα,λ+on(1),
by the Young inequality and the fact that 4 < p < 6, we deduce that

cα,λ + on(1)

= Jα,λ(un)− 1
p
〈J ′α,λ(un), un〉E∗λ,Eλ

= α(
1
4
− 1
p

)‖∇un‖4L2(R3) + (
1
2
− 1
p

)‖un‖2λ − (
1
2
− 1
p

)Dλ(un, un)

≥ p− 4
4p

(α‖∇un‖4L2(R3) + ‖un‖2λ)− p− 2
2p
|a0||A∞|

2
3S−1‖∇un‖2L2(R3)

≥ p− 4
8p

(α‖∇un‖4L2(R3) + ‖un‖2λ)− 2(p− 2)2

α(p− 4)p
|a0|2|A∞|

4
3S−2,

where 〈·, ·〉E∗λ,Eλ is the duality pairing of E∗λ and Eλ. The preceding inequality,
together with cα,λ ∈ [Cα, C ′α] and 4 < p < 6, implies {‖un‖λ} is bounded. �

By Lemma 3.3, we can see that un = uα,λ + on(1) weakly in Eλ for some
uα,λ ∈ Eλ up to a subsequence. Without loss of generality, we may assume that
un = uα,λ + on(1) weakly in Eλ.

Lemma 3.4. Suppose that (A1)–(A3) hold. For every α > 0, if either a0 ≥ 0 or
a0 < 0 with βk∗0−1 < 1 then there exists Λk∗0 > Λ̃k∗0 such that uα,λ is a nontrivial
solution of (1.1) for λ > Λk∗0 .

Proof. We first prove that uα,λ 6= 0 in Eλ. Indeed, suppose on the contrary, then by
the Sobolev embedding theorem, we can see that un = on(1) strongly in L2

loc(R3),
which, together with (A2), implies un = on(1) strongly in L2(A∞). It follows from
Lemma 3.3, conditions (A1)–(A2) and the Hölder and the Sobolev inequality that∫

R3
|un|pdx ≤

(∫
R3
|un|2dx

) 6−p
4
(∫

R3
|un|6dx

) p−2
4

≤ S−
3(p−2)

4 ‖∇un‖
3(p−2)

2
L2(R3)

(∫
R3\A∞

|un|2dx+ on(1)
) 6−p

4

≤ S−
3(p−2)

4 (C1 + on(1))
5p−10

4

( 1
a0 + a∞λ

) 6−p
4 ‖un‖2λ + on(1).

(3.4)
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On the other hand, by conditions (A1)–(A2) once more, we have

Dλ(un, un) ≤ |a0|
∫
A∞
|un|2dx = on(1). (3.5)

Therefore, we deduce from the fact that (1 + ‖un‖λ)J ′α,λ(un) = on(1) strongly in
E∗λ that

α‖∇un‖4L2(R2) + ‖un‖2λ

≤ S−3(p−2)(C1 + on(1))
5p−10

4

( 1
a0 + a∞λ

) 6−p
4 ‖un‖2λ + on(1),

which yields that there exists Λk∗0 > Λ̃k∗0 dependent of α such that un = on(1)
strongly in Eλ with λ > Λk∗0 . It is impossible since cα,λ ≥ Cα > 0 for all λ > Λ̃k∗0 .
Therefore uα,λ 6= 0 in Eλ. It remains to show that J ′α,β(uα,β) = 0 in E∗λ. In fact,
without loss of generality, we may assume that ‖un‖2L2(R3) = A+on(1) and consider
the following energy functional

Iα,λ(u) =
αA

2
‖u‖2L2(R3) +

1
2
‖u‖2λ −

1
2
Dλ(u, u)− 1

p
‖u‖pLp(R3).

Clearly, by (2.1), Iα,λ(u) is of C2 in Eλ for λ > Λk∗0 . Since (1 + ‖un‖λ)J ′α,λ(un) =
on(1) strongly in E∗λ, it is easy to see from ‖un‖2λ = A+on(1) and un = uα,λ+on(1)
weakly in Eλ that 〈I ′α,λ(un), un−uα,β〉E∗λ,Eλ = on(1) and I ′α,λ(un) = on(1) strongly
in E∗λ, so that I ′α,λ(uα,λ) = 0 in E∗λ. In particular, 〈I ′α,λ(uα,λ), un−uα,β〉E∗λ,Eλ = 0.
Now, we obtain

on(1) = 〈I ′α,λ(un)− I ′α,λ(uα,λ), un − uα,β〉E∗λ,Eλ
= αA‖un − uα,β‖2L2(R3) + ‖un − uα,β‖2λ
−Dλ(un − uα,β , un − uα,β)− ‖un − uα,β‖pLp(R3).

Since un − uα,β = on(1) weakly in Eλ, by using similar arguments in the proofs of
(3.4) and (3.5), we can see that un − uα,β = on(1) strongly in Eλ for λ sufficiently
large, say λ > Λk∗0 . Thus, we must have that J ′α,β(uα,β) = 0 in E∗λ for λ > Λk∗0 . �

The following lemma will give a description on the concentration behavior of the
nontrivial solutions uα,λ as λ→ +∞.

Lemma 3.5. Suppose that (A1)–(A3) hold. For every α > 0, if either a0 ≥ 0 or
a0 < 0 with βk∗0−1 < 1 then we have uα,λ → uα strongly in H1(R3) as λ→ +∞ up
to a subsequence. Furthermore, uα is a nontrivial solution of (1.5).

Proof. Let uα,λn be the nontrivial solution obtained in Lemma 3.4 with λn → +∞
as n→∞. By Lemma 3.3, we can see that∫

R3
(|∇uα,λn |2 + (λna(x) + a0)+|uα,λn |2)dx ≤ C1 for all n ∈ N.

It follows that {uα,λn} is bounded in D1,2(R3) for n and∫
R3

(a(x) +
a0

λn
)+|uα,λn |2dx = on(1).

Without loss of generality, we may assume that uα,λn = uα + on(1) weakly in
D1,2(R3). Thanks to the Sobolev embedding theorem and conditions (A1)–(A3),
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we can see that uα,λn = uα+on(1) strongly in L2(R3) and uα ∈ H1
0 (Ω) with uα ≡ 0

on R3\Ω. Therefore, by the Hölder and the Sobolev inequality, we obtain

‖uα,λn − uα‖Lp(R3)

≤ ‖uα,λn − uα‖
6−p
2p

L2(R3)(‖uα,λn‖L6(R3) + ‖uα‖L6(R3))
3p−6
2p = on(1).

On the other hand, by a variant of the Lebesgue dominated convergence theorem
(cf. [20, Theorem 2.2]) and the condition (A1), we also have Dλn(uα,λn−uα, uα,λn−
uα) = on(1). Therefore,∫

Ω

|uα|pdx = ‖uα,λn‖
p
Lp(R3) + on(1)

= Dλn(uα,λn , uα,λn) + ‖uα,λn‖2λn + α‖∇uα,λn‖4L2(R3)

≥
∫

Ω

α|∇uα|4 + |∇uα|2 + a0|uα|2dx+ on(1).

Note that uα ∈ H1
0 (Ω) ⊂ H1(R3), it is easy to see from J ′α,λn(uα,λn) = 0 in E∗λn

that uα is a solution of (1.5). In particular,∫
Ω

α|∇uα|4 + |∇uα|2 + a0|uα|2dx =
∫

Ω

|uα|pdx.

Thus, uα,λn = uα + on(1) strongly in D1,2(R3) and∫
R3
λna(x)u2

α,λndx = on(1).

It follows that uα,λn = uα + on(1) strongly in H1(R3). Thanks to cα,λ ≥ Cα > 0,
uα must be nonzero. Hence, uα is a nontrivial solution of (1.5). �

Proof of Theorem 1.1. The statement of the theorem follows immediately from
Lemmas 3.4 and 3.5. �
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