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GROUND STATE SOLUTIONS FOR AN ASYMPTOTICALLY
LINEAR DIFFUSION SYSTEM

YINBIN LI, JIAN ZHANG

Abstract. This article concerns the diffusion system

∂tu−∆xu + V (x)u = g(t, x, v),

−∂tv −∆xv + V (x)v = f(t, x, u),

where z = (u, v) : R × RN → R2, V (x) ∈ C(RN , R) is a general periodic
function, g, f are periodic in t, x and asymptotically linear in u, v at infinity.

We find a minimizing Cerami sequence of the energy functional outside the

Nehari-Pankov manifold N and therefore obtain ground state solutions.

1. Introduction and statement of main results

In this article, we consider the diffusion system on R× RN :
∂tu−∆xu+ V (x)u = g(t, x, v),

−∂tv −∆xv + V (x)v = f(t, x, u),
(1.1)

where z = (u, v) : R × RN → R2, V (x) ∈ C(RN ,R) is a general periodic function,
g, f are periodic in t, x and asymptotically linear in v, u at infinity. In recent years,
there are many papers like system (1.1) on bounded domains, see [2, 3, 4, 6, 7, 8, 9,
10, 11, 15, 16, 17, 18] and the references therein. For the case of V (x) ≡ 0, Relying
on fixed point theorem, Brézis and Nirenberg [3] certified the following system has
a (generalized) solution (u, v) with u ∈ L4 and v ∈ L6.

∂tu−∆xu = −v5 + f,

−∂tv −∆xv = u3 + g,

in (0, T ) × Ω, where Ω is a bounded domain, f, g ∈ L∞, subject to the boundary
conditions u = v = 0 on (0, T ) × Ω and u(0, x) = u(t, x) on Ω. Clément et al [4]
investigated the system

∂tu−∆xu = |v|q−2v,

−∂tv −∆xv = |u|p−2u,

in (−T, T )× Ω, where Ω is a bounded domain and p, q satisfy
N

N + 2
<

1
p

+
1
q
< 1.
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The authors proved that there exists T0 > 0 such that for each T > T0, the above
problem has at least on positive solution via the mountain pass theorem. For the
case of V (x) 6= 0, applying a local linking theorem, Mao et al [16] proved that
problem (1.1) has at least one nontrivial periodic solution, see also [15]. For other
related elliptic system problems, we refer readers to [8, 9, 10, 11, 20, 29, 30, 31] and
the references therein.

Systems similar to (1.1) in the whole space was also studied by many authors.
For example see [2, 6, 7, 14, 17, 18, 27, 28] and the references therein. Bartsch and
Ding [2] considered the following infinite-dimensional Hamiltonian system

∂tu−∆xu+ V (x)u = Hv(t, x, u, v),

−∂tv −∆xv + V (x)v = Hu(t, x, u, v).

The authors obtained the existence and multiplicity of solutions of homoclinic type
under the classic Ambrosetti-Rabinowitz condition. Later this result was improved
by Schechter and Zou in [18] by using the methods of monotonicity trick. Based
on a variant generalized linking theorem established in [17] and monotone trick,
Zhang et al [27] proved the existence of the least energy solution of (1.1) with the
nonlinearity f and g are superquadratic in v, u at infinity. In the aforementioned
references, the following classical condition (A1) due to Ambrosetti and Rabinowitz
[1] is generally assumed:

(A1) there exist µ > 2 and R0 > 0 such that

0 < µF (x, t) ≤ tf(x, t), ∀ x ∈ Ω, |t| > R0.

This condition implies F (x, t) ≥ C|t|µ for large |t| and some constant C > 0. Thus,
one can obtain mountain pass geometry as well as satisfaction of Palais-Smale
condition under the condition (A1). However, we can not deal with system (1.1)
via the mountain-pass theorem directly if the nonlinearity f is of asymptotically
linear at infinity.

Motivated by the above articles, we consider system (1.1) with 0 lying in a gap of
the spectrum σ(−∆x+V ) of the Diffusion system (−∆x+V ) and study the existence
of ground state solutions for system (1.1). To the best of our knowledge, there
are less works concentrated on asymptotically linear case up now, thus this is an
interesting problem. More precisely, we first make the following basic assumptions:

(A2) V ∈ C(RN ) is 1-periodic in each of x1, x2, . . . , xN and

sup[σ(−∆x + V ) ∩ (−∞, 0)] := ∧ < 0 < ∨ := inf[σ(−∆x + V ) ∩ (∞, 0)];

(A3) f(t, x, s) and g(t, x, s) are continuous and 1-periodic in t and xi, i =
1, 2, . . . , N ,

F (t, x, s) :=
∫ s

0

f(t, x, δ)dδ ≥ 0, G(t, x, s) :=
∫ s

0

g(t, x, δ)dδ ≥ 0,

lim
|s|→0

|f(t, x, s)|+ |g(t, x, s)|
|s|

= 0, uniformly in (t, x) ∈ R× RN ;

(A4) f(t, x, s) = V∞(x)s + f∞(t, x, s), g(t, x, s) = V∞(x)s + g∞(t, x, s), where
V∞ ∈ C(RN ) is 1-periodic in each of x1, x2, . . . , xN and V∞(x) > 0, and
there exists a u0 ∈ E+ \ {0} such that

‖u0‖2 − ‖w‖2 −
∫

R×RN

V∞(x)(u0 + w)2 < 0, ∀w ∈ E−;
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(A5) f(t, x, s)f∞(t, x, s) + g(t, x, s)g∞(t, x, s) < 0, f∞(t, x, s) = o(|s|),
g∞(t, x, s) = o(|s|) as |s| → ∞ uniformly in (t, x) ∈ R× RN ;

(A6) s 7→ f(t, x, s)/|s|, s 7→ g(t, x, s)/|s| are strictly increasing on (−∞, 0) ∪
(0,∞).

The Nehari type assumption (A6) was used by Szulkin and Weth [19] to obtain
existence of ground state solution of Nehari-Pankov type, i.e. a nontrivial solution
z0 which satisfies Φ(z0) = infN Φ, where

N = {z ∈ E\E− : 〈Φ′(z), z〉 = 〈Φ′(z), η〉 = 0,∀η ∈ E−},
Functional Φ is the energy functional, and E = E−⊕E+ is a Hilbert space on which
Φ defines. Later, Zhang et al [26] proved same consequence for (1.1) by weakening
(A6) to the following condition:

(A7) s 7→ f(t, x, s)/|s|, s 7→ g(t, x, s)/|s| is nondecreasing on (−∞, 0) ∪ (0,∞).
We must point out that condition (A7) is also crucial in our paper to find a minimiz-
ing Cerami sequence of the energy functional via diagonal method (see [21, 22, 24]).
Moreover, in order to better show our results, we give the following condition can
be found in [21]:

(A8) f(t, x, s) = V∞(x)s + f∞(t, x, s), g(t, x, s) = V∞(x)s + g∞(t, x, s), where
V∞ ∈ C(RN ) is 1-periodic in each of x1, x2, . . . , xN and V∞(x) > ∨,
f∞(t, x, s) = o(|s|), g∞(t, x, s) = o(|s|) as |s| → ∞ uniformly in (t, x) ∈
R× RN , and 0 < sf(t, x, s) < V∞(x)s2 for (t, x) ∈ R× RN and s 6= 0.

Remark 1.1. Before we state our main results, we need to point out that (A8)
implies (A4) and (A5) if inf V∞(x) > ∨. Furthermore, (A7) and (A3) imply that

1
2
f(t, x, s)s ≥ F (t, x, s) ≥ 0, ∀s ≥ 0, (t, x) ∈ R× RN .

It follows from (A3)–(A5) and (A7) that s 7→ f∞(t, x, s)/|s| is nondecreasing on
(−∞, 0)∪(0,∞), and that f∞(t, x, s)/|s| → −V∞(x) < 0 as |s| → 0, which together
with f∞(t, x, s) = o(|s|) as |s| → ∞ uniform in t, x implies that sf∞(t, x, s) < 0 for
all s ≥ 0. Similarly, we have sg∞(t, x, s) < 0, for all s ≥ 0.

Theorem 1.2. Let (A2)–(A5), (A7) be satisfied. Then problem (1.1) has a solution
z0 ∈ E such that Φ(z0) = infN Φ > 0.

Corollary 1.3. Let (A2), (A3), (A7), (A8) be satisfied. Then problem (1.1) has a
solution z0 ∈ E such that Φ(z0) = infN Φ > 0.

The following functions satisfy all assumptions of Corollary 1.3.

Example 1.4. f(t, x, s) = V∞(x) min{|s|θ, 1}s, where θ > 0 and V∞ ∈ C(RN ) is
1-periodic in each of x1, x2, . . . , xN and V∞(x) > ∨.

Example 1.5. f(t, x, s) = V∞(x)[1 − (1/ ln(e + |s|))]s, where V∞ ∈ C(RN ) is
1-periodic in each of x1, x2, . . . , xN and V∞(x) > ∨.

2. Variational setting and preliminaries

Throughout this paper, we denote by | · |s the usual Ls-norm and (·, ·)2 the L2

inner product. In order to continue the discussion, we need the following notation.

J =
(

0 −I
I 0

)
, J0 =

(
0 I
I 0

)
,
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S = −∆x + V, A0 = J0S.

Then (1.1) reads as follows

J ∂tz +A0z = Hz(t, x, z), z = (u, v),

here and in the sequel H(t, x, z) := F (t, x, u)+G(t, x, v). It is called an unbounded
Hamiltonian system or an infinite dimensional Hamiltonian system (see [2]). Indeed,
it has the representation J ∂tz = ∇zH(t, x, z) with the Hamiltonian

H(t, x, z) := −
∫

RN

(∇xu · ∇xv + V (x)uv −H(t, x, z)) dx

in L2(RN ,R2), where ∇z denote the gradient operator in L2(RN ,R2).
To show our main result, as in [2], we introduce for r ≥ 1 the Banach space,

Br = Br(R× RN ,R2) := W 1,r
(
R, Lr(RN ,R2)

)
∩ Lr

(
R,W 1,r ∩W 1,r(RN ,R2)

)
,

equipped with norm

‖z‖Br
=
[ ∫

R×RN

(
|z|r + |∂tz|r +

N∑
j=1

|∂2
xj
z|r
)]1/r

.

Clearly, Br is the completion of C∞0 (R×RN ,R2) with respect to the norm ‖ · ‖Br
.

If r = 2, B2 is a Hilbert space.
Let A := J ∂t + A0, then A is a self-adjoint operator acting in L2 := L2(R ×

RN ,R2) with domain D(A) = B2(R×RN ,R2), and there exist c1, c2 > 0 such that

c1‖z‖2B2
≤ |Az|22 ≤ c2‖z‖2B2

for z ∈ B2 (see [2]). Under assumption (A2), L2 possesses the orthogonal decom-
position

L2 = L− ⊕ L+, z = z− ⊕ z+, z± ∈ L±,

such that A is negative definite (resp. positive definite) in L− (resp. L+). Let
|A| denote the absolute value of A and |A|1/2 be the square root of A. Let E =
D(|A|1/2) be the Hilbert space with the inner product

(z, w) =
(
|A|1/2z, |A|1/2w

)
2

and norm ‖z‖ = (z, z)1/2. There is an induced decomposition

E = E− ⊕ E+, E± = E ∩ L±,

which is orthogonal with respect to the inner products (·, ·)2 and (·, ·). Moreover,
we have the following embedding theorem.

Lemma 2.1 ([2, Lemma 4.6]). E is continuously embedded in Lp for any p ≥ 2 if
N = 1, and for p ∈ [2, 2(N + 2)/N ] if N ≥ 2. E is compactly embedded in Lploc for
all p ∈ [2, 2(N + 2)/N).
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3. Proof of main results

Let X be a Hilbert space with X = X− ⊕ X+ and X− ⊥ X+. Functional
ϕ ∈ C1(X,R) is said to be weakly sequentially lower semi-continuous if for any
un ⇀ u weakly in X one has ϕ(u) ≤ lim infn→∞ ϕ(un), and ϕ′ is said to be weakly
sequentially continuous if limn→∞〈ϕ′(un), v〉 = 〈ϕ′(u), v〉 for each v ∈ X.

The following generalized linking theorem plays an important role in proving our
main results.

Lemma 3.1 ([5, Theorem 4.5], [12, Theorem 2.1]). Let X be a Hilbert space with
X = X− ⊕X+ and X− ⊥ X+, and let ϕ ∈ C1(X,R) of the form

ϕ(u) =
1
2

(‖u+‖2 − ‖u−‖2)− ψ(u), u = u+ + u− ∈ X+ ⊕X−.

Suppose that the following assumptions are satisfied:
(1) ψ ∈ C1(X,R) is bounded from below and weakly sequentially lower semi-

continuous;
(2) ψ′ is weakly sequentially continuous;
(3) there exist r > ρ > 0 and e ∈ X+ with ‖e‖ = 1 such that

κ := inf ϕ(Sρ) > supϕ(∂Q),

where

Sρ = {u ∈ X+ : ‖u‖ = ρ}, Q = {se+ v : v ∈ X−, s ≥ 0, ‖se+ v‖ ≤ r}.
Then for some c ≥ κ, there exists a sequence {un} ⊂ X satisfying

ϕ(un)→ c, ‖ϕ′(un)‖(1 + ‖un‖)→ 0.

Such a sequence is called a Cerami sequence on the level c, or a (C)c sequence.

Under assumptions (A2)–(A5), it is easy to verify that the functional

Φ(z) =
1
2
(
‖z+‖2 − ‖z−‖2

)
−Ψ(z), z = (u, v), (3.1)

is well defined for all z ∈ E and Φ ∈ C1(E,R), where

Ψ(z) =
∫

R×RN

H(t, x, z) =
∫

R×RN

[F (t, x, u) +G(t, x, v)]. (3.2)

Moreover, for z = (u, v) ∈ E, ζ = (ξ, η) ∈ E,

〈Φ′(z), ζ〉 = (z+, ζ+)− (z−, ζ−)−
∫

R×RN

(f(t, x, u)ξ + g(t, x, u)η) , (3.3)

and a standard argument shows that critical points of Φ are solutions of (1.1) (see
[5, 25]).

Lemma 3.2. Suppose that (A2)–(A5), (A7) are satisfied. Then Ψ is bounded from
below, and weakly sequentially lower semi-continuous and Ψ′ is weakly sequentially
continuous.

The proof of the above lemma is standard, see [7, 26]. Using Sobolev’s embedding
theorem, one can check the above lemma easily, so we omit it.

The following lemma is interesting and shows an important behavior of nonde-
creasing functions. By a similar argument as in [21, 22], on can prove the following
lemma.
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Lemma 3.3. Suppose that h(t, x, s) is nondecreasing in s ∈ R and h(t, x, 0) = 0
for any (t, x) ∈ R× RN . Then(1− θ2

2
s− θσ

)
h(t, x, s)|s| ≥

∫ s

θs+σ

h(t, x, τ)|τ |dτ, ∀θ ≥ 0, s, σ ∈ R. (3.4)

Lemma 3.4. Suppose that (A2)–(A5), (A7) are satisfied. Then for any z = (u, v) ∈
E,

Φ(z) ≥ Φ(τz + ζ) +
1
2
‖ζ‖2 +

1− τ2

2
〈Φ′(z), z〉 − τ〈Φ′(z), ζ〉 (3.5)

for all ζ ∈ E−, τ ≥ 0.

Proof. For any (t, x) ∈ R× RN and it follows from (A7) and Lemma 3.3 that(1− τ2

2
ν2 − τνσ

)f(t, x, ν)
ν

≥
∫ ν

τν+σ

f(t, x, s) ds, ∀τ ≥ 0, σ, ν ∈ R. (3.6)

Similarly, we have(1− τ2

2
ν2 − τνσ

)g(t, x, ν)
ν

≥
∫ ν

τν+σ

g(t, x, s) ds, ∀τ ≥ 0, σ, ν ∈ R. (3.7)

By (3.1), (3.3), (3.6) and (3.7), one has

Φ(z)− Φ(τz + ζ)

=
1
2
‖ζ‖2 +

1− τ2

2
〈Φ′(z), z〉 − τ〈Φ′(z), ζ〉

+
∫

R×RN

(1− τ2

2
f(t, x, u)u− τf(t, x, u)ξ −

∫ u

τu+ξ

f(t, x, s) ds
)

+
∫

R×RN

(1− τ2

2
g(t, x, v)v − τg(t, x, v)η −

∫ v

τv+η

g(t, x, s) ds
)

≥ 1
2
‖ζ‖2 +

1− τ2

2
〈Φ′(z), z〉 − τ〈Φ′(z), ζ〉,

for all z = (u, v) ∈ E, ζ = (ξ, η) ∈ E−, and τ ≥ 0. This shows that (3.5) holds. �

From Lemma 3.4, we have the following two corollaries.

Corollary 3.5. Suppose that (A2)–(A5), (A7) are satisfied. Then for any z ∈ N ,

Φ(z) ≥ Φ(τz + ζ), ∀ζ ∈ E−, τ ≥ 0. (3.8)

Corollary 3.6. Suppose that (A2)–(A5), (A7) are satisfied. Then for any z =
(u, v) ∈ E,

Φ(z) ≥ Φ(τz+) +
τ2‖z−‖2

2
+

1− τ2

2
〈Φ′(z), z〉+ τ2〈Φ′(z), z−〉, ∀τ ≥ 0. (3.9)

Lemma 3.7. Suppose that (A2)–(A5), (A7) are satisfied. If inf V∞ > 0, then

τ〈Φ′(z), τz + 2ζ〉
≥ τ2‖z+‖2 − ‖τz− + 2ζ‖2 + ‖ζ2‖

−
∫

R×RN

V∞(x)(τz + ζ)2 + τ2

∫
R×RN

uf(t, x, u)V∞(x)− [f(t, x, u)]2

V∞(x)

+ τ2

∫
R×RN

vg(t, x, v)V∞(x)− [g(t, x, v)]2

V∞(x)
,

(3.10)
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for all z = (u, v) ∈ E, τ ∈ R, and ζ = (ξ, η) ∈ E−.

Proof. For any (t, x) ∈ R× RN , in view of (3.1), (3.3) and inf V∞ > 0, we have

τ〈Φ′(z, τz + 2ζ)〉
= τ2‖z+‖2 − τ2‖z−‖2 − 2τ(z−, ζ)

− τ
∫

R×RN

[f(t, x, u)(τu+ 2ξ) + g(t, x, v)(τv + 2η)]

= τ2‖z+‖2 − ‖τz− + ζ‖2 + ‖ζ‖2 −
∫

R×RN

V∞(x)(τu+ ξ)2

−
∫

R×RN

V∞(x)(τv + η)2 +
∫

R×RN

V∞(x)[(τu+ ξ)2 − τf(t, x, u)(τu+ 2ξ)]

+
∫

R×RN

V∞(x)[(τu+ η)2 − τg(t, x, v)(τv + 2η)]

≥ τ2‖z+‖2 − ‖τz− + ζ‖2 + ‖ζ‖2 −
∫

R×RN

V∞(x)(τz + ζ)2

+ τ2

∫
R×RN

uf(t, x, u)V∞(x)− [f(t, x, u)]2

V∞(x)

+ τ2

∫
R×RN

vg(t, x, v)V∞(x)− [g(t, x, v)]2

V∞(x)
,

for all z = (u, v) ∈ E, τ ∈ R, and ζ = (ξ, η) ∈ E−. This shows that (3.10) holds. �

Corollary 3.8. Suppose that (A2)–(A5), (A7) are satisfied. If inf V∞ > 0, then

‖z+‖2 − ‖z− + ζ‖2 −
∫

R×RN

V∞(x)(z + ζ)2

≤ −‖ζ‖2 −
∫

R×RN

uf(t, x, u)V∞(x)− [f(t, x, u)]2

V∞(x)

−
∫

R×RN

vg(t, x, v)V∞(x)− [g(t, x, v)]2

V∞(x)
,

(3.11)

for all z = (u, v) ∈ N and ζ = (ξ, η) ∈ E−.

Applying Corollary 3.5, we can prove the following lemma in the same way as in
[19, Lemma 2.4].

Lemma 3.9. Suppose that (A2)–(A5), (A7) are satisfied. Then

(i) there exists ρ > 0 such that

m := inf
N

Φ ≥ κ := inf
{

Φ(z) : z ∈ E+, ‖z‖ = ρ
}
> 0;

(ii) ‖z+‖ ≥ max
{
‖z−‖,

√
2m
}

for all z ∈ N ;

Define the set

E+
0 =

{
z ∈ E+\{0} : ‖z‖2 − ‖ζ‖2 −

∫
R×RN

V∞(x)(z + ζ)2 ≤ 0 ∀ζ ∈ E−
}
.

Obviously, (A4) shows that the set E+
0 is not empty.
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Lemma 3.10. Suppose that (A2)–(A5), (A7) are satisfied. Then, for any e ∈ E+
0 ,

sup Φ(E− ⊕ R+e) <∞ and there is Re > 0 such that

Φ(z) ≤ 0, ∀z ∈ E− ⊕ R+e, ‖z‖ ≥ Re. (3.12)

Proof. It is sufficient to show that Φ(ζ+se) ≤ 0 for s ≥ 0, ζ ∈ E− and ‖ζ+se‖ > R
for R > 0. Arguing indirectly, assume that, for some sequence {ζn + sne} ⊂
E−⊕R+e, ζn = (ξn, ηn), e = (e1, e2) with ‖ζn + sne‖ → ∞,Φ(ζn + sne) ≥ 0 for all
n ∈ N. Set

vn = (ζn + sne)/‖ζn + sne‖ = v−n + τne, (3.13)

then ‖v−n + τne‖ = 1. Passing to a subsequence, we may assume that vn ⇀ v in E,
then vn → v a.e on R× RN , v−n ⇀ v− in E, τn → τ and

0 ≤ Φ(ζn + sne)
‖ζn + sne‖2

=
τ2
n

2
‖e‖2 − 1

2
‖v−n ‖2 −

∫
R×RN

F (t, x, ξn + sne1) +G(t, x, ηn + sne2)
‖ζn + sne‖2

.

(3.14)

Clearly (3.14) yields that τ > 0. Since e ∈ E+
0 , there exists a bounded domain

Ω ⊂ R× RN such that

τ2‖e‖2 − ‖v−‖2 −
∫

Ω

V∞(x)(τe+ v−)2 < 0. (3.15)

Let

F∞(t, x, s) =
∫ s

0

f∞(t, x, τ)dτ ; G∞(t, x, s) =
∫ s

0

g∞(t, x, τ)dτ.

Then

F (t, x, s) =
1
2
V∞(x)s2 + F∞(t, x, s); G(t, x, s) =

1
2
V∞(x)s2 +G∞(t, x, s).

It follows from (3.14) that

0 ≤ τ2
n

2
‖e‖2 − 1

2
‖v−n ‖2 −

∫
Ω

F (t, x, ξn + sne1) +G(t, x, ηn + sne2)
‖ζn + sne‖2

=
τ2
n

2
‖e‖2 − 1

2
‖v−n ‖2 −

1
2

∫
Ω

V∞(x)v2
ndx

−
∫

Ω

F∞(t, x, ξn + sne1) +G∞(t, x, ηn + sne2)
‖ζn + sne‖2

.

(3.16)

Clearly, |F∞(x, t, s)|+ |G∞(x, t, s)| ≤ c0s2 for some c0 > 0 and

|F∞(x, t, s)|+ |G∞(x, t, s)|
s2

→ 0

as |s| → ∞, Since vn ⇀ v in E, vn → v in L2(Ω) and it is easy to see from the
Lebesgue dominated convergence theorem that∫

Ω

F∞(t, x, ξn + sne1)
‖ζn + sne‖2

=
∫

Ω

F∞(t, x, ξn + sne1)
|ζn + sne|2

|vn|2 = o(1).

Similarly, ∫
Ω

G∞(t, x, ηn + sne2)
‖ζn + sne‖2

= o(1).
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Hence,

0 ≤ τ2‖e‖2 − ‖v−‖2 −
∫

Ω

V∞(x)(τe+ v−)2,

which contradicts (3.15). �

Corollary 3.11. Suppose that (A2)–(A5), (A7) are satisfied, and let e ∈ E+
0 satisfy

‖e‖ = 1. Then there is a r0 > ρ such that sup Φ(∂Q) ≤ 0 for r ≥ r0, where

Q = {ζ + se : ζ ∈ E−, s ≥ 0, ‖ζ + se‖ ≤ r}. (3.17)

Lemma 3.12. Suppose that (A2)–(A5), (A7) are satisfied. Then for any z ∈
E+ \ {0}, we have N ∩ (E− ⊕ R+z) 6= ∅, i.e., there exist τ(z) > 0 and w(z) ∈ E−
such that τ(z)z + w(z) ∈ N−.

Proof. By Corollary 3.11, there exists R > 0 such that Φ(w) ≤ 0 for w ∈ (E− ⊕
R+z)\BR(0). By Lemma 3.9 (i), Φ(τz) > 0 for small τ > 0. Thus, 0 < sup Φ(E−⊕
R+z) <∞. It is easy to see that Φ is weakly upper semi-continuous on E−⊕R+z,
therefore, Φ(z0) = sup Φ(E− ⊕ R+z) for some z0 ∈ E− ⊕ R+z. This z0 is a
critical point of Φ|E−⊕Rz, so 〈Φ′(z0), z0〉 = 〈Φ′(z0), ζ〉 = 0 for all ζ ∈ E− ⊕ Rz.
Consequently, z0 ∈ N ∩ (E− ⊕ R+z). �

Lemma 3.13. Suppose that (A2)–(A5), (A7) are satisfied. Then there exist a
constant c0 ∈ [κ, sup Φ(Q)] and a sequence {zn} ⊂ E such that

Φ(zn)→ c0, ‖Φ′(zn)‖(1 + ‖zn‖)→ 0, (3.18)

where Q is defined by (3.17).

The above lemma is a direct corollary of Lemmas 3.1, 3.2, 3.9(i) and Corollary
3.11. The following lemma plays a crucial role in the proof of our main results, by
which we can directly find the existence of ground state solution of Nehari-Pankov
type associated with (1.1).

Lemma 3.14. Suppose that (A2)–(A5), (A7) are satisfied. Then there exist a
constant c∗ ∈ [κ, m] and a sequence {zn} ⊂ E satisfying

Φ(zn)→ c∗, ‖Φ′(zn)‖(1 + ‖zn‖)→ 0. (3.19)

Proof. Choose ζk ∈ N , ζk = (ξk, ηk) such that

m ≤ Φ(ζk) < m+
1
k
, k ∈ N. (3.20)

By lemma 3.9 (ii), ‖ζ+
k ‖ ≥

√
2m > 0. Since ζk ∈ E, it follows from (A5) that∫

R×RN

f(t, x, ξk)f∞(t, x, ξk) + g(t, x, ηk)g∞(t, x, ηk)
V∞(x)

< 0. (3.21)
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Set ek = ζ+
k /‖ζ

+
k ‖. Then ek ∈ E+ and ‖ek‖ = 1. By Corollary 3.8 and (3.21), for

any w ∈ E−, we have

‖ek‖2 − ‖w‖2 −
∫

R×RN

V∞(x)(ek + w)2

=
‖ζ+
k ‖2

‖ζ+
k ‖2

− ‖w‖2 −
∫

R×RN

V∞(x)
( ζk

‖ζ+
k ‖

+ w −
ζ−k
‖ζ+
k ‖

)2

≤ −‖w −
ζ−k
‖ζ+
k ‖
‖2 − 1

‖ζ+
k ‖2

∫
R×RN

ξkf(t, x, ξk)V∞(x)− [f(t, x, ξk)]2

V∞(x)

− 1
‖ζ+
k ‖2

∫
R×RN

ηkg(t, x, ηk)V∞(x)− [g(t, x, ηk)]2

V∞(x)

= −‖w −
ζ−k
‖ζ+
k ‖
‖2

+
1

‖ζ+
k ‖2

∫
R×RN

f(t, x, ξk)f∞(t, x, ξk) + g(t, x, ηk)g∞(t, x, ηk)
V∞(x)

< 0.

(3.22)

This shows that ek ∈ E+
0 . By Corollary 3.11, there exists rk > max{ρ, ‖ζk‖} such

that sup Φ(∂Qk) ≤ 0, where

Qk = {ζ + sek : ζ ∈ E−, s ≥ 0, ‖ζ + sek‖ ≤ rk}, k ∈ N. (3.23)

Hence, applying Lemma 3.13 to the above set Qk, there exist a positive constant
ck ∈ [k, sup Φ(Qk)] and a sequence {zk,n}n∈N ⊂ E satisfying

Φ(zk,n)→ ck, ‖Φ′(zk,n)‖(1 + ‖zk,n‖)→ 0, k ∈ N. (3.24)

By Corollary 3.5, one obtains

Φ(ζk) ≥ Φ(τζk + w), ∀τ ≥ 0, w ∈ E−. (3.25)

Since ζk ∈ Qk, It follows from (3.23) and (3.25) that Φ(ζk) = sup Φ(Qk). Hence,
by (3.20) and (3.24), one has

Φ(zk,n)→ ck < m+
1
k
, ‖Φ′(zk,n)‖(1 + ‖zk,n‖)→ 0, k ∈ N. (3.26)

Now, we can choose a sequence nk ⊂ N such that

κ− 1
k
< Φ(zk,nk

) < m+
1
k
, ‖Φ′(zk,nk

)‖(1 + ‖zk,nk
‖) < 1

k
, k ∈ N. (3.27)

Let zk = zk,nk
, k ∈ N. Then, going if necessary to a subsequence, we have

Φ(zn)→ c∗ ∈ [κ, m], ‖Φ′(zn)‖(1 + ‖zn‖)→ 0.

�

Lemma 3.15. Suppose that (A2)–(A5), (A7) are satisfied. If there exist {zn} ⊂ E
and c ≥ 0 such that

Φ(zn)→ c, ‖Φ′(zn)‖(1 + ‖zn‖)→ 0, (3.28)

then {zn} is bounded in E.
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Proof. To prove the boundedness of {zn}, arguing by contradiction, suppose that
‖zn‖ → ∞. Let {zn} = {un, vn} and wn = zn/‖zn‖, then ‖wn‖ = 1. By Lemma
2.1, there exists a constant C1 > 0 such that |wn|2 ≤ C1. If

δ := lim sup
n→∞

sup
y∈R×RN

∫
B1(y)

|w+
n |2 = 0,

where y := (t, x), then by Lions’ concentration compactness principle in [13] or
[25, Lemma 1.21] (usual this lemma is stated for {zn} ⊂ E, however, a simple
modification of the argument in [13] shows that the conclusion remains valid for
E), w+

n → 0 in Ls for 2 < s < N∗. Fix R > [2(1 + c)]1/2. By virtue of (A3),
(A4) and (A5), for ε = 1/4(RC1)2 > 0, there exists Cε > 0 such that |H(t, x, s)| ≤
ε|s|2 + Cε|s|p. Hence,

lim sup
n→∞

∫
R×RN

H(t, x,Rw+
n )dx ≤ ε(RC1)2 +RpCε lim

n→∞
‖w+

n ‖pp =
1
4
. (3.29)

Let τn = R/‖zn‖. Hence, by virtue of (3.19), (3.29) and Corollary 3.5, one obtains

c+ o(1) = Φ(zn) ≥ τ2
n

2
(
‖z+
n ‖2 + ‖z−n ‖2

)
−
∫

R×RN

H(t, x, τnz+
n ) +

1− τ2
n

2
〈Φ′(zn), zn〉+ τ2

n〈Φ′(zn), z−n 〉

=
R2

2
(
‖w+

n ‖2 + ‖w−n ‖2
)

−
∫

R×RN

H(t, x,Rw+
n ) +

(1
2
− R2

2‖zn‖2
)
〈Φ′(zn), zn〉+

R2

‖zn‖2
〈Φ′(zn), z−n 〉

=
R2

2
−
∫

R×RN

H(t, x,Rw+
n ) + o(1)

≥ R2

2
− 1

4
+ o(1) > c+

3
4

+ o(1).

This contradiction shows that δ > 0. �

Going if necessary to a subsequence, we may assume the existence of kn ∈ ZN+1

such that
∫
B1+

√
N+1(kn)

|w+
n |2 > δ

2 . Let w̃n(·) = wn(·+kn). Then ‖w̃n‖ = ‖wn‖ = 1,
and ∫

B1+
√

N+1(0)

|w̃+
n |2 >

δ

2
. (3.30)

Passing to a subsequence, we have w̃n ⇀ w̃ in E, w̃n → w̃ in Lsloc, 2 ≤ s < N∗,
w̃n → w̃ a.e. on R× RN . Then, (3.30) implies that w̃+ 6= 0 and so w̃ 6= 0.

Now we define z̃n(·) = zn(·+kn), then z̃n/‖zn‖ = w̃n → w̃ almost everywhere on
R×RN , w̃n 6= 0. For x̂ ∈ Ω := {y ∈ R×RN : w̃(y) 6= 0}, we have limn→∞ |z̃n(x̂)| =
∞. For any φ ∈ C∞0 (R×RN ,R2), φ = (ξ, η), setting φn(x̂) = φ(x̂− kn) = (ξn, ηn),

〈Φ′(zn), φn〉 = (z+
n − z−n , φn)− (V∞wn, φn)L2 −

∫
R×RN

f∞(t, x, un)ξn

−
∫

R×RN

g∞(t, x, vn)ηn

= ‖zn‖
[
(w+

n − w−n , φn)− (V∞wn, φn)L2 −
∫

R×RN

f∞(t, x, un)
|zn|

|wn|ξn
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−
∫

R×RN

g∞(t, x, vn)
|zn|

|wn|ηn
]

= ‖zn‖
[
(w̃+

n − w̃−n , φ)− (V∞w̃n, φ)L2 −
∫

R×RN

f∞(t, x, ũn)
|z̃n|

|w̃n|ξ

−
∫

R×RN

g∞(t, x, ṽn)
|z̃n|

|w̃n|η
]
,

which, together with (3.19), yields

(w̃+
n − w̃−n , φ)− (V∞w̃n, φ)L2 −

∫
R×RN

f∞(t, x, ũn)
|z̃n|

|w̃n|ξ

−
∫

R×RN

g∞(t, x, ṽn)
|z̃n|

|w̃n|η = o(1).

Note that∣∣ ∫
R×RN

f∞(t, x, ũn)
|z̃n|

|w̃n|ξ
∣∣

≤
∫

R×RN

∣∣f∞(t, x, ũn)
|z̃n|

∣∣|w̃n||φ|
≤
∫

R×RN

∣∣f∞(t, x, ũn)
|z̃n|

∣∣|w̃n − w̃||φ|+ ∫
R×RN

∣∣f∞(t, x, ũn)
|z̃n|

∣∣|w̃||φ|
≤ C2

∫
suppφ

|w̃n − w̃||φ|+
∫

Ω

∣∣f∞(t, x, ũn)
z̃n

∣∣|w̃||φ| = o(1).

Similarly, ∣∣ ∫
R×RN

g∞(t, x, ṽn)
|z̃n|

|w̃n|η
∣∣ = o(1).

Hence,
(w̃+ − w̃−, φ)− (V∞w̃n, φ)L2 = 0.

Thus, w̃ is an eigenfunction of the operator B = A− J0V∞, contradicting the fact
that B has only a continuous spectrum since the periodicity of V∞ (see [2] and [7]).
This contradiction shows that {zn} is bounded.

Proof of Theorem 1.2. By Lemmas 3.14 and 3.15, we deduce that there exists a
bounded sequence {zn} ⊂ E satisfying (3.19). A standard argument shows that
{zn} is a nonvanishing sequence. Going if necessary to a subsequence, we may
assume the existence of kn ∈ ZN+1 such that

∫
B1+

√
N+1(kn)

|zn|2dx > δ
2 for some

δ > 0. Let wn = zn(·+ kn). Then∫
B1+

√
N+1(0)

|wn|2dx >
δ

2
. (3.31)

Since f(t, x, s), g(t, x, s) and V (x) are periodic, we have ‖wn‖ = ‖zn‖ and

Φ(wn)→ c∗, ‖Φ′(wn)‖(1 + ‖wn‖)→ 0. (3.32)

Passing to a subsequence, we have wn ⇀ w in E, wn → w in Lsloc, 2 ≤ s < 2
and wn → w a.e on R × RN . Obviously, (3.34) and (3.35) imply that w 6= 0 and
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Φ′(w) = 0. This shows that w ∈ N and so Φ(w) ≥ m. On the other hand, by using
(3.35), (A7) and Fatou’s lemma,

m ≥ c∗ = lim inf
n→∞

[
Φ(wn)− 1

2
〈Φ′(wn), wn〉

]
= lim inf

n→∞

∫
R×RN

[1
2
f(t, x, ξn)ξn − F (t, x, ξn)ξn +

1
2
g(t, x, ηn)ηn −G(t, x, ηn)ηn

]
≥
∫

R×RN

lim inf
n→∞

[1
2
f(t, x, ξn)ξn − F (t, x, ξn)ξn +

1
2
g(t, x, ηn)ηn −G(t, x, ηn)ηn

]
= Φ(w)− 1

2
〈Φ′(w), w〉 = Φ(w).

This shows that Φ(w) ≤ m and so Φ(w) = m = infN Φ > 0. �
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