\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2016 (2016), No. 110, pp. 1--16.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu} \thanks{\copyright 2016 Texas State University.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2016/110\hfil Asymptotic expansion for shape functions] {On the high-order topological asymptotic expansion for shape functions} \author[M. Hassine, K. Khelifi \hfil EJDE-2016/110\hfilneg] {Maatoug Hassine, Khalifa Khelifi} \address{Maatoug Hassine \newline Monastir University, Department of Mathematics, Faculty of Sciences, \newline Avenue de l'Environnement 5000 , Monastir, Tunisia} \email{maatoug.hassine@enit.rnu.tn} \address{Khalifa Khelifi \newline Monastir University, Department of Mathematics, Faculty of Sciences, \newline Avenue de l'Environnement 5000, Monastir, Tunisia} \email{khalifakhelifi@hotmail.fr} \thanks{Submitted January 3, 2016. Published April 26, 2016.} \subjclass[2010]{35A15, 35B25, 35B40, 49K40} \keywords{Laplace equation; calculus of variations; sensitivity analysis; \hfill\break\indent topological derivative; topology optimization} \begin{abstract} This article concerns the topological sensitivity analysis for the Laplace operator with respect to the presence of a Dirichlet geometry perturbation. Two main results are presented in this work. In the first result we discuss the influence of the considered geometry perturbation on the Laplace solution. In the second result we study the high-order topological derivatives. We derive a high-order topological asymptotic expansion for a large class of shape functions. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{remark}[theorem]{Remark} \allowdisplaybreaks \section{Introduction} The topological sensitivity analysis consists in studying the variation of a shape functional with respect to the presence of a small geometry perturbation at an arbitrary point of the domain; see \cite{AH,BHJM,Bend,GGM,GS1,GS2,HJM,HM,SAM}. To present the basic idea, we consider an open and bounded domain $\Omega\subset \mathbb{R}^3$ and a shape function $j(\Omega)=J(u_\Omega)$ to be minimized, where $u_{\Omega}$ is the solution to a given partial differential equation defined in $\Omega$. For $\varepsilon >0$, let $\Omega_{z,\varepsilon}=\Omega\setminus\overline{\omega_{z,\varepsilon}}$ be the perturbed domain obtained by removing a small part $\omega_{z,\varepsilon}=z+\varepsilon \omega$ from the domain $\Omega$, where $z\in\Omega$ and $\omega\subset \mathbb{R}^3$ is a given fixed and bounded domain containing the origin. The topological sensitivity analysis leads to an asymptotic expansion of the function $j$ in the form $$ j(\Omega_{z,\varepsilon})=j(\Omega)+ f(\varepsilon)\delta j(z)+ o(f(\varepsilon)), $$ where $f(\varepsilon)$ is a scalar positive function approaching zero as $\varepsilon$ approaches zero. The function $\delta j$ is called the topological gradient. It gives us the best locations in $\Omega$ of the geometry perturbations for which the shape function $j$ decrease most, i.e. the topological gradient $\delta j$ is as negative as possible. In fact, if $\delta j(z)<0$, we have $j(\Omega_{z,\varepsilon})0$, $$ J(u_\varepsilon)-J_0(u_0)=DJ_0(u_0)(u_\varepsilon-u_0) +\sum_{k=1}^{N}\varepsilon^k\delta^k J(z) + o(\varepsilon^N). $$ \end{itemize} In the last equality, the solution $u_\varepsilon$ is extended by zero inside the domain $\omega_{z,\varepsilon}$. Its extension will be denoted by $u_\varepsilon$ throughout the rest of the paper. Under the considered assumptions, the variation of the shape function $j$ reads $$ j(\Omega_{z,\varepsilon})-j(\Omega) =a_0(u_0-u_\varepsilon,v_0)+\sum_{k=1}^{N} \varepsilon^k \delta^k J(z) +o(\varepsilon^N), $$ where $v_0\in\mathcal{V}_0$ is the solution to the adjoint problem \begin{equation}\label{adj-pb} a_0(w,v_0)=-DJ_0(u_0)(w),\quad \forall w\in\mathcal{V}_0. \end{equation} Next, we will derive an asymptotic expansion of the term $a_0(u_0-u_\varepsilon,v_0)$ which can be written as \begin{align*} a_0(u_0-u_\varepsilon,v_0) &= \int_{\Omega} (\nabla u_0-\nabla u_\varepsilon)\cdot\nabla v_0dx \\ &= \int_{\omega_{z,\varepsilon}}\nabla u_0\cdot\nabla v_0dx+\int_{\Omega_{z,\varepsilon}}(\nabla u_0-\nabla u_\varepsilon)\cdot\nabla v_0dx. \end{align*} Using Green formula, it follows that \begin{equation}\label{e77} a_0(u_0-u_\varepsilon,v_0) = \int_{\omega_{z,\varepsilon}}\nabla u_0\cdot\nabla v_0dx+\int_{\partial \omega_{z,\varepsilon}}\nabla (u_0-u_\varepsilon)\cdot nv_0ds. \end{equation} By Theorem \ref{thm-asym}, we have \begin{align*} \int_{\partial\omega_{z,\varepsilon}}\nabla(u_0-u_\varepsilon)\cdot nv_0ds &= -\sum_{k=1}^{N} \varepsilon^k \int_{\partial\omega_{z,\varepsilon}} \nabla U_k(x)\cdot n(x)\,v_0(x)ds \\ &\quad - \sum_{k=0}^{N} \varepsilon^k \int_{\partial\omega_{z,\varepsilon}}\nabla_x W_k ((x-z)/\varepsilon))\cdot n\,v_0ds + O(\varepsilon^{N+1}). \end{align*} Consequently, the term $a_0(u_0-u_\varepsilon,v_0)$ can be decomposed as \begin{equation}\label{decomp} %\label{e77} \begin{aligned} &a_0(u_0-u_\varepsilon,v_0) \\ &= \int_{\omega_{z,\varepsilon}}\nabla u_0\cdot\nabla v_0dx - \sum_{k=0}^{N} \varepsilon^k \int_{\partial\omega_{z,\varepsilon}} \nabla_x W_k ((x-z)/\varepsilon))\cdot n\,v_0ds\\ &\quad - \sum_{k=1}^{N} \varepsilon^k \int_{\partial\omega_{z,\varepsilon}} \nabla U_k(x)\cdot n(x)\,v_0(x)ds + O(\varepsilon^{N+1}). \end{aligned} \end{equation} In the next section, we will derive an estimate for each term on the right-hand-side of the equality \eqref{decomp}. \subsection{Preliminary estimates}\label{prel-estim} The following lemma gives an estimate for the first term. \begin{lemma}\label{Lemma1} The first term on the right-hand-side of the equality \eqref{decomp} admits the asymptotic expansion $$ \int_{\omega_{z,\varepsilon}}\nabla u_0\cdot\nabla v_0dx =\sum_{k=3}^{N}\varepsilon^k \,\mathcal T_{u_0,v_0}^{1,k-3}(z)+ O(\varepsilon^{N+1}), $$ where the functions $z\mapsto \mathcal T_{u_0,v_0}^{1,k}(z)$, $0\leq k\leq N$ are defined in $\Omega$ by \begin{equation}\nonumber \mathcal T_{u_0,v_0}^{1,k}(z)= \sum_{p=0}^{k}\frac{1}{p!(k-p)!} \int_{\omega} \nabla^{(p+1)} u_0 (z)(y^p)\cdot \nabla^{(k-p+1)} v_0 (z)(y^{k-p})dy, \end{equation} with $y^k=(y,\dots,y)\in (\mathbb{R}^3)^k$ and $\nabla^{(k)}w(z)$ denotes the $k$-th derivative of the function $w$ at the point $z$. \end{lemma} \begin{proof} The proof of this lemma is based on the well known Taylor-Young formula. Since $u_0$ and $v_0$ are sufficiently regular in $\omega_{z,\varepsilon}$, we have \begin{gather*} \nabla u_0(z+\varepsilon y)=\nabla u_0(z) + \sum_{k=1}^{N-1}\frac{\varepsilon^k}{k!} \nabla^{(k+1)} u_0 (z)(y^k)+O(\varepsilon^{N})\\ \nabla v_0(z+\varepsilon y)=\nabla v_0(z) + \sum_{k=1}^{N-1}\frac{\varepsilon^k}{k!} \nabla^{(k+1)} v_0 (z)(y^k)+O(\varepsilon^{N}). \end{gather*} Using the change of variable $x=z+\varepsilon y$, we derive \begin{align*} &\int_{\omega_{z,\varepsilon}}\nabla u_0\cdot\nabla v_0dx \\ &= \varepsilon^3 \int_{\omega}\nabla u_0(z+\varepsilon y)\cdot \nabla v_0(z+\varepsilon y)dy\\ &=\varepsilon^3 \int_{\omega} \Big[\sum_{k=0}^{N-1}\frac{\varepsilon^k}{k!} \nabla^{(k+1)} u_0 (z)(y^k)\Big] \Big[\sum_{k=0}^{N-1}\frac{\varepsilon^k}{k!} \nabla^{(k+1)} v_0 (z)(y^k)\Big]dy +O(\varepsilon^{N+1}). \end{align*} Using the Cauchy product formula, we obtain the desired result \begin{align*} &\int_{\omega_{z,\varepsilon}}\nabla u_0\cdot\nabla v_0dx \\ &= \sum_{k=0}^{N-3}\varepsilon^{k+3} \Big(\sum_{p=0}^{k}\frac{1}{p!(k-p)!} \int_{\omega} \nabla^{(p+1)} u_0 (z)(y^p)\cdot \nabla^{(k-p+1)} v_0 (z)(y^{k-p})dy \Big)\\ &\quad +O(\varepsilon^{N+1}). \end{align*} \end{proof} \begin{lemma}\label{Lemma2} The second term on the right-hand-side of the equality \eqref{decomp} admits the asymptotic expansion \[ \sum_{k=0}^{N} \varepsilon^k \int_{\partial\omega_{z,\varepsilon}}\nabla_x W_k ((x-z)/\varepsilon))\cdot n\,v_0ds = -\sum_{k=1}^{N} \varepsilon^{k} \mathcal T_{W,v_0}^{2,k-1}(z) + O(\varepsilon^{N+1}), \] where the functions $z\mapsto \mathcal T_{W,v_0}^{2,k}(z)$, $0\leq k\leq N$ are defined in $\Omega$ by \begin{equation}\nonumber \mathcal T_{W,v_0}^{2,k}(z)= -\sum_{p=0}^{k}\frac{1}{p!} \int_{\partial\omega}\nabla_y W_{k-p}(y)\cdot n(y)[\nabla^{(p)} v_0 (z)(y^{p})]ds(y). \end{equation} \end{lemma} \begin{proof} Using the change of variable $x=z+\varepsilon y$, we obtain \begin{equation}\label{w_k-v0} \int_{\partial\omega_{z,\varepsilon}} \nabla_x W_k ((x-z)/\varepsilon))\cdot n(x)v_0(x)ds =\varepsilon \int_{\partial\omega} \nabla_y W_k(y)\cdot n(y)\,v_0(z+\varepsilon y)ds(y). \end{equation} Using the fact that $v_0$ is smooth in a neighborhood of $z$, one can derive \begin{align*} v_0(z+\varepsilon y) &= v_0(z) + \sum_{p=1}^{N-1}\frac{\varepsilon^p}{p!} \nabla^{(p)} v_0 (z)(y^p)+O(\varepsilon^{N})\\ &= \sum_{p=0}^{N-1}\frac{\varepsilon^p}{p!} \nabla^{(p)} v_0 (z)(y^p) +O(\varepsilon^{N}). \end{align*} It leads to the asymptotic expansion of the term \eqref{w_k-v0}, \begin{align*} &\int_{\partial\omega_{z,\varepsilon}} \nabla_x W_k ((x-z)/\varepsilon))\cdot n(x)v_0(x)ds \\ &=\sum_{p=0}^{N-1}\frac{\varepsilon^{p+1}}{p!} \int_{\partial\omega}\nabla_y W_k(y)\cdot n(y)[\nabla^{(p)} v_0 (z)(y^{p})]ds(y)+O(\varepsilon^{N+1}). \end{align*} Consequently, \begin{align*} &\sum_{k=0}^{N} \varepsilon^k \int_{\partial\omega_{z,\varepsilon}} \nabla_x W_k ((x-z)/\varepsilon))\cdot n\,v_0\,ds \\ &=\sum_{k=0}^{N} \varepsilon^k\sum_{p=0}^{N-1}\frac{\varepsilon^{p+1}}{p!} \int_{\partial\omega} \nabla_y W_k(y)\cdot n(y)[\nabla^{(p)} v_0 (z)(y^{p})]ds(y) +O(\varepsilon^{N+1})\\ &=\sum_{k=1}^{N} \varepsilon^{k}\sum_{p=0}^{k-1}\frac{1}{p!} \int_{\partial\omega}\nabla_y W_{k-p-1}(y)\cdot n(y)[\nabla^{(p)} v_0 (z)(y^{p})]ds(y)+O(\varepsilon^{N+1}). \end{align*} \end{proof} \begin{lemma}\label{Lemma3} The third term on the right-hand-side of the equality \eqref{decomp} admits the following expansion \[ \sum_{k=1}^{N} \varepsilon^k \int_{\partial\omega_{z,\varepsilon}} \nabla U_k(x)\cdot n(x) v_0(x)ds =-\sum_{k=3}^{N} \varepsilon^{k} \mathcal T_{U,v_0}^{3,k-3}(z) + O(\varepsilon^{N+1}). \] where the functions $z\mapsto \mathcal T_{U,v_0}^{3,k}(z)$, $0\leq k\leq N$ are defined in $\Omega$ by \begin{align*} &\mathcal T_{U,v_0}^{3,k}(z)\\ &=- \sum_{p=0}^{k} \sum_{q=0}^{p}\frac{1}{q!(p-q)!} \int_{\partial\omega} [ \nabla^{(q+1)} U_{k-p+1} (z)(y^q)] \cdot n(y) [\nabla^{(p-q)} v_0 (z)(y^{p-q})]ds(y). \end{align*} \end{lemma} \begin{proof} Using the change of variable $x=z+\varepsilon y$, we obtain \begin{equation}\label{u_k-v0} \int_{\partial\omega_{z,\varepsilon}} \nabla U_k(x)\cdot n(x)v_0(x)ds =\varepsilon^2 \int_{\partial\omega} \nabla U_k(z+\varepsilon y)\cdot n(z+\varepsilon y) v_0(z+\varepsilon y)ds(y). \end{equation} From the fact that $v_0$ is smooth in a neighborhood of $z$, one can derive \begin{align*} v_0(z+\varepsilon y) &= v_0(z) + \sum_{p=1}^{N-1}\frac{\varepsilon^p}{p!} \nabla^{(p)} v_0 (z)(y^p) +O(\varepsilon^{N})\\ &= \sum_{p=0}^{N-1}\frac{\varepsilon^p}{p !} \nabla^{(p)} v_0 (z)(y^p) +O(\varepsilon^{N}). \end{align*} Similarly, $U_k$ is smooth in a neighborhood of $z$, it can be estimated as \[ \nabla U_k(z+\varepsilon y)=\sum_{q=0}^{N-1}\frac{\varepsilon^q}{q!} \nabla^{(q+1)} U_k (z)(y^q)+O(\varepsilon^{N}). \] Then, it follows that \begin{align*} &\int_{\partial\omega_{z,\varepsilon}} \nabla U_k(x)\cdot n(x)v_0(x)ds \\ &=\varepsilon^2 \int_{\partial\omega} [\sum_{q=0}^{N-1}\frac{\varepsilon^q}{q!} \nabla^{(q+1)} U_k (z)(y^q)] \cdot n(y) \big[\sum_{p=0}^{N-1}\frac{\varepsilon^p}{p!} \nabla^{(p)} v_0 (z) (y^p)\big]ds(y)+O(\varepsilon^{N+1}). \end{align*} Using the Cauchy product formula, one can check the following asymptotic expansion of the term \eqref{u_k-v0}, \begin{align*} &\int_{\partial\omega_{z,\varepsilon}} \nabla U_k(x)\cdot n(x)v_0(x)ds \\ & =\sum_{p=0}^{N-2}\varepsilon^{p+2} \sum_{q=0}^{p}\frac{1}{q!(p-q)!} \\ &\quad\times \int_{\partial\omega} [ \nabla^{(q+1)} U_k (z)(y^q)] \cdot n(y) [\nabla^{(p-q)} v_0 (z)(y^{p-q})]ds(y)+O(\varepsilon^{N+1}). \end{align*} Consequently, \begin{align*} & \sum_{k=1}^{N} \varepsilon^k \int_{\partial\omega_{z,\varepsilon}} \nabla U_k(x)\cdot n(x)\,v_0(x)ds \\ & =\sum_{k=1}^{N}\sum_{p=0}^{N-2}\varepsilon^{k+p+2} \sum_{q=0}^{p}\frac{1}{q!(p-q)!}\\ &\quad\times \int_{\partial\omega} [ \nabla^{(q+1)} U_{k} (z)(y^q)] \cdot n(y) [\nabla^{(p-q)} v_0 (z)(y^{p-q})]ds(y)+O(\varepsilon^{N+1})\\ &=\sum_{k=3}^{N} \varepsilon^{k} \sum_{p=0}^{k-3} \sum_{q=0}^{p}\frac{1}{q!(p-q)!} \\ &\quad\times \int_{\partial\omega} [ \nabla^{(q+1)} U_{k-p-2} (z)(y^q)] \cdot n(y) [\nabla^{p-q} v_0 (z)(y^{(p-q)})]ds(y)+O(\varepsilon^{N+1}). \end{align*} \end{proof} \subsection{Asymptotic expansion}\label{asymptotic} We are now ready to present the main results of this section. Based on the previous estimates, we derive a high-order topological asymptotic expansion for all shape function satisfying the assumptions (A1) and (A2). \begin{theorem}\label{thm-top} Let $\omega_{z,\varepsilon}=z+\varepsilon\omega$ be a small topological perturbation in $\Omega$ and $j$ a shape function of the form $j(\Omega_{z,\varepsilon})=J_{\varepsilon}(u_\varepsilon)$. If $J_\varepsilon$ satisfies the assumptions {\rm (A1) and (A2)}, then $j$ admits the asymptotic expansion $$ j(\Omega_{z,\varepsilon})-j(\Omega)=\sum_{k=1}^{N}\varepsilon^k\delta^k j(z) +o(\varepsilon^N), $$ where $\delta^k j$ is the $k$-th topological derivative defined in $\Omega$ by \begin{equation}\nonumber \delta^k j(z)=\begin{cases} \mathcal T_{W,v_0}^{2,k-1}(z)+\delta^k J(z) &\text{if } k=1,2\\ \mathcal T_{u_0,v_0}^{1,k-3}(z)+\mathcal T_{W,v_0}^{2,k-1}(z) +\mathcal T_{U,v_0}^{3,k-3}(z)+\delta^k J(z) &\text{if } 3\leq k\leq N. \end{cases} \end{equation} \end{theorem} \begin{proof} Using the fact that $j$ satisfies assumptions (A1) and (A2), we have $$ J_\varepsilon(u_\varepsilon)-J_0(u_0) =DJ_0(u_0)(u_\varepsilon-u_0)+\sum_{k=1}^{N}\varepsilon^k\delta^k J(z) + o(\varepsilon^N). $$ Using \eqref{adj-pb}, we derive $$ DJ_0(u_0)(u_\varepsilon-u_0)=a_0(u_0-u_\varepsilon,v_0), $$ Using the decomposition \eqref{decomp} and according to Lemmas \ref{Lemma1}, \ref{Lemma2} and \ref{Lemma3}, we derive \begin{align*} DJ_0(u_0)(u_\varepsilon-u_0) &= \sum_{k=3}^{N}\varepsilon^k \mathcal T_{u_0,v_0}^{1,k-3}(z)+\sum_{k=1}^{N} \varepsilon^{k} \mathcal T_{W,v_0}^{2,k-1}(z)\\ &\quad +\,\sum_{k=3}^{N} \varepsilon^{k} \mathcal T_{U,v_0}^{3,k-3}(z) + O(\varepsilon^{N+1}). \end{align*} By combining the above equalities we obtain the desired result. \end{proof} \section{Shape function examples}\label{funct-exples} We now discuss the assumptions (A1) and (A2). We present two examples of shape functions satisfying the considered assumptions and we calculate their variations $\delta^1J$, $\delta^2J$, \dots, and $\delta^N J$. \subsection{First example} We consider the linear function \begin{equation} J_{\varepsilon}(u)=\int_{\Omega_{z,\varepsilon}}g\,udx, \quad \forall u\in H^1(\Omega_{z,\varepsilon}), \end{equation} with $g\in H^1(\Omega)$ is a given function. \begin{proposition}\label{prop1} The function $J_\varepsilon$ satisfies the assumptions {\rm (A1)} and {\rm(A2)} with \[ D J_0(w)=\int_{\Omega}gwdx,\quad \forall w\in \mathcal{V}_0, \text{ and for any } 1\leq k\leq N,\quad \delta^k J(z)=0 \quad \text{in } \Omega. \] Then the associated shape function \[ j(\Omega_{z,\varepsilon})=\int_{\Omega_{z,\varepsilon}}g\,u_\varepsilon dx \] admits the high-order asymptotic expansion $$ j(\Omega_{z,\varepsilon})-j(\Omega)=\sum_{k=1}^{N} \varepsilon^k\delta^k j(z)+o(\varepsilon^N), $$ where $\delta^k j$ is the $k$-th topological derivative of $j$ defined in $\Omega$ by \begin{equation} \delta^k j(z)=\begin{cases} \mathcal T_{W,v_0}^{2,k-1}(z) &\text{if } k=1,2\\ \mathcal T_{u_0,v_0}^{1,k-3}(z)+\mathcal T_{W,v_0}^{2,k-1}(z) +\mathcal T_{U,v_0}^{3,k-3}(z) &\text{if } 3\leq k\leq N. \end{cases} \end{equation} \end{proposition} \begin{proof} The function $J_0$ is differentiable and we have $$ D J_0(w)=\int_{\Omega}gw\,dx,\quad \forall w\in \mathcal{V}_0. $$ The variation of $j$ is given by \[ j(\Omega_{z,\varepsilon})-j(\Omega) = \int_{\Omega_{z,\varepsilon}}gu_\varepsilon \,dx-\int_{\Omega}gu_0\,dx = DJ_0(u_0)(u_\varepsilon-u_0).\nonumber \] Hence the function $J_\varepsilon$ satisfies the assumptions (A1) and (A2) with \begin{gather*} D J_0(w)=\int_{\Omega}gw\,dx\quad \forall w\in \mathcal{V}_0,\\ \delta^k J(z)=0 \quad \text{for each $1\leq k\leq N$ and all } z\in\Omega. \end{gather*} The asymptotic expansion of $j$ follows immediately from Theorem \ref{thm-top}. \end{proof} \subsection{Second example} We consider the semi-norm function associated to the $H^1$ Sobolev space \begin{equation} J_{\varepsilon}(u)=\int_{\Omega_{z,\varepsilon}}|\nabla u-\nabla U_d|^2dx, \quad \forall u\in H^1(\Omega_{z,\varepsilon}) \end{equation} with $U_d\in H^1(\Omega)$ is a given desired (objective) state, smooth in a neighborhood of $z$. \begin{proposition}\label{prop2} The function $J_{\varepsilon}$ satisfies the assumptions {\rm (A1)} and {\rm (A2)} with $$ D J_0(w)= 2\int_{\Omega}\nabla(u_0-U_d)\cdot\nabla wdx,\quad \forall w\in \mathcal{V}_0, $$ where \[ \delta^k J(z)= \begin{cases} \mathcal T_{W,u_0}^{2,k-1}(z) &\text{if } k=1,2\\ \mathcal T_{W,u_0}^{2,k-1}(z)+ \mathcal T_{u_0,u_0}^{1,k-3}(z)+\mathcal T_{U_d,U_d}^{1,k-3}(z) +\mathcal T_{U,u_0}^{3,k-3}(z) &\text{if } 3\leq k\leq N. \end{cases} \] \end{proposition} \begin{proof} The function $J_0$ is differentiable and we have $$ DJ_0(u_0)(w)=2\int_{\Omega}[\nabla u_0-\nabla U_d]\cdot\nabla w dx, $$ and \begin{align*} j(\Omega_{z,\varepsilon})-j(\Omega) &= \int_{\Omega_{z,\varepsilon}}|\nabla u_\varepsilon-\nabla U_d|^2dx -\int_{\Omega}|\nabla u_0-\nabla U_d|^2dx \\ &= DJ_0(u_0)(u_\varepsilon-u_0)+\int_{\omega_{z,\varepsilon}} |\nabla u_0|^2dx \\ &\quad -\int_{\omega_{z,\varepsilon}}|\nabla U_d|^2dx+\int_{\Omega_{z,\varepsilon}}|\nabla u_0-\nabla u_\varepsilon|^2dx.\nonumber \end{align*} Thanks to the regularity of $u_0$ and $U_d$ in $\omega_{z,\varepsilon}$, one obtains \begin{gather*} \int_{\omega_{z,\varepsilon}}|\nabla u_0|^2dx =\sum_{k=3}^{N}\varepsilon^k \mathcal T_{u_0,u_0}^{1,k-3}(z)+ O(\varepsilon^{N+1}) , \\ \int_{\omega_{z,\varepsilon}}|\nabla U_d|^2dx =\sum_{k=3}^{N}\varepsilon^k \mathcal T_{U_d,U_d}^{1,k-3}(z)+ O(\varepsilon^{N+1}). \end{gather*} By the Green formula, it follows that $$ \int_{\Omega_{z,\varepsilon}}|\nabla u_0-\nabla u_\varepsilon|^2dx =-\int_{\partial \omega_{z,\varepsilon}}\nabla (u_0-u_\varepsilon)\cdot nu_0ds. $$ Applying the technique developed in Section \ref{asymp-expansion}, one can derive $$ \int_{\Omega_{z,\varepsilon}}|\nabla u_0-\nabla u_\varepsilon|^2dx =\sum_{k=1}^{N} \varepsilon^{k} \mathcal T_{W,u_0}^{2,k-1}(z) +\sum_{k=3}^{N} \varepsilon^{k} \mathcal T_{U,u_0}^{3,k-3}(z) + O(\varepsilon^{N+1}). $$ By combining the above equalities we obtain the desired result. \end{proof} \subsection*{Concluding remarks} Two main results are presented in this paper. The first result is devoted to a high-order asymptotic expansion for the Laplace equation solution with respect to the presence of a Dirichlet geometry perturbation. This question has been investigated by Ammari and Kang \cite{AMK} in the inhomogeneities case. Here, we extend this result for a more singular case described by a Dirichlet perturbation. The second result deals with the high-order topological derivatives. A high-order topological asymptotic expansion is derived for a large class of shape functions. The use of higher-order terms in the topological asymptotic expansion of the shape function may certainly be decisive in improving the topological optimization algorithms without restrictions on the perturbations sizes. The high-order topological derivative are essential when the first-order topological derivative $\delta j$ vanishes at some critical points inside $\Omega$. The present work can be considered as a generalization of the topological gradient notion. The mathematic analysis is general and can be easily adapted to other partial differential equations. \begin{thebibliography}{00} \bibitem{AH} M. Abdelwahed, M. Hassine; \emph{Topological optimization method for a geometric control problem in Stokes flow.} Appl. Numer. Math. 59(8), 1823-1838, 2009. \bibitem{AHM} M. Abdelwahed , M. Hassine, M. Masmoudi; \emph{Optimal shape design for fluid flow using topological perturbation technique}, J. Math. Anal. and Applic., 356, 548-563, 2009. \bibitem{AMK} H. Ammari, H. Kang; \emph{High-order terms in the asymptotic expansions of the steady-state voltage potentials in the presence of inhomogeneities of small diameter.} SIAM J Math Analy 34(5):115-166. \bibitem{SA} S. Amstutz; \emph{Aspects th\'eoriques et num\'eriques en optimisation de forme topologique.} Th\`ese, Institut National des Siences Appliqu\'ees de Toulouse, 2003. \bibitem{AHMas} S. Amstutz, I. Horchani, M. Masmoudi; \emph{Crack detection by the topological gradient method}. Control and Cybernetics, Vol. 34, No. 1, pp 81-101, 2005. \bibitem{BCD} M. Badra, F.Caubet, M. Dambrine; \emph{Detecting an obstacle immersed in a fluid by shape optimization methods.} M3AS, 21 (10), 2069-2101, 2011. \bibitem{BHJM} A. Ben Abda, M. Hassine , M. Jaoua, M. Masmoudi, \emph{Topological sensitivity analysis for the location of small cavities in Stokes flow}, SIAM J. Contr. Optim, 48 (5), 2871--2900, 2009. \bibitem{BJMS} L. Belaid, M.Jaoua, M. Masmoudi, L. Siala; \emph{Image restoration and edge detection by topological asymptotic expansion}, C.R.Acad.Sci. Ser.I 342, p. 313-318, 2006. \bibitem{Bend} M. Bendsoe; \emph{Optimal topology design of continuum structure: an introduction}. Technical report, Departement of mathematics, Technical University of Denmark, DK2800 Lyngby, Denmark, september 1996. \bibitem{JRFAA} J. Rocha de Faria, A.A. Novotny; \emph{On the second order topologial asymptotic expansion.} Structural and Multidis-ciplinary Optimization, 39(6): 547-555, 2009. \bibitem{Faria2} J. Rocha de Faria, A. A. Novotny, R. A. Feijoo, E. Taroco; \emph{First- and second-order topological sensitivity analysis for inclusions} J. Inverse Problems in Science and Engineering, vol. 17, no. 5, pp. 665-679, 2009. \bibitem{JRAARAEC} J. Rocha de Faria, A. A. Novotny, R. A. Feijao, E. Taroco, C. Padra; \emph{Second order topological sensitivity analysis} International Journal of Solids and Structures, vol. 44, no. 14, pp. 4958-4977, 2007 \bibitem{DL} R. Dautray, J. Lions; \emph{Analyse math\'emathique et calcul num\'erique pour les sciences et les techniques.} Collection CEA, Masson, 1987. \bibitem{HAAS7} H. A. Eschenauer and A. Schumacher, Topology and shape optimization procedures using hole positioning criteria �theory and applications, in Topology optimization in structural mechanics, CISM Courses and Lectures 374, Springer, Vienna (1997) 13-96. \bibitem{GGM} S. Garreau, Ph. Guillaume, M. Masmoudi; \emph{The topological asymptotic for PDE systems: The elastics case}, SIAM J. contr. Optim. 39(6), 1756-1778, 2001. \bibitem{GS1} Ph. Guillaume, K. Sid Idris; \emph{The topological asymptotic expansion for the Dirichlet Problem.} SIAM J. Control. Optim. 41, 1052-1072, 2002. \bibitem{GS2} Ph. Guillaume, K. Sid Idris; \emph{Topological sensitivity and shape optimization for the Stokes equations}, SIAM J. Control Optim. 43 (1) 1-31, 2004. \bibitem{GH} Ph. Guillaume, M. Hassine; \emph{Removing holes in topological shape optimization}, ESAIM, Control, Optimisation and Calculus of Variations, 14 (1), 2008, 160-191. \bibitem{HJM} M. Hassine, S. Jan, M. Masmoudi; \emph{From differential calculus to $0-1$ topological optimization}, SIAM J. Cont. Optim, 45 (6), 1965-1987, 2007. \bibitem{MHKK} M. Hassine, Kh. Khelifi; \emph{Topology optimization method using the Kohn-Vogelius formulation and the topological sensitivity analysis}, Proceedings of the Magrebian conference of Applied Mathematics (TAMTAM'13), 188-195, 2013. \bibitem{HM} M. Hassine, M. Masmoudi; \emph{The topological asymptotic expansion for the quasi-Stokes problem}, ESAIM COCV J. 10(4) 478-504, 2004. \bibitem{mas} M. Masmoudi; \emph{The topological asymptotic, Computational method for control applications}, Ed.H. Kawarada and J.P\'eriaux, International Series GAKUTO, 2002. \bibitem{JPBS} J. Pommier, B. Samet; \emph{The topological asymptotic for the Helmholtz equation with Dirichlet condition on the boundary of an arbitrarily shaped hole}, SIAM J. Control Optim. 43(3), pp. 899-921, 2004. \bibitem{SAM} B. Samet, S. Amstutz, M. Masmoudi; \emph{The topological asymptotic for the Helmholtz equation}, SIAM J. Control Optim. Vol. 42(5), pp. 1523-1544, 2003. \bibitem{SZ} J. Sokolowski., A. Zochowski; \emph{On the topological derivative in shape optimization,} SIAM J. Control Optim. 37(4) 1251-1272, 1999. \end{thebibliography} \end{document}