\documentclass[reqno]{amsart} \usepackage{hyperref} \usepackage{amssymb} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2016 (2016), No. 05, pp. 1--18.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2016 Texas State University.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2016/05\hfil Ground state solutions] {Existence and concentration of ground state solutions for a Kirchhoff type problem} \author[H. Fan \hfil EJDE-2016/05\hfilneg] {Haining Fan} \address{Haining Fan \newline School of Sciences, China University of Mining and Technology, Xuzhou 221116, China} \email{fanhaining888@163.com} \thanks{Submitted July 6, 2015. Published January 4, 2016.} \subjclass[2010]{35A15, 35B33, 35J62} \keywords{Nehari-Pohozaev manifold; nonlocal problem; positive solution; \hfill\break\indent concentration property} \begin{abstract} This article concerns the Kirchhoff type problem \begin{gather*} -\Big(\varepsilon^2a+\varepsilon b\int_{\mathbb{R}^3}|\nabla u|^2dx\Big)\Delta u +V(x)u= K(x)|u|^{p-1}u,\quad x\in \mathbb{R}^3,\\ u\in H^1(\mathbb{R}^3), \end{gather*} where $a,b$ are positive constants, $2< p<5$, $\varepsilon>0$ is a small parameter, and $V(x),K(x)\in C^1(\mathbb{R}^3)$. Under certain assumptions on the non-constant potentials $V(x)$ and $K(x)$, we prove the existence and concentration properties of a positive ground state solution as $\varepsilon\to 0$. Our main tool is a Nehari-Pohozaev manifold. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}[theorem]{Remark} \allowdisplaybreaks \section{Introduction} In this article we study the Kirchhoff type problem \begin{equation} \label{Pe} \begin{gathered} -\Big(\varepsilon^2a+\varepsilon b\int_{\mathbb{R}^3}|\nabla u|^2dx\Big)\Delta u +V(x)u= K(x)|u|^{p-1}u,\quad x\in \mathbb{R}^3,\\ u\in H^1(\mathbb{R}^3), \end{gathered} \end{equation} where $a,b$ are positive constants, $2< p<5$, $\varepsilon>0$ is a small parameter, $V(x),K(x)\in C^1(\mathbb{R}^3)$. Such problems are often referred as being nonlocal because of the presence of the term $\big(\int_{\mathbb{R}^3}|\nabla u|^2dx\big)\Delta u$ which implies that \eqref{Pe} is no longer a point-wise equation. Problem \eqref{Pe} is related to the stationary analogue of the equation \begin{equation} \label{e1.1} u_{tt}-\Big(a+b\int_{\mathbb{R}^3}|\nabla u|^2dx\Big)\Delta u=f(x,u), \end{equation} presented by Kirchhoff in \cite{k1} as an extension of classical D'Alembert's wave equations for free vibration of elastic strings. Kirchhoff's model takes into account the changes in length of the string produced by transverse vibrations. In \eqref{e1.1}, $u$ denotes the displacement, $f(x,u)$ the external force and $b$ the initial tension while $a$ is related to the intrinsic properties of the string (such as Young's modulus). We have to point out that nonlocal problems also appear in other fields such as biological systems, where $u$ describes a process which depends on the average of itself (for example, population density, see \cite{a1,c1}). In recent years, there have been many works concerned with the existence of solutions to the problems similar to \eqref{Pe} via variational methods, see e.g. \cite{a2,f1,f2,l1,l4,n1,w5}. Also, there are some recent works considered the concentration property of solutions as $\varepsilon\to 0$, see for instance \cite{h1,l5,w1,w2,w3} and the references therein. Indeed, a typical way to deal with \eqref{Pe} is to use the mountain pass theorem. For this purpose, the most of the above results focused on the nonlinear model $|u|^{p-1}u$ with $30$ such that \[ \overline{c}=\inf_{u\in H^1(\mathbb{R}^3)\backslash\{0\} } \frac{\int_{\mathbb{R}^3}(|\nabla u|^2+V(x)u^2)dx}{\int_{\mathbb{R}^3}u^2dx}>0. \] \end{itemize} By using a monotonicity trick and constructing a new version of global compactness Lemma, they proved that \eqref{Pe} has a positive ground state solution. More recently, Ye \cite{y1} studied \eqref{Pe} under different conditions. On one hand, if $10$. \item[(A2'')] $\nabla V(x)\cdot x\leq0$ for all $x\in \mathbb{R}^3$ and the inequality is strict in a subset of positive Lebesgue measure. \item[(A3'')] $V(x)+\frac{\nabla V(x)\cdot x}{4}\geq V_\infty$ for all $x\in\mathbb{R}^3$. \item[(A4'')] $\nabla V(x)\cdot x+\frac{xH(x)x}{4}\leq0$ for all $x\in\mathbb{R}^3$, where $H$ denotes the Hessian matrix of $V$. \item[(A5'')] there exists a constant $T>1$ which is defined in \cite{y1} such that \[ \sup_{x\in\mathbb{R}^3}V(x)\leq V_\infty+T. \] \end{itemize} Ye \cite{y1} proved that \eqref{Pe} has a high energy solution. However, to the best of our knowledge, for the case $20$ such that $\nabla V(x)\equiv0$ for all $|x|\geq R_V$. \item[(A5)] $K(x)\in C^1(\mathbb{R}^3,\mathbb{R})$ and $00$ such that $\nabla K(x)\equiv0$ for all $|x|\geq R_K$. \end{itemize} \begin{remark} \label{rmk1.1} \rm There are many examples of $V$ and $K$ that satisfy the hypotheses above. For example, define $\eta\in C^\infty(\mathbb{R}^3)$ by \[ \eta(x):=\begin{cases} C \exp(\frac{1}{|x|^2-1}), & \text{if } |x|<1,\\ 0, & \text{if } |x|>1, \end{cases} \] where $C>0$ is a constant. Then $V(x)=C-\eta(x)$ satisfies $(V_1)-(V_4)$ and $K(x)=\frac{C}{2}+\eta(x)$ satisfies $(K_1)-(K_4)$. \end{remark} Clearly, the above assumptions imply that there exists an $\overline{x}\in\Omega_1$ such that $K(\overline{x})\geq K(x)$ for all $|x|\geq R$ and some $R>0$. Here, we denote \begin{gather*} \Omega_1:=\{x\in\mathbb{R}^3;V(x)=V_{\rm min}\}, \Omega_2:=\{x\in\mathbb{R}^3;K(x)=K_{\rm max}:=\max_{x\in\mathbb{R}^3}K(x)\},\\ \mathcal{H}:=\{x\in \Omega_1;K(x)=K(\overline{x})\}\cup\{x\not\in \Omega_1;K(x)>K(\overline{x})\}. \end{gather*} \begin{remark} \label{rmk1.2} \rm Obviously, $\mathcal{H}\neq\emptyset$ because $\overline{x}\in \mathcal{H}$. It is clear that $ \mathcal{H}=\Omega_1\cap\Omega_2$ when $\Omega_1\cap\Omega_2\neq\emptyset$. For example, let $V(x)=C-\eta(x)$ and $K(x)=\frac{C}{2}+\eta(x)$ as in Remark \ref{rmk1.1}, then $\Omega_1=\{0\}, \Omega_2=\{0\}$ and $\mathcal{H}=\{0\}$. If we set $V(x)=C-\eta(x-x_0)$ and $K(x)=\frac{C}{2}+\eta(x)$ and $x_0\neq0$, we can easily see that $\Omega_1=\{x_0\}, \Omega_2=\{0\}$ and $\Omega_1\cap\Omega_2=\emptyset$. We obtain that $\mathcal{H}=\{x;|x|\leq|x_0|\}$. \end{remark} The main result of this article reads as follows. \begin{theorem} \label{thm1.1} \begin{itemize} \item[(I)] Assume {\rm (A1)--(A3), (A5)--(A7} hold. Then \eqref{Pe} possesses a positive ground state solution $u_\varepsilon$ for all $\varepsilon>0$. \item[(II)] Suppose {\rm (A1), (A3), (A4), (A5), (A7), (A8)} are satisfied. Then \begin{enumerate} \item $u_\varepsilon$ possesses one maximum point $x_\varepsilon$ such that, up to a subsequence, $x_\varepsilon\to x_0$ as $\varepsilon\to 0$, $\lim_{\varepsilon\to 0}\operatorname{dist}(x_\varepsilon, \mathcal{H})=0$, $\omega_\varepsilon(x):=u_\varepsilon(\varepsilon x+x_\varepsilon)$ converges in $H^1(\mathbb{R}^3)$ to a positive ground state solution of \[ -\Big(a+b\int_{\mathbb{R}^3}|\nabla u|^2dx\Big)\Delta u+V(x_0)u= K(x_0)|u|^{p-1}u, \quad x\in \mathbb{R}^3. \] In particular, if $\Omega_1\cap\Omega_2\neq\emptyset$, then $\lim_{\varepsilon\to 0}\operatorname{dist}(x_\varepsilon, \Omega_1\cap\Omega_2)=0$ and $\omega_\varepsilon$ converges in $H^1(\mathbb{R}^3)$ to a positive ground state solution of \[ -\Big(a+b\int_{\mathbb{R}^3}|\nabla u|^2dx\Big)\Delta u+V_{\rm min}u = K_{\rm max}|u|^{p-1}u,~ x\in \mathbb{R}^3. \] \item There exist $C_1,C_2>0$ such that \[ u_\varepsilon(x)\leq C_1e^{-C_2|\frac{x-x_\varepsilon}{\varepsilon}|}. \] \end{enumerate} \end{itemize} \end{theorem} \begin{remark} \label{rmk} \rm Note that (A1) and (A4) imply (A2). Also (A5) and (A8) imply (A6). \end{remark} This article is organized as follows. In Section 2, we establish some preliminary results. Section 3 is to prove the existence of ground states. Section 4 is devoted to the proof of Theorem \ref{thm1.1}. Throughout this paper we denote by $\to $ (resp. $\rightharpoonup$) the strong (resp. weak) convergence. The letters $C,C_1,C_2,\dots $ will be repeatedly used to denote various positive constants whose exact values are irrelevant. \section{Preliminaries} Throughout this article by $|\cdot|_r$ we denote the $L^r$-norm. On the space $H^1(\mathbb{R}^3)$ we consider the norm \[ \|u\|=\Big(\int_{\mathbb{R}^3}(|\nabla u|^2+u^2)dx\Big)^{1/2}. \] Without loss of generality, we may assume that $\varepsilon=1$, then \eqref{Pe} becomes \begin{equation} \label{P1} \begin{gathered} -\Big(a+b\int_{\mathbb{R}^3}|\nabla u|^2dx\Big)\Delta u+V(x)u = K(x)|u|^{p-1}u,~ x\in \mathbb{R}^3,\\ u\in H^1(\mathbb{R}^3), \end{gathered} \end{equation} At this step, we see that \eqref{P1} is variational and its weak solutions are the critical points of the functional given by \begin{align*} J(u)&=\frac{a}{2}\int_{\mathbb{R}^3}|\nabla u|^2dx +\frac{1}{2}\int_{\mathbb{R}^3}V(x)u^2dx +\frac{b}{4}\Big(\int_{\mathbb{R}^3}|\nabla u|^2dx\Big)^2\\ &\quad -\frac{1}{p+1}\int_{\mathbb{R}^3}K(x)|u|^{p+1}dx. \end{align*} For $20$ such that $f'_u(t)=0$, $f_u(\cdot)$ is increasing for $(0,t_u)$ and decreasing for $(t_u,\infty)$. That is, there is a unique $t_u$ such that $u_{t_u}\in M$. \end{lemma} \begin{proof} By making the change of variable $s=t^{4+p}$, we obtain \begin{align*} f_u(s) &=\frac{a}{2}s^\frac{3}{4+p}\int_{\mathbb{R}^3}|\nabla u|^2dx +\frac{s^\frac{5}{4+p}}{2}\int_{\mathbb{R}^3}V(s^\frac{1}{4+p}x)u^2dx\\ &\quad +\frac{bs^\frac{6}{4+p}}{4}\Big(\int_{\mathbb{R}^3}|\nabla u|^2dx\Big)^2 -\frac{s}{p+1}\int_{\mathbb{R}^3}K(s^\frac{1}{4+p}x)|u|^{p+1}dx. \end{align*} By (A3) and (A7), $f_u(s)$ is a concave function. We already know that attains its maximum. Let $t_u$ be the unique point at which this maximum is achieved. Then $t_u$ is the unique critical point of $f_u$ and $f_u(t_u)$ is positive and $f_u(\cdot)$ is increasing for $0t_u$. In particular, for any $u\in H^1(\mathbb{R}^3)\backslash\{0\}$, $t_u\in\mathbb{R}$ is the unique value such that $u_{t_u}$ belongs to $M$, and $J(u_t)$ reaches global maximum for $t=t_u$. This completes the proof. \end{proof} Set \[ m:=\inf_{u\in M}J(u), \quad m^*:=\inf_{u\in H^1(\mathbb{R}^3)\backslash\{0\}}\max_{t>0}J(u_t). \] By Lemma \ref{lem2.2}, we have $m=m^*\geq0$. \begin{lemma} \label{lem2.3} There holds $m>0$. \end{lemma} \begin{proof} Let us define \begin{align*} \overline{J}(u) &=\frac{a}{2}\int_{\mathbb{R}^3}|\nabla u|^2dx +\frac{1}{2}\int_{\mathbb{R}^3}V_{\rm min}u^2dx +\frac{b}{4}\Big(\int_{\mathbb{R}^3}|\nabla u|^2dx\Big)^2\\ &\quad -\frac{1}{p+1}\int_{\mathbb{R}^3}K_{\rm max}|u|^{p+1}dx. \end{align*} Obviously, $\overline{J}(u)\leq J(u)$, and this implies that \[ \overline{m}:=\inf_{u\in H^1(\mathbb{R}^3)\backslash\{0\}} \max_{t>0}\overline{J}(u_t)\leq \inf_{u\in H^1(\mathbb{R}^3) \backslash\{0\}}\max_{t>0}J(u_t)=m. \] It suffices to show that $\overline{m}>0$. Define \[ \overline{M}:=\{u\in H^1(\mathbb{R}^3)\backslash\{0\};g'_u(1)=0\}, \] where $g_u(t)=\overline{J}(u_t)$. For any $u\in \overline{M}$, \[ C\|u\|_{H^1}^2\leq\frac{3a}{2}\int_{\mathbb{R}^3}|\nabla u|^2dx +\frac{5}{2}\int_{\mathbb{R}^3}V_{\rm min}u^2dx \leq\frac{4+p}{p+1}\int_{\mathbb{R}^3}K_{\rm max}|u|^{p+1}dx \leq C\|u\|_{H^1}^{p+1}. \] Thus we obtain $C\leq\|u\|_{H^1}^{p-1}$. Consequently, \begin{align*} \overline{J}(u) &=\overline{J}(u)-\frac{1}{p+4}g'_u(1)\\ &=\frac{(p+1)a}{2(p+4)}\int_{\mathbb{R}^3}|\nabla u|^2dx +\frac{p-1}{2(p+4)}\int_{\mathbb{R}^3}V_{\rm min}u^2dx +\frac{(p-2)b}{4(p+4)}\Big(\int_{\mathbb{R}^3}|\nabla u|^2dx\Big)^2\\ &\geq C\|u\|_{H^1}^2\geq C>0. \end{align*} \end{proof} \begin{lemma} \label{lem2.4} There exists $C>0$ such that for any $u\in M$, \[ J(u)\geq C\|u\|_{H^1}^2. \] \end{lemma} \begin{proof} Fix $t\in(0,1)$. Then there exist $\delta,\gamma>0$ such that \begin{gather*} V(tx)\geq V_{\rm min}\geq\delta V_\infty\geq\delta V(x), \\ K(tx)\leq K_{\rm max}\leq\gamma K_\infty\leq\gamma K(x) \end{gather*} for all $x\in\mathbb{R}^3$. For $u\in M$, we compute \begin{align*} &J(u_t)-t^{\lambda+4}J(u)\\ &=\Big(\frac{t^3}{2}-\frac{t^{\lambda+4}}{2}\Big)a\int_{\mathbb{R}^3}|\nabla u|^2dx +\Big(\frac{t^6}{4}-\frac{t^{\lambda+4}}{4}\Big) b\Big(\int_{\mathbb{R}^3}|\nabla u|^2dx\Big)^2\\ &\quad +\int_{\mathbb{R}^3} \Big(\frac{t^5}{2}V(tx)-\frac{t^{\lambda+4}}{2}V(x)\Big)u^2dx +\int_{\mathbb{R}^3}\Big(\frac{t^{\lambda+4}}{p+1}K(x)-\frac{t^{p+4}}{p+1} \Big)|u|^{p+1}dx, \end{align*} where $2<\lambda0$ such that \begin{gather*} \frac{t^5}{2}V(tx)-\frac{t^{\lambda+4}}{2}V(x) \geq\Big(\delta\frac{t^5}{2}-\frac{t^{\lambda+4}}{2}\Big)V(x)\geq\varepsilon_0, \\ \frac{t^{\lambda+4}}{p+1}K(x)-\frac{t^{p+4}}{p+1}K(tx) \geq\Big(t^{\lambda+4}-\gamma t^{p+4}\Big)\frac{K(x)}{p+1}\geq 0. \end{gather*} From these two inequalities and Lemma \ref{lem2.2}, taking a smaller $\varepsilon_0>0$ if necessary, we obtain \[ (1-t^{\lambda+4})J(u)\geq J(u_t)-t^{\lambda+4}J(u)\geq\varepsilon_0\|u\|_{H^1}^2. \] Taking $C=\varepsilon_0/(1-t^{\lambda+4})$, we complete the proof. \end{proof} \section{Existence result} In this section, we combine the Nehari-Pohozaev manifold with the concentration compactness principle to prove the existence of a ground state solution for \eqref{P1}. Initially, we give the following concentration-compactness principle. \begin{lemma}[{\cite[Lemma 1.1]{b1}}] \label{lem3.1} Let $\{\rho_n\}$ be a sequence of nonnegative $L^1$ functions on $\mathbb{R}^N$ satisfying $\lim_{n\to \infty}\int_{\mathbb{R}^N}\rho_ndx=c_0>0$. There exists a subsequence, still denoted by $\{\rho_n\}$ satisfying one of the following three possibilities: \begin{itemize} \item[(i)] (Vanishing) for all $R>0$, \[ \lim_{n\to \infty}\sup_{y\in\mathbb{R}^N}\int_{B_R(y_n)}\rho_ndx=0; \] \item[(ii)] (compactness) there exists $\{y_n\}\subset \mathbb{R}^N$ such that, for any $\varepsilon>0$, there exists an $R>0$ satisfying \[ \lim_{n\to \infty}\inf\int_{B_R(y_n)}\rho_ndx\geq c_0-\varepsilon; \] \item[(iii)] (Dichotomy) there exists an $\alpha\in(0,c_0)$ and $\{y_n\}\subset \mathbb{R}^N$ such that, for any $\varepsilon>0$, there exists an $R>0$, for all $r\geq R$ and $r'\geq R$, \[ \lim_{n\to \infty}\sup\Big(\big|\alpha-\int_{B_r{y_n}}\rho_n\,dx\big| +\big|(c_0-\alpha)-\int_{\mathbb{R}^N\backslash B_{r'}({y_n})}\rho_n\,dx\big| \Big)<\varepsilon; \] \end{itemize} \end{lemma} \begin{lemma}[{\cite[Lemma 1.21]{w4}}] \label{lem3.2} Let $r>0$ and $2\leq q<2^*$. If $\{u_n\}$ is bounded in $H^1(\mathbb{R}^N)$ and \[ \sup_{y\in\mathbb{R}^N}\int_{B_r(y)}|u_n|^qdx\to 0,~\text{as}~n\to +\infty, \] then $u_n\to 0$ in $L^s(\mathbb{R}^N)$ for $20$, there exists an $R>0$ satisfying \[ \int_{\mathbb{R}^3\backslash B_R(y_n)}(|\nabla u_n|^2+|u_n|^2)dx\leq\varepsilon. \] \end{lemma} \begin{proof} First, we claim that $\int_{\mathbb{R}^3}|u_n|^{p+1}dx\nrightarrow0$, as $n\to \infty$. Indeed, since $m>0$, it is easy to obtain that $\|u_n\|_{H^1}\nrightarrow0$ by the Sobolev embedding theorem. By Lemma \ref{lem2.2}, for any $t>1$, \begin{align} m\leftarrow &J(u_n)\geq J((u_n)_t) \\ &=\frac{at^3}{2}\int_{\mathbb{R}^3}|\nabla u_n|^2dx +\frac{t^5}{2}\int_{\mathbb{R}^3}V(x)u_n^2dx +\frac{bt^6}{4}\Big(\int_{\mathbb{R}^3}|\nabla u_n|^2dx\Big)^2\\ &\quad -\frac{t^{4+p}}{p+1}\int_{\mathbb{R}^3}K(tx)|u_n|^{p+1}dx \\ &\geq\frac{t^3}{2}\int_{\mathbb{R}^3}(a|\nabla u_n|^2 +V_{\rm min}u_n^2)dx-\frac{t^{p+4}}{p+1}K_{\rm max}\int_{\mathbb{R}^3}|u_n|^{p+1}dx\\ &\geq\frac{t^3}{2}\sigma-\frac{t^{p+4}}{p+1}K_{\rm max} \int_{\mathbb{R}^3}|u_n|^{p+1}dx, \end{align} where $\sigma$ is a fixed constant. It suffices to take $t>1$ so that $\frac{t^3\sigma}{2}>2m$ to get a lower bound for $\int_{\mathbb{R}^3}|u_n|^{p+1}dx$. Let us assume that \begin{equation} \label{e3.1} \lim_{n\to \infty}\int_{\mathbb{R}^3}|u_n|^{p+1}dx\to A\in(0,+\infty). \end{equation} By Lemma \ref{lem3.2}, we obtain that there exist $\delta>0$ and $\{x_n\}\subset\mathbb{R}^3$ such that \[ \int_{B(x_n)}|u_n|^{p+1}dx>\delta>0. \] Take $R>\max\{1,\varepsilon^{-1}\}$, $\phi_R(t)$ a smooth function such that \begin{itemize} \item $\phi_R(t)=1$ for $0\leq t\leq R$. \item $\phi_R(t)=0$ for $t\geq 2R$. \item $\phi'_R(t)\leq 2/R$. \end{itemize} Write \[ u_n(x)=\phi_R(|x-x_n|)u_n(x)+(1-\phi_R(|x-x_n|))u_n(x):=v_n+\omega_n. \] Then \begin{equation} \label{e3.2} \lim_{n\to \infty}\int_{B_R(x_n)}|v_n|^{p+1}dx\geq\delta. \end{equation} To complete the proof, we only need to prove that there exist constants $C>0$ independent of $\varepsilon$ and $n_0=n_0(\varepsilon)$ such that $\|\omega_n\|_{H^1}\leq C\varepsilon$ for all $n\geq n_0$. Define $z_n=u_n(\cdot+x_n)$, and then $z_n\rightharpoonup z$ weakly in $H^1(\mathbb{R}^3)$. By taking a larger $R$, if necessary, we can assume that $\int_{A_0(R,2R)}|z|^{p+1}dx<\varepsilon$, where $A_0(R,2R)$ denotes the annulus centered in $0$ with radii $R$ and $2R$. Then, for $n$ large enough, we have \begin{equation} \label{e3.3} \Big|\int_{\mathbb{R}^3}K(tx)(|u_n|^{p+1}-|v_n|^{p+1} -|\omega_n|^{p+1})dx\Big|\leq C\varepsilon. \end{equation} Since $|\nabla z_n|^2$ is uniformly bounded in $L^1(\mathbb{R}^3)$, up to a subsequence, $|\nabla z_n|^2$ converges (in the sense of measure) to a certain positive measure $\mu$ with $\mu(\mathbb{R}^3)<+\infty$. By enlarging $R$ necessary, we can assume that $\mu(A_0(R,2R))<\varepsilon$. Then, for $n$ large enough, \[ \int_{\mathbb{R}^3}|\nabla u_n|^2\phi_R(|x-x_n|)(1-\phi_R(|x-x_n|))dx<\varepsilon. \] Taking this into account, direct calculations show that for $n$ large enough, \begin{equation} \Big|\int_{\mathbb{R}^3}|\nabla u_n|^2dx -\int_{\mathbb{R}^3}|\nabla v_n|^2dx -\int_{\mathbb{R}^3}|\nabla \omega_n|^2dx\Big| =\Big|2\int_{\mathbb{R}^3}\nabla v_n\nabla \omega_ndx\Big|\leq C\varepsilon, \end{equation} and thus \begin{align*} &\Big(\int_{\mathbb{R}^3}|\nabla u_n|^2dx\Big)^2 \\ &=\Big(\int_{\mathbb{R}^3}|\nabla v_n|^2dx +\int_{\mathbb{R}^3}|\nabla \omega_n|^2dx +C\varepsilon\Big)^2 \\ &=\Big(\int_{\mathbb{R}^3}|\nabla v_n|^2dx\Big)^2 +\Big(\int_{\mathbb{R}^3}|\nabla \omega_n|^2dx\Big)^2 +2\int_{\mathbb{R}^3}|\nabla v_n|^2dx \int_{\mathbb{R}^3}|\nabla \omega_n|^2dx+C\varepsilon\\ &\geq\Big(\int_{\mathbb{R}^3}|\nabla v_n|^2dx\Big)^2 +\Big(\int_{\mathbb{R}^3}|\nabla \omega_n|^2dx\Big)^2+C\varepsilon. \end{align*} Arguing as before, for $R$ large enough, we obtain \begin{equation} \label{e3.6} \Big|\int_{\mathbb{R}^3}V(tx) u_n^2dx-\int_{\mathbb{R}^3}V(tx) v_n^2dx -\int_{\mathbb{R}^3}V(tx) \omega_n^2dx\Big|\leq C\varepsilon. \end{equation} Putting together \eqref{e3.3}-\eqref{e3.6} we obtain that for $n$ sufficient large and $t>0$, \begin{equation} \label{e3.7} J((u_n)_t)\geq J((v_n)_t)+J((\omega_n)_t)-C\varepsilon. \end{equation} Now let us denote with $t_{v_n}$ and $t_{\omega_n}$ the positive values which maximize $f_{v_n}(t)$ and $f_{\omega_n}(t)$ respectively, namely, \[ J((v_n)_{t_{v_n}})=\max_{t>0}J((v_n)_t)~\text{and}~J((\omega_n)_{t_{\omega_n}}) =\max_{t>0}J((\omega_n)_t). \] Let us assume that $t_{v_n}\leq t_{\omega_n}$(the other case will be treated later). Then \[ J((\omega_n)_t)\geq0~\text{for}~t\leq t_{v_n}. \] We claim that there exist $0<\widetilde{t}<1<\overline{t}$ independent of $\varepsilon$ such that $t_{v_n}\in(\widetilde{t},\overline{t})$. Indeed, take $\overline{t}=(2(p+1)(K_{\rm max}A)^{-1}B)^\frac{1}{p-2}$, where $A$ comes from \eqref{e3.1} and $B$ is large enough such that $\overline{t}>1$ and moreover, \[ B\geq a\int_{\mathbb{R}^3}|\nabla u_n|^2dx +\int_{\mathbb{R}^3}V_\infty|u_n|^2dx +b\Big(\int_{\mathbb{R}^3}|\nabla u_n|^2dx\Big)^2. \] Then \begin{align*} J((u_n)_{\overline{t}}) &\leq\frac{\overline{t}^6}{2}\bigg(a\int_{\mathbb{R}^3}|\nabla u_n|^2dx +\int_{\mathbb{R}^3}V_\infty|u_n|^2dx +b\Big(\int_{\mathbb{R}^3}|\nabla u_n|^2dx\Big)^2\\ &\quad - \frac{\overline{t}^{p-2}}{p+1}\int_{\mathbb{R}^3}K_{\rm max}|u_n|^{p+1}dx\bigg) \\ &\leq-B\frac{\overline{t}^6}{2}<0. \end{align*} Taking a smaller $\varepsilon$ in \eqref{e3.7}, we obtain \[ J((v_n)_{\overline{t}})+J((\omega_n)_{\overline{t}})<0. \] Then $J((v_n)_{\overline{t}})<0$ or $J((\omega_n)_{\overline{t}})<0$. In any case, Lemma \ref{lem2.2} implies that $t_{v_n}<\overline{t}$ (recall that we are assuming $t_{v_n}\leq t_{\omega_n}$). For the lower bound, take $\widetilde{t}=\left(\frac{m}{B}\right)^\frac{1}{3}$. Let us point out that $\widetilde{t}<1$. For any $t\leq\widetilde{t}$, \[ J((u_n)_t)\leq \frac{\widetilde{t}^3}{2} \Big(a\int_{\mathbb{R}^3}|\nabla u_n|^2dx +\int_{\mathbb{R}^3}V_\infty|u_n|^2dx +b\Big(\int_{\mathbb{R}^3}|\nabla u_n|^2dx\Big)^2\Big)\leq\frac{m}{2}. \] Since \begin{equation} \label{e3.8} m\leftarrow J(u_n)\geq J((u_n)_{t_{v_n}})\geq J((v_n)_{t_{v_n}}) +J((\omega_n)_{t_{v_n}})-c\varepsilon\geq m-C\varepsilon \end{equation} and the right hand side can be made greater than $\frac{m}{2}$ by choosing a small $\varepsilon$, we conclude that $t_{v_n}>\widetilde{t}$ and the claim is proved. Using \eqref{e3.8} we deduce, for $n$ large, $J((\omega_n)_t)\leq 2C\varepsilon$ for all $t\in(0,t_{v_n})$. Moreover, for any $t\in(0,\widetilde{t})$, we have \begin{align*} 2C\varepsilon &\geq J((\omega_n)_t)\\ &\geq\frac{t^6}{4}\Big(a\int_{\mathbb{R}^3}|\nabla \omega_n|^2dx +\int_{\mathbb{R}^3}V_{\rm min}\omega_n^2dx +b\Big(\int_{\mathbb{R}^3}|\nabla u_n|^2dx\Big)^2\Big)\\ &\quad -\frac{t^{p+4}}{p+1}\int_{\mathbb{R}^3}K_{\rm max}|\omega_n|^{p+1}dx\\ &\geq\frac{t^6}{4}q_n-Dt^{p+4}, \end{align*} where \[ q_n=a\int_{\mathbb{R}^3}|\nabla \omega_n|^2dx +\int_{\mathbb{R}^3}V_{\rm min}\omega_n^2dx +b\Big(\int_{\mathbb{R}^3}|\nabla u_n|^2dx\Big)^2 \] and $D>A$. Observe that \[ \frac{t^6}{4}q_n-Dt^{p+4}=\frac{(p+2)D}{2} \Big(\frac{q_n}{2(p+4)D}\Big)^{p+4} \quad \text{for } t=\Big(\frac{q_n}{2(p+4)D}\Big)^\frac{1}{p-2}. \] By taking a large $D$ we can assume that $\big(\frac{q_n}{2(p+4)D}\big)^\frac{1}{p-2}\leq\widetilde{t}$. With this choice of $t$, we obtain \[ 2C\varepsilon\geq J((\omega_n)_t) \geq\frac{(p+2)D}{2}\Big(\frac{q_n}{2(p+4)D}\Big)^{p+4}\geq Cq_n^{p+4}. \] Thus we have \begin{equation} \label{e3.9} \|\omega_n\|_{H^1}\leq C\varepsilon\quad \text{for some } C>0. \end{equation} In the case $t_{v_n}>t_{\omega_n}$, we can assume analogously to conclude that $\|v_n\|_{H^1}\leq C\varepsilon$ for some $C>0$. But, choosing small $\varepsilon$, this contradicts \eqref{e3.2}, so \eqref{e3.9} holds. This completes the proof. \end{proof} \begin{lemma} \label{lem3.4} The value $m$ is achieved at some $u\in M$. \end{lemma} \begin{proof} Recall that $z_n\rightharpoonup z$ in $H^1(\mathbb{R}^3)$, we have $z_n\to z$ in $L_{loc}^q(\mathbb{R}^3)$ for $10. \] Therefore, $\max_{t\geq0}J(u_t)=m$ and $u_n\to u$ in $H^1(\mathbb{R}^3)$. In particular, $u\in M$ is a minimizer of $J|_M$. \smallskip \noindent\textbf{Case 2:} $\{x_n\}$ is unbounded. In this case, by Lebesgue convergence Theorem and (A1), we have \begin{align*} \lim_{n\to \infty} \int_{\mathbb{R}^3}V(tx)(u_n(x))_t^2dx &=\lim_{n\to \infty} \int_{\mathbb{R}^3}V(t(x+x_n))(z_n(x))_t^2dx\\ &=V_\infty\int_{\mathbb{R}^3}z_t^2dx\geq\int_{\mathbb{R}^3}V(tx)z_t^2dx\\ &=\lim_{n\to \infty} \int_{\mathbb{R}^3}V(tx))(z_n(x))_t^2dx \end{align*} for any $t>0$ fixed. Moreover, \begin{align*} \lim_{n\to \infty} \int_{\mathbb{R}^3}K(tx)|u_n(x))_t|^{p+1}dx &=\lim_{n\to \infty} \int_{\mathbb{R}^3}K(t(x+x_n))|(z_n(x))_t|^{p+1}dx\\ &=K_\infty\int_{\mathbb{R}^3}|z_t|^{p+1}dx\\ &\leq\lim_{n\to \infty} \int_{\mathbb{R}^3}K(tx))|(z_n(x))_t|^{p+1}dx \end{align*} for any $t>0$ fixed. Therefore, \[ m=\lim_{n\to \infty}J(u_n)\geq\liminf_{n\to \infty}J((z_n)_t) \geq J(z_t),\quad \text{for any }t>0. \] So, taking $t_z$ so that $f_z(t)=J(z_t)$ reaches its maximum, we obtain that $z_{t_z}\in M$ and is a minimizer for $J|_M$. \end{proof} \begin{theorem} \label{thm3.1} The minimizer $u$ of $J|_M$ is a positive ground state solution of \eqref{P1}. \end{theorem} \begin{proof} Let $u\in M$ be a minimizer of the functional $J|_M$. We will prove that $u$ is a positive ground state solution of $(P)$ in the following. Recall that, by Lemma \ref{lem2.2}, \[ J(u)=\inf_{u\in H^1(\mathbb{R}^3)\backslash\{0\}}\max_{t>0}J(u_t)=m. \] We argue by contradiction. Suppose that $u$ is not a weak solution of \eqref{P1}. Then we can choose $\phi\in C_0^\infty(\mathbb{R}^3)$ such that \begin{align*} \langle J'(u),\phi\rangle &=a\int_{\mathbb{R}^3}\nabla u\nabla\phi dx +\int_{\mathbb{R}^3}V(x)u\phi dx +b\int_{\mathbb{R}^3}|\nabla u|^2dx\int_{\mathbb{R}^3}\nabla u\nabla\phi dx\\ &\quad -\int_{\mathbb{R}^3}K(x)|u|^{p-1}u\phi dx<-1. \end{align*} We fix $\varepsilon>0$ sufficiently small such that \[ \langle J'(u_t+\sigma\phi),\phi\rangle\leq-\frac{1}{2},\quad \forall |t-1|,|\sigma|\leq\varepsilon. \] and introduce a cutoff function $0\leq\eta\leq1$ such that $\eta(t)=1$ for $|t-1|\leq\frac{\varepsilon}{2}$ and $\eta(t)=0$ for $|t-1|\geq\varepsilon$. Set \[ \gamma(t)=\begin{cases} u_t, & \text{if } |t-1|\geq\varepsilon,\\ u_t+\varepsilon\eta(t)\phi, &\text{if } |t-1|<\varepsilon. \end{cases} \] Note that $\gamma(t)$ is a continuous curve in $H^1(\mathbb{R}^3)$ and, eventually choosing a smaller $\varepsilon$, we obtain that $\|\gamma(t)\|_{H^1}>0$ for $|t-1|<\varepsilon$. We claim $\sup_{t\geq0}J(\gamma(t))0$ and $G(\gamma(1+\varepsilon))<0$, there exists $t_0\in (1-\varepsilon,1+\varepsilon)$ such that $G(\gamma(t_0))=0$, i.e., $\gamma(t_0)=u_{t_0}+\varepsilon\eta(t_0)\phi\in M$ and $J(\gamma(t_0))0$. \end{proof} \section{Concentration behavior} In this section, we study the concentration behavior of the ground state solutions $u_\varepsilon$ as $\varepsilon\to 0$. From now on, we assume (A1), (A3), (A4), (A5), (A7), (A8) are satisfied. Introducing the re-scaled transformation $x\mapsto\varepsilon x$ we can rewrite \eqref{Pe} as \begin{equation} \label{PPe} \begin{gathered} -\Big(a+b\int_{\mathbb{R}^3}|\nabla u|^2dx\Big)\Delta u +V(\varepsilon x)u= K(\varepsilon x)|u|^{p-1}u,~ x\in \mathbb{R}^3,\\ u\in H^1(\mathbb{R}^3), \end{gathered} \end{equation} Let \begin{align*} J_\varepsilon(u) &=\frac{a}{2}\int_{\mathbb{R}^3}|\nabla u|^2dx +\frac{1}{2}\int_{\mathbb{R}^3}V(\varepsilon x)u^2dx +\frac{b}{4}\Big(\int_{\mathbb{R}^3}|\nabla u|^2dx\Big)^2\\ &\quad -\frac{1}{p+1}\int_{\mathbb{R}^3}K(\varepsilon x)|u|^{p+1}dx \end{align*} be the associated energy functional, $P_\varepsilon(u)$, \[ M_\varepsilon:=\{u\in H^1(\mathbb{R}^3);G_\varepsilon(u) =P_\varepsilon(u)+\langle J'_\varepsilon(u),u\rangle=0\} \] and $m_\varepsilon=\inf_{u\in M_\varepsilon}J_\varepsilon(u)$ be the corresponding Pohozaev identity, the Nehari-Pohozaev manifold and the least energy, respectively. We need the following constant coefficients problem \begin{equation} \label{Plam} \begin{gathered} -\Big(a+b\int_{\mathbb{R}^3}|\nabla u|^2dx\Big)\Delta u+\lambda u = \mu|u|^{p-1}u,\quad x\in \mathbb{R}^3,\\ u\in H^1(\mathbb{R}^3), \end{gathered} \end{equation} where $\lambda,\mu>0$. In the same way, we use the notations $J_{\lambda\mu},P_{\lambda\mu},M_{\lambda\mu}, G_{\lambda\mu}$ and $m_{\lambda\mu}$. In a similar way to Section 3, there exists some $u\in M_{\lambda\mu}$ such that $J_{\lambda\mu}(u)=m_{\lambda\mu}$. \begin{lemma} \label{lem4.1} Suppose $\lambda_1\geq\lambda_2$ and $\mu_2\geq\mu_1$. Then $m_{\lambda_1\mu_1}\geq m_{\lambda_2\mu_2}$ is achieved at some $u\in M$. \end{lemma} \begin{proof} Let $u\in M_{\lambda_1\mu_1}$ be such that $m_{\lambda_1\mu_1}=J_{\lambda_1\mu_1}(u)=\max_{t>0}J_{\lambda_1\mu_1}(u_t)$. Then there exists a unique $t_{\lambda_2\mu_2}$ such that $u_{t_{\lambda_2\mu_2}}\in M_{\lambda_2\mu_2}$, and hence \begin{align*} m_{\lambda_1\mu_1} &=J_{\lambda_1\mu_1}(u)\\ &\geq J_{\lambda_1\mu_1}(u_{t_{\lambda_2\mu_2}})\\ &=J_{\lambda_2\mu_2}(u_{t_{\lambda_2\mu_2}}) +\frac{(\lambda_1-\lambda_2)(t_{\lambda_2\mu_2})^5}{2} \int_{\mathbb{R}^3}|u_{t_{\lambda_2\mu_2}}|^2dx\\ &\quad +\frac{(\mu_1-\mu_2)(t_{\lambda_2\mu_2})^{p+4}}{p+1} \int_{\mathbb{R}^3}|u_{t_{\lambda_2\mu_2}}|^{p+1}dx\\ &\geq m_{\lambda_1\mu_1}. \end{align*} \end{proof} Without loss of generality, up to translation, we assume that \[ K(\overline{x})=\max_{x\in\Omega_1}K(x)\quad \text{and}\quad \overline{x}=0\in\Omega_1. \] Thus \[ V(0)=V_{\rm min}\quad \text{and}\quad k:=K(0)\geq K(x)\quad \text{for all } |x|\geq R. \] \begin{lemma} \label{lem4.2} There exists $C>0$ independent of $\varepsilon$ such that $m_\varepsilon\geq C$. On the other hand, $\limsup_{\varepsilon\to 0}m_\varepsilon\leq m_{V_{\rm min}k}$. \end{lemma} \begin{proof} Since $m_\varepsilon\geq m_{V_{\rm min}K_{\rm max}}>0$, we only need to prove the second part. Take $u\in M_{V_{\rm min}k}$ satisfying $J_{V_{\rm min}k}(u)=m_{V_{\rm min}k}$. By Lemma \ref{lem2.2}, we know that there is a unique $t_\varepsilon>0$ such that $u_{t_\varepsilon}\in M_\varepsilon$ and \begin{equation} \label{e4.1} \begin{aligned} m_\varepsilon &\leq \max_{t>0}J_\varepsilon(u_t)\\ &=\frac{at_\varepsilon^3}{2}\int_{\mathbb{R}^3}|\nabla u|^2dx +\frac{t_\varepsilon^5}{2}\int_{\mathbb{R}^3}V(t_\varepsilon\varepsilon x)u^2dx\\ &\quad +\frac{bt_\varepsilon^6}{4}\Big(\int_{\mathbb{R}^3}|\nabla u|^2dx\Big)^2 -\frac{t_\varepsilon^{4+p}}{p+1}\int_{\mathbb{R}^3} K(t_\varepsilon\varepsilon x)|u|^{p+1}dx. \end{aligned} \end{equation} This combining with $m_\varepsilon>0$, we have $\{t_\varepsilon\}$ is bounded with respect to $\varepsilon$. For each $\varepsilon>0$, there exists an $R>0$ such that \begin{equation} \big|\int_{|x|>R}(V(t_\varepsilon\varepsilon x)-V_{\rm min})u^2dx\big|<\varepsilon. \end{equation} Since $0\in\Omega_1$, we obtain \begin{equation} \lim_{\varepsilon\to 0}\big|\int_{|x|\leq R}(V(t_\varepsilon\varepsilon x) -V_{\rm min})u^2dx\big|=0. \end{equation} Similarly, there holds \begin{equation} \label{e4.4} \lim_{\varepsilon\to 0}\int_{\mathbb{R}^3}(K(t_\varepsilon\varepsilon x)-k)|u|^{p+1}dx=0. \end{equation} From \eqref{e4.1}-\eqref{e4.4}, we can draw the conclusion that \[ m_\varepsilon\leq J_\varepsilon(u_{t_\varepsilon})=J_{V_{\rm min}k}(u_{t_\varepsilon})+o(1)\leq J_{V_{\rm min}k}(u)+o(1)=m_{V_{\rm min}k}+o(1). \] Thus \[ \limsup_{\varepsilon\to 0}m_\varepsilon\leq m_{V_{\rm min}k}. \] \end{proof} Let $v_\varepsilon$ be the ground state solution of \eqref{PPe}. \begin{lemma} \label{lem4.3} There exists $\varepsilon^*>0$ such that, for all $\varepsilon\in(0,\varepsilon^*)$, there exist $y_\varepsilon\in\mathbb{R}^3$ and $R,C>0$ such that \[ \int_{B_R(y_\varepsilon)}v_\varepsilon^2dx>C. \] \end{lemma} \begin{proof} Suppose by contradiction that there is a sequence $\varepsilon_n\to 0$ as $n\to \infty$ such that for all $R>0$, \[ \lim_{\varepsilon\to 0}\sup_{y\in\mathbb{R}^3}\int_{B_R(y_\varepsilon)} v_\varepsilon^2dx=0. \] From Lemma \ref{lem3.2}, we can deduce that $v_{\varepsilon_n}\to 0$ in $L^q(\mathbb{R}^3)$ for $q\in(2,6)$. Since \begin{align*} m_{\varepsilon_n} &=J_{\varepsilon_n}(v_{\varepsilon_n}) -\frac{1}{2}\langle J'_{\varepsilon_n}(v_{\varepsilon_n}),v_{\varepsilon_n}\rangle \\ &=-\frac{b}{4}\Big(\int_{\mathbb{R}^3}|\nabla v_{\varepsilon_n}|^2dx\Big)^2 +\Big(\frac{1}{2}-\frac{1}{p+1}\int_{\mathbb{R}^3}K(\varepsilon_nx) |v_{\varepsilon_n}|^{p+1}dx\Big). \end{align*} Letting $n\to \infty$, we have \[ 0<\liminf_{\varepsilon\to 0}m_{\varepsilon_n} =-\liminf_{\varepsilon\to 0}\frac{b}{4} \Big(\int_{\mathbb{R}^3}|\nabla v_{\varepsilon_n}|^2dx\Big)^2\leq0. \] Which is absurd. \end{proof} We denote \[ \omega_\varepsilon(x):=v_\varepsilon(x+y_\varepsilon) =u_\varepsilon(\varepsilon x+\varepsilon y_\varepsilon). \] So $\omega_\varepsilon$ is a positive ground state solution to \begin{equation} \label{PPPe} \begin{gathered} -\Big(a+b\int_{\mathbb{R}^3}|\nabla u|^2dx\Big)\Delta u +V(\varepsilon x+\varepsilon y_\varepsilon)u = K(\varepsilon x+\varepsilon y_\varepsilon)|u|^{p-1}u,\quad x\in \mathbb{R}^3,\\ u\in H^1(\mathbb{R}^3), \end{gathered} \end{equation} Denote the corresponding energy functional by $\Phi_\varepsilon$. Set $\phi(\omega_\varepsilon)=\Phi'_\varepsilon((\omega_\varepsilon)_t)|_{t=1}$. Thus \begin{align*} \phi(\omega_\varepsilon) &=\frac{3a}{2}\int_{\mathbb{R}^3}|\nabla \omega_\varepsilon|^2dx +\frac{5}{2}\int_{\mathbb{R}^3}V(\varepsilon x +\varepsilon y_\varepsilon)\omega_\varepsilon^2dx +\frac{1}{2}\int_{\mathbb{R}^3}\nabla V(\varepsilon x+\varepsilon y_\varepsilon)\varepsilon x\omega_\varepsilon^2dx \\ &\quad +\frac{3b}{2}\Big(\int_{\mathbb{R}^3}|\nabla \omega_\varepsilon|^2dx\Big)^2 -\frac{4+p}{p+1}\int_{\mathbb{R}^3}K(\varepsilon x+\varepsilon y_\varepsilon) |\omega_\varepsilon|^{p+1}dx\\ &\quad -\frac{1}{p+1}\int_{\mathbb{R}^3} \nabla K(\varepsilon x+\varepsilon y_\varepsilon)\varepsilon x |\omega_\varepsilon|^{p+1}dx=0. \end{align*} \begin{lemma} \label{lem4.4} The sequence $\{\varepsilon y_\varepsilon\}$ is bounded. \end{lemma} \begin{proof} It is easy to know that $\{\omega_\varepsilon\}$ is bounded in $H^1(\mathbb{R}^3)$. We may assume that \[ \omega_\varepsilon\rightharpoonup\omega_0\geq0\quad \text{in } H^1(\mathbb{R}^3). \] It follows from Lemma \ref{lem4.3} that $\omega_0\not\equiv0$. Suppose to the contrary that, after passing to a subsequence, \[ |\varepsilon y_\varepsilon|\to \infty. \] Clearly, we have $V(\varepsilon y_\varepsilon)\to V_\infty$ and $K(\varepsilon y_\varepsilon)\to K_\infty$ as $\varepsilon\to 0$. Thus $\omega_0$ is a solution of \begin{equation} \label{e4.5} -(a+bA)\Delta u+V_\infty u= K_\infty|u|^{p-1}u,\quad x\in \mathbb{R}^3, \end{equation} where $A=\lim_{\varepsilon\to 0}\int_{\mathbb{R}^3}|\nabla \omega_\varepsilon|^2dx$. Similarly as Lemma \ref{lem2.1}, we have the Pohozaev identity \[ P_{A,\infty}(\omega_0):=\frac{a+bA}{2}\int_{\mathbb{R}^3} |\nabla \omega_0|^2dx-\frac{3K_\infty}{p+1}\int_{\mathbb{R}^3} |\omega_0|^{p+1}dx+\frac{3V_\infty}{2}\int_{\mathbb{R}^3}|\omega_0|^2dx=0. \] Let us define \begin{align*} g_{\omega_0}(t):&=I_\infty((\omega_0)_t) \\ &=\frac{a+bA}{2}t^3\int_{\mathbb{R}^3}|\nabla \omega_0|^2dx +\frac{t^5}{2}\int_{\mathbb{R}^3}V_\infty\omega_0^2dx -\frac{t^{4+p}}{p+1}\int_{\mathbb{R}^3}\nabla K_\infty|\omega_0|^{p+1}dx\\ &=0, \end{align*} where $I_\infty$ is the energy functional associated to \eqref{e4.5}. Obviously, $g_{\omega_0}(t)$ attains its unique maximum since $2K(\overline{x})\}. \] We see that $x_0\in(\Omega_1\backslash \mathcal{A})\cup(\Omega_1^c\backslash \mathcal{B})$. As mentioned early, we may assume $\overline{x}=0$ and $K(0)=\max_{x\in\Omega_1}K(x)=k$. When $x_0\in\Omega_1\backslash \mathcal{A}$, then $V(x_0)=V_{\rm min}$ and $K(x_0)0$ such that \[ \omega_\varepsilon(x)\leq C_1e^{-C_2|x|}. \] for all $x\in\mathbb{R}^3$. \end{lemma} \begin{proof}[Proof of Theorem \ref{thm1.1}] Let $\delta_\varepsilon$ be the global maximum of $\omega_\varepsilon$. By Lemma \ref{lem4.7}, we see that $\delta_\varepsilon\in B_R(0)$ for some $R>0$. Thus the global maximum of $v_\varepsilon$, given by $z_\varepsilon=y_\varepsilon+\delta_\varepsilon$, satisfies $\varepsilon z_\varepsilon=\varepsilon y_\varepsilon+\varepsilon \delta_\varepsilon$. Note that $u_\varepsilon(x)=(x/\varepsilon)$, then we see that $u_\varepsilon(x)$ is positive ground state solution to \eqref{Pe} with $\varepsilon>0$ and has a global maximum point $x_\varepsilon=\varepsilon z_\varepsilon$. Since $\{\delta_\varepsilon\}$ is bounded, it follows from \eqref{PPPe} and Lemma \ref{lem4.5} that $\varepsilon z_\varepsilon\to x_0$ and $\lim_{\varepsilon\to 0}\operatorname{dist}(\varepsilon z_\varepsilon,\mathcal{H})=0$. In particular, if $\Omega_1\cap\Omega_2\neq\emptyset$, then $\lim_{\varepsilon\to 0}\operatorname{dist}(\varepsilon z_\varepsilon, \Omega_1\cap\Omega_2)=0$. Moreover, since $\omega_\varepsilon$ is a $(PS)_{m_{V(x_0)K(x_0)}}$ sequence for $J_{m_{V(x_0)K(x_0)}}$ and $\omega_\varepsilon\to \omega_0$ in $H^1(\mathbb{R}^3)$, we deduce that $\omega_0$ is a positive ground state solution of \begin{gather*} -\Big(a+b\int_{\mathbb{R}^3}|\nabla u|^2dx\Big)\Delta u+V(x_0)u = K(x_0)|u|^{p-1}u,\quad x\in \mathbb{R}^3,\\ u\in H^1(\mathbb{R}^3), \end{gather*} In particular, if $\Omega_1\cap\Omega_2\neq\emptyset$, we have $V(x_0)=V_{\rm min}$, $K(x_0)=K_{\rm max}$ and $\omega_0$ is a positive ground state solution of \begin{gather*} -\Big(a+b\int_{\mathbb{R}^3}|\nabla u|^2dx\Big)\Delta u +V_{\rm min}u= K_{\rm max}|u|^{p-1}u,\quad x\in \mathbb{R}^3,\\ u\in H^1(\mathbb{R}^3), \end{gather*} In view of the definition of $v_\varepsilon$, from Lemma \ref{lem4.7} we obtain \[ u_\varepsilon(x)=v_\varepsilon(\frac{x}{\varepsilon}) =\omega_\varepsilon(\varepsilon^{-1}x-y_\varepsilon) =\omega_\varepsilon(\varepsilon^{-1}x-\varepsilon^{-1}x_\varepsilon +\delta_\varepsilon) \leq C_1e^{-C_2|\frac{x-x_\varepsilon}{\varepsilon}|}. \] The proof is complete. \end{proof} \subsection*{Acknowledgments} This research was supported by the Fundamental Research Funds for the Central Universities (Grant No. 2015QNA45). \begin{thebibliography}{99} \bibitem{a1} C. O. Alves, F. J. S.A. Correa, T. F. Ma; \emph{Positive solutions for a quasilinear elliptic equation of Kirchhoff type}, Comput. Math. Appl. 49(1) (2005), 85-93. \bibitem{a2} S. Adachi; \emph{The existence of multiple positive solutions for a class of non-local elliptic problem in $\mathbb{R}^N$}, Math. Nachr.(2014), 1-12. \bibitem{a3} T. Aprile, D. Mugnai; \emph{Non-existence results for the coupled Klein-Cordon-Maxwell equations}, Adv.Nonlinear Stud. 4(2004), 307-322. \bibitem{b1} H. Berestycki, P. L. Lions; \emph{Nonlinear scalar field equations I}, Arch. Ration. Mech. Anal. 82 (1983), 313-346. \bibitem{c1} M. Chipot, B. Lovat; \emph{Some remarks on nonlocal elliptic and parabolic problems}, Nolinear Anal. 30 (1997), 4619-4627. \bibitem{f1} H. Fan, X. Liu; \emph{Multiple positive solutions of degenerate nonlocal problems on unbounded domain}, Mathematical Methods in the Applied Sciences, 38(7) (2015), 1282-1291. \bibitem{f2} H. Fan, X. Liu; \emph{Positive and negative solutions for a class of Kirchhoff type problems on unbounded domain}, Nonlinear Analysis: TMA 114 (2015), 186-196. \bibitem{h1} X. He, W. Zou; \emph{Existence and concentration behavior of positive solutions for a Kirchhoff equation in $\mathbb{R}^3$}, J. Differ. Equ. 252 (2012), 1813-1834. \bibitem{k1} G. Kirchhoff; \emph{Mechanik}, Teeubner, Leipzig, 1883. \bibitem{l1} Y. Li, F. Li, J. Shi; \emph{Existence of positive solutions to Kirchhoff type problems with zero mass}, J. Math. Anal. Appl. 410 (2014), 361-374. \bibitem{l2} G. Li, H. Ye; \emph{Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in $\mathbb{R}^3$}, J. Differential Equations. 257 (2014), 566-600. \bibitem{l3} P. L. Lions; \emph{The concentration-compactness principle in the calculus of variations. The locally compact case I}, Ann. Inst. H. Poincar\'{e} Anal.Non Lin\'{e}aire 1 (1984), 109-145. \bibitem{l4} L. Liu, C. Chen; \emph{Study on existence of solutions for p-Kirchhoff elliptic equation in $\mathbb{R}^N$ with vanishing potential}, J. Dyn. Contral. Syst. 20 (2014), 575-592. \bibitem{l5} Z. Liu, S. Guo; \emph{Existence and concentration of positive ground states for a Kirchhoff equation involving critical Sobolev exponent}, Z. Angew. Math. Phys. Doi10.1007/s00033-014-0431-8. \bibitem{n1} J, Nie, X. Wu; \emph{Existence and multiplicity of nontrivial solutions for Schr\"{o}dinger-Kirchhoff-type equations with radial potential}, Nonlinear Anal. 75 (2012), 3470-3479. \bibitem{r1} D. Ruiz; \emph{The Schr\"{o}dinger-Poisson equation under the effect of a nonlinear local term}, J. Funct. Anal. 237 (2006), 655-674. \bibitem{r2} D. Ruiz, G. Siciliano; \emph{Existence of ground states for a modified nonlinear Schr\"{o}dinger equation}, Nonlinearity 23 (2010), 1221-1233. \bibitem{w1} X. Wang; \emph{On concentration of positive bound states of nonlinear Schr\"{o}dinger equations}, Commun. Math. Phys. 153 (1993), 229-244. \bibitem{w2} J. Wang, L. Tian, J. Xu, F. Zhang; \emph{Multiplicity and concentration of positive solutions for a Kirchhoff type problem with critical growth}, J. Differential Equations. 253 (2012), 2314-2351. \bibitem{w3} W. Wang, X. Yang, F. Zhao; \emph{Existence and concentration of ground state solutions for a subcubic quasilinear problem via Pohozaev manifold}, J. Math. Anal. Appl. 424 (2015), 1471-1490. \bibitem{w4} M. Willem; \emph{Minimax theorems}, Birkhauser. 1996. \bibitem{w5} X. Wu; \emph{Existence of nontrivial solutions and high energy solutions for Schr\"{o}dinger-Kirchhoff-type equations in $\mathbb{R}^N$}, Nonlinear Anal: RWA, 12 (2011), 1278-1287. \bibitem{y1} H. Ye; \emph{Positive high energy solution for Kirchhoff equations in $\mathbb{R}^3$ with superlinear nonlinearities via Nehari-Pohozaev manifold}, Discrete and continuous dynamical systems. 35(8) (2015), 3857-3877. \end{thebibliography} \end{document}