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HÖLDER CONTINUITY WITH EXPONENT (1 + α)/2 IN THE
TIME VARIABLE FOR SOLUTIONS OF PARABOLIC

EQUATIONS

JUNICHI ARAMAKI

Abstract. We consider the regularity of solutions for some parabolic equa-

tions. We show Hölder continuity with exponent (1 + α)/2, with respect to
the time variable, when the gradient in the space variable of the solution has

the Hölder continuity with exponent α.

1. Introduction

In this article we consider the Hölder continuity of solutions for the equation.

Lu :=
n∑

i,j=1

aij(x, t)
∂2u

∂xi∂xj
+

n∑
i=1

bi(x, t)
∂u

∂xi
− ∂u

∂t
= f in Q (1.1)

where Q = Ω × (0, T ], Ω ⊂ Rn is a domain and T > 0. For the classical solution
u(x, t) of (1.1), we shall show the Hölder continuity with exponent (1 +α)/2 in the
time variable t, when the gradient of u with respect to the space variable x has
Hölder continuity with exponent α.

We assume that:
(H1) L is parabolic, i.e., for any (x, t) ∈ Q,

n∑
i,j 1

aij(x, t)ξiξj > 0 for all 0 6= ξ = (ξ1, . . . , ξn) ∈ Rn.

Note that L is not necessary uniformly parabolic.
(H2) aij , bi ∈ C(Q) for i, j = 1, . . . , n where C(Q) denotes the space of continu-

ous functions in Q.
(H3) There exist constants µ1, µ2 > 0 such that

n∑
i=1

aii(x, t) ≤ µ1,

n∑
i=1

|bi(x, t)| ≤ µ2 for all (x, t) ∈ Q.

(H4) f = f(x, t) is a bounded continuous function in Q satisfying

|f(x, t)| ≤ µ3 for all (x, t) ∈ Q.
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In the following, for non-negative integers k, l and any set A ⊂ Rn, we denote the
space of functions u ∈ C(A× (0, T ]) such that u has continuous partial derivatives
∂αx u for |α| ≤ k and ∂jt u for j ≤ l in A× (0, T ] by Ck,l(A× (0, T ]). Here

∂αx u =
∂|α|u

∂xα1
1 · · · ∂x

αn
n

for any multi-index α = (α1, . . . , αn) and |α| =
∑n
i=1 αi. We also use the notation

ut = ∂tu, uxi
= ∂xi

u, uxixj
= ∂xi

∂xj
u etc. Now we are in a position to state our

main result.

Theorem 1.1. Under the hypotheses (H1)–(H4), let u ∈ C2,1(Q) be a solution of
(1.1) in Q. Assume that there exist α ∈ (0, 1] and constants C1, C2 ≥ 0 such that

|∇u(x, t)−∇u(y, t)| ≤ C1|x− y|α (1.2)

for all (x, t), (y, t) ∈ Q, and

|∇u(x, t)| ≤ C2 (1.3)

for all (x, t) ∈ Q. Here and hereafter ∇ denotes the gradient operator with respect
to the space variable x.

(i) Let Ω′ ⊂ Ω be a subdomain such that dist(Ω′, ∂Ω) ≥ d > 0, and define
Q′ = Ω′× (0, T ]. Then there exist δ > 0 depending only on µ1, µ2, µ3 and α, K > 0
depending only on µ1, µ2, µ3, d, α, C1 and C2 such that

|u(x, t)− u(x, t0)| ≤ K|t− t0|(1+α)/2 (1.4)

for all (x, t), (x, t0) ∈ Q′ with |t− t0| < δ.
(ii) Furthermore, if we assume that ∂Ω 6= ∅ and u ∈ C1,0(Ω × (0, T ]) satisfies

that there exist β ∈ (0, 1] and a constant D ≥ 0 such that

|∇u(x, t)−∇u(x, t0)| ≤ D|t− t0|(1+β)/2

for all x ∈ ∂Ω and t, t0 ∈ (0, T ], then for any σ > 0 there exists K > 0 depending
only on µ1, µ2, µ3, C1, C2, D and σ such that

|u(x, t)− u(x, t0)| ≤ K|t− t0|(1+γ)/2, γ = min{α, β}

for any (x, t), (x, t0) ∈ Q with |t− t0| < σ.

Remark 1.2. Gilding [6] assumed that |u(x, t) − u(y, t)| ≤ C1|x − y|α instead of
(1.2) and (1.3), and obtained

|u(x, t)− u(x, t0)| ≤ K|t− t0|α

instead of (1.4). Note that the papers of Brandt [4] and Knerr [7] can be viewed
as precursors to the present study. See also the discussion of Ladyzhenskaja et
al [8] in [7]. Then the author of [6] applied the result to the Cauchy problem for
the porous media equation in one dimension. See also Aronson [2] and Bénilan [3].
On the other hand, our result can be applied to the regularity for a quasilinear
parabolic type system associated with the Maxwell equation. For such application,
see Aramaki [1].
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2. Proof of Theorem 1.1

We shall use a modification of the arguments in [6].
(i) Let Ω′ ⊂ Ω be a subdomain with dist(Ω′, ∂Ω) ≥ d > 0 and define Q′ =

Ω′ × (0, T ]. Fix arbitrary points (x0, t0), (x0, t1) ∈ Q′ with 0 < t0 < t1 ≤ T and
choose 0 < ρ < d, and define µ and C so that

µ = max{µ1, µ2, µ2C2 + µ3} and C =
C1

1 + α
.

Moreover, we define a set and functions

N = {x ∈ Rn; |x− x0| < ρ} × (t0, t1] ⊂ Q,
v±(x, t) = µ{1 + 2sρ−2(1 + ρ)}(t− t0) + sρ−2|x− x0|2 + Cρ1+α

± {u(x, t)− u(x0, t0)−∇u(x0, t0) · (x− x0)}

where “·” denotes the inner product in Rn. Let

s = sup
t0≤t≤t1,x∈Ω′

|u(x, t)− u(x, t0)|.

Since

v±t = µ{1 + 2sρ−2(1 + ρ)} ± ut(x, t),
v±xi

= 2sρ−2(xi − x0,i)± {uxi(x, t)− uxi(x0, t0)},
v±xixj

= 2sρ−2δij ± uxixj
(x, t)

where δij denotes the Kronecker delta, we have

Lv± = −µ− 2sρ−2µ(1 + ρ) + 2sρ−2
{ n∑
i=1

aii(x, t) +
n∑
i=1

bi(x, t)(xi − x0,i)
}

± Lu(x, t)∓
n∑
i=1

bi(x, t)uxi(x0, t0)

≤ −µ− 2sρ−2(µ+ µρ) + 2sρ−2(µ1 + µ2ρ) + |f(x, t)|

+
n∑
i=1

|bi(x, t)||uxi
(x0, t0)|

≤ −µ− 2sρ−2(µ+ µρ) + 2sρ−2(µ1 + µ2ρ) + µ3 + C2µ2 ≤ 0.

(2.1)

Here we used the definition of µ.
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When t = t0 and |x− x0| ≤ ρ, from the definition of C, we see that

v±(x, t0) = sρ−2|x− x0|2 + Cρ1+α

± {u(x, t0)− u(x0, t0)−∇u(x0, t0) · (x− x0)}
= sρ−2|x− x0|2 + Cρ1+α

±
∫ 1

0

(∇u(θx0 + (1− θ)x)−∇u(x0, t0)) · (x− x0)dθ

≥ sρ−2|x− x0|2 + Cρ1+α

− C1

∫ 1

0

|θx0 + (1− θ)x− x0|αdθ|x− x0|

≥ sρ−2|x− x0|2 + Cρ1+α − C1

1 + α
ρ1+α ≥ 0.

(2.2)

When |x− x0| = ρ and t0 < t ≤ t1, using the definition of s, we can see that

v±(x, t) = µ{1 + 2sρ−2(1 + ρ)}(t− t0) + s+ Cρ1+α

± {u(x, t)− u(x0, t0)−∇u(x0, t0) · (x− x0)}
= µ{1 + 2sρ−2(1 + ρ)}(t− t0) + s+ Cρ1+α

± {u(x, t0)− u(x0, t0)−∇u(x0, t0) · (x− x0)}
± {u(x, t)− u(x, t0)}

≥ µ{1 + 2sρ−2(1 + ρ)}(t− t0) + s+ Cρ1+α − C1

1 + α
ρ1+α − s

≥ 0.

(2.3)

Thus from (2.1), (2.2) and (2.3), we see that

Lv± ≤ 0 in N,

v± ≥ 0 on the parabolic boundary of N.
(2.4)

By the maximum principle (cf. Friedman [5, p. 34] or Lieberman [9, Chapter 2,
Lemma 2.3]), it follows that v± ≥ 0 in N . Hence we have

∓ {u(x, t)− u(x0, t0)−∇u(x0, t0) · (x− x0)}
≤ Cρ1+α + µ{1 + 2sρ−2(1 + ρ)}(t− t0) + sρ−2|x− x0|2.

If we put x = x0, then we see that

|u(x0, t)− u(x0, t0)| ≤ Cρ1+α + µ{1 + 2sρ−2(1 + ρ)}(t− t0).

Since x0 ∈ Ω′ and t ∈ (t0, t1] are arbitrary, it follows that

s ≤ Cρ1+α + µ{1 + 2sρ−2(1 + ρ)}(t1 − t0)

= Cρ1+α + µ(t− t0) +
1
2
s{4µρ−2(1 + ρ)(t1 − t0)}.

(2.5)

Let ρ∗ be the positive root of the quadratic equation y2 = 4µ(1 + y)(t1 − t0), i.e.,

ρ∗ = 2µ(t1 − t0) + 2{µ(t1 − t0) + µ2(t1 − t0)2}1/2. (2.6)

If we define δ = d2/(4µ(1 + d)), for t1 < t0 + δ, it is easily seen that ρ∗ < d. Thus
we can replace ρ in (2.5) with ρ∗. Therefore when t0 < t1 < t0 + δ, we see that

s ≤ C
(
2µ(t1 − t0) + 2{µ(t1 − t0) + µ2(t1 − t0)2}1/2

)1+α
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+ µ(t1 − t0) +
1
2
s

= C
(
2µ(t1 − t0)1/2 + 2{µ+ µ2(t1 − t0)}1/2

)1+α(t1 − t0)(1+α)/2

+ µ(t1 − t0)(1−α)/2(t1 − t0)(1+α)/2 +
1
2
s.

Since t1 − t0 < δ, we have

s ≤ 2
[
C
(
2µδ1/2 + 2{µ+ µ2δ}1/2

)1+α + µδ(1−α)/2
]
(t1 − t0)(1+α)/2.

Thus we have
|u(x0, t1)− u(x0, t0)| ≤ K(t1 − t0)(1+α)/2

where
K = 2

[
C
(
2µδ1/2 + 2{µ+ µ2δ}1/2

)1+α + µδ(1−α)/2
]

for any t1 < t0 + δ. Since (x0, t0) and (x0, t1) with t0 < t1 ≤ T are arbitrary points
in Q′, we get the conclusion of (i).

(ii) When (x0, t0), (x0, t1) ∈ Q with 0 < t0 < t1 < t0 + σ, we choose ρ∗ as in
(2.6). We define

N∗ = {x ∈ Rn : |x− x0| < ρ∗} × (t0, t1] ⊂ Rn × (0, T ],

w±(x, t) = v±(x, t) +D(t1 − t0)(1+β)/2 in N∗ ∩Q,
s = sup

t0≤t≤t1,x∈Ω

|u(x, t)− u(x, t0)|.

By a similar argument as in the proof of (i), we have

Lw± ≤ 0 in N∗ ∩Q,
w± ≥ 0 on the parabolic boundary of N∗ ∩Q.

If we choose µ = max{µ1, µ2, µ2C2 +µ3, Dσ
(1+β)/2}, from a similar argument as in

(i) we can get the conclusion of (ii).
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