\documentclass[reqno]{amsart} \usepackage{hyperref} \usepackage{cite} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2015 (2015), No. 96, pp. 1--6.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2015 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2015/96\hfil H\"older continuity] {H\"older continuity with exponent $(1+\alpha )/2$ in the time variable for solutions of parabolic equations} \author[J. Aramaki \hfil EJDE-2015/96\hfilneg] {Junichi Aramaki} \address{Junichi Aramaki \newline Division of Science, Faculty of Science and Engineering, Tokyo Denki University, \newline Hatoyama-machi, Saitama 350-0394, Japan} \email{aramaki@mail.dendai.ac.jp} \thanks{Submitted February 16, 2015. Published April 13, 2015.} \makeatletter \@namedef{subjclassname@2010}{\textup{2010} Mathematics Subject Classification} \makeatother \subjclass[2010]{35A09, 35K10, 35D35} \keywords{H\"older continuity; parabolic equation} \begin{abstract} We consider the regularity of solutions for some parabolic equations. We show H\"older continuity with exponent $(1+\alpha )/2$, with respect to the time variable, when the gradient in the space variable of the solution has the H\"older continuity with exponent $\alpha $. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{remark}[theorem]{Remark} \allowdisplaybreaks \section{Introduction} In this article we consider the H\"older continuity of solutions for the equation. \begin{equation} Lu:= \sum _{i,j=1}^n a_{ij}(x,t) \frac{\partial^2u}{\partial x_i \partial x_j} + \sum _{i=1}^n b_i(x,t) \frac{\partial u}{\partial x_i} -\frac{\partial u}{\partial t}=f \quad\text{in } Q \label{e1.1} \end{equation} where $Q= \Omega \times (0,T]$, $\Omega \subset \mathbb{R}^n $ is a domain and $T>0$. For the classical solution $u(x,t)$ of \eqref{e1.1}, we shall show the H\"older continuity with exponent $(1+\alpha )/2$ in the time variable $t$, when the gradient of $u$ with respect to the space variable $x$ has H\"older continuity with exponent $\alpha $. We assume that: \begin{itemize} \item[(H1)] $L$ is parabolic, i.e., for any $(x,t) \in Q$, \[ \sum _{i,j~1}^n a_{ij}(x,t) \xi _i \xi _j >0 \quad \text{for all } 0\neq \xi= (\xi _1,\ldots ,\xi _n) \in \mathbb{R}^n. \] Note that $L$ is not necessary uniformly parabolic. \item[(H2)] $a_{ij} ,b _i \in C(Q)$ for $i,j=1,\dots ,n$ where $C(Q)$ denotes the space of continuous functions in $Q$. \item[(H3)] There exist constants $\mu _1,\mu _2>0$ such that $$ \sum _{i=1}^n a_{ii}(x,t) \le \mu _1, \quad \sum _{i=1}^n |b_i(x,t) |\le \mu _2\quad \text{for all } (x,t) \in Q. $$ \item[(H4)] $f=f(x,t)$ is a bounded continuous function in $Q$ satisfying $$ |f(x,t)|\le \mu _3 \quad\text{for all } (x,t) \in Q. $$ \end{itemize} In the following, for non-negative integers $k,l$ and any set $A\subset \mathbb{R}^n$, we denote the space of functions $u \in C(A \times (0,T])$ such that $ u$ has continuous partial derivatives $ \partial_x^{\alpha }u$ for $|\alpha |\le k$ and $\partial_t^j u$ for $j\le l $ in $A\times (0,T]$ by $C^{k,l}(A\times (0,T])$. Here \[ \partial^{\alpha }_xu= \frac{\partial^{|\alpha |}u}{\partial x_1^{\alpha _1} \cdots \partial x_n^{\alpha _n}} \] for any multi-index $\alpha = (\alpha _1, \ldots ,\alpha _n)$ and $ |\alpha |= \sum _{i=1}^n \alpha _i$. We also use the notation $u_t= \partial_t u$, $u_{x_i}= \partial_{x_i} u$, $u_{x_ix_j}= \partial_{x_i}\partial_{x_j}u$ etc. Now we are in a position to state our main result. \begin{theorem} \label{thm1} Under the hypotheses {\rm (H1)--(H4)}, let $u \in C^{2,1}(Q)$ be a solution of \eqref{e1.1} in $Q$. Assume that there exist $\alpha \in (0,1]$ and constants $C_1 ,C_2\ge 0$ such that \begin{equation} |\nabla u(x,t) - \nabla u (y,t)|\le C_1|x-y |^{\alpha } \label{e1.2} \end{equation} for all $(x,t), (y,t) \in Q$, and \begin{equation} |\nabla u(x,t)|\le C_2 \label{e1.3} \end{equation} for all $(x,t) \in Q$. Here and hereafter $\nabla $ denotes the gradient operator with respect to the space variable $x$. {\rm (i)} Let $\Omega ' \subset \Omega $ be a subdomain such that $\operatorname{dist} (\Omega ',\partial\Omega )\ge d>0$, and define $Q'=\Omega ' \times (0,T]$. Then there exist $\delta >0$ depending only on $\mu _1,\mu _2, \mu _3$ and $\alpha $, $K>0$ depending only on $\mu _1,\mu _2,\mu _3,d, \alpha ,C_1$ and $C_2$ such that \begin{equation} |u(x,t) - u(x,t_0)|\le K|t-t_0 |^{(1+\alpha )/2} \label{e1.4} \end{equation} for all $(x,t), (x,t_0) \in Q'$ with $|t-t_0 |<\delta $. {\rm (ii)} Furthermore, if we assume that $\partial\Omega \neq \emptyset $ and $u \in C^{1,0}(\overline{\Omega }\times (0,T])$ satisfies that there exist $\beta \in (0,1]$ and a constant $D\ge 0$ such that $$ |\nabla u (x,t) -\nabla u(x,t_0)|\le D|t-t_0|^{(1+\beta )/2} $$ for all $x \in \partial\Omega $ and $t,t_0 \in (0,T]$, then for any $\sigma >0$ there exists $K>0$ depending only on $\mu _1,\mu _2, \mu _3, C_1,C_2,D$ and $\sigma $ such that $$ |u(x,t) -u(x,t_0)|\le K |t-t_0|^{(1+\gamma )/2}, \quad \gamma = \min \{ \alpha ,\beta \} $$ for any $(x,t),(x,t_0) \in Q$ with $|t -t_0 |<\sigma $. \end{theorem} \begin{remark} \label{rmk2} \rm Gilding \cite{Gil} assumed that $|u(x,t) -u(y,t) |\le C_1|x-y|^{\alpha }$ instead of \eqref{e1.2} and \eqref{e1.3}, and obtained \[ |u(x,t) -u(x,t_0)|\le K|t-t_0|^{\alpha } \] instead of \eqref{e1.4}. Note that the papers of Brandt \cite{Br} and Knerr \cite{Kne} can be viewed as precursors to the present study. See also the discussion of Ladyzhenskaja et al \cite{LSU} in \cite{Kne}. Then the author of \cite{Gil} applied the result to the Cauchy problem for the porous media equation in one dimension. See also Aronson \cite{Aron} and B\'enilan \cite{Ben}. On the other hand, our result can be applied to the regularity for a quasilinear parabolic type system associated with the Maxwell equation. For such application, see Aramaki \cite{Ar}. \end{remark} \section{Proof of Theorem \ref{thm1}} We shall use a modification of the arguments in \cite{Gil}. (i) Let $\Omega '\subset \Omega $ be a subdomain with $\operatorname{dist} (\Omega ',\partial\Omega )\ge d>0$ and define $Q'=\Omega ' \times (0,T]$. Fix arbitrary points $(x_0,t_0), (x_0,t_1)\in Q'$ with $0