\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2015 (2015), No. 62, pp. 1--9.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2015 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2015/62\hfil Blow-up criterion] {Blow-up criterion for the zero-diffusive Boussinesq equations via the velocity components} \author[W. Wang \hfil EJDE-2015/62\hfilneg] {Weihua Wang} \address{Weihua Wang \newline School of Mathematics and Statistics, Hubei University, Wuhan 430062, China} \email{wwh73@hubu.edu.cn} \thanks{Submitted September 29, 2014. Published March 11, 2015.} \subjclass[2000]{35Q35, 76D05} \keywords{Zero-diffusive Boussinesq equations; blow up criterion; Lorentz spaces} \begin{abstract} This article concerns the blow up for the smooth solutions of the three-dimensional Boussinesq equations with zero diffusivity. It is shown that if any two components of the velocity field $u$ satisfy \begin{equation*} \int_0^T \frac{ \||u_1|+|u_2|\|^q_{L^{p,\infty}} } {1+\ln ( e+\|\nabla u\|^2_{L^2}) } ds<\infty,\quad \frac{2}{q}+\frac{3}{p}=1,\quad 3
T$. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}[theorem]{Remark} \newtheorem{corollary}[theorem]{Corollary} \allowdisplaybreaks \section{Introduction} Since the famous laboratory experiments on turbulence derived by Reynolds in 1883, the mathematical models which described the motion of the viscous incompressible fluid flow have attracted more and more attention. Those mathematical models are usually controlled by the nonlinear partial differential equations. In this study, we consider a dynamical model of the ocean and atmosphere dynamics \cite{Ma,Pe} which is so-called Boussinesq equations \begin{equation} \label{1.1} \begin{gathered} \partial_t u +u\cdot\nabla u +\nabla p = \nu\Delta u+\theta e_3,\\ \operatorname{div}u=0, \\ \partial_t\theta +u\cdot\nabla\theta = \kappa\Delta \theta, \end{gathered} \end{equation} where $u(x,t)=(u_1(x,t),u_2(x,t),u_3(x,t))$ and $\theta(x,t)$ are the unknown velocity vector field and the unknown scalar temperature, $ p (x,t)$ is the unknown scalar pressure field. $\nu>0, \kappa\geq 0$ are the constants kinematic viscosity and the thermal diffusivity, $e_3=(0,0,1)^T$. As an important mathematical model in the atmospheric sciences \cite{Ma}, the Boussinesq equations have play an important role in many geophysical applications \cite{Pe}. When $\theta=0$, the Boussinesq equations \eqref{1.1} become the classic Navier-Stokes equations \begin{equation} \label{1.2} \begin{gathered} \partial_t u +u\cdot\nabla u +\nabla p = \nu\Delta u,\\ \operatorname{div}u=0. \end{gathered} \end{equation} From the viewpoint of mathematics, the Boussinesq system is the generalization of the Navier-Stokes equations. There is a large body of literature on the existence, uniqueness and regularity of solutions for the Boussinesq equations. In the two-dimensional case, when $\nu,\kappa>0$, the global existence and uniqueness of smooth solution Boussinesq equations are obtained by Cannon and DiBenedetto \cite{CD}. When $\nu=0,\kappa>0$ or $\nu>0,\kappa=0$, the global regularity of local smooth solution of the Boussinesq equations is also well studied in \cite{CW,Ch,HL,MZ,Xu}. In the three-dimensional case, corresponding three-dimensional Navier-Stokes equations \cite{DZ14,Li}, the global regularity or finite time singularity of weak solutions for the Boussinesq equations \eqref{1.1} with positive dissipation is a big challenging problem. Therefore, it is an important problem to consider the blow-up issue for the three-dimensional Boussinesq equations \eqref{1.1} and related fluid dynamical models such as the Navier-Stokes equations and micropolar fluid flows (refer to \cite{DC092,DZ10a,DJC}). Ishimura and Morimoto \cite{IM} (see also \cite{QDY})first proved the Beale-Kato-Majda blow-up criteria of local smooth solution for the Boussinesq equations \eqref{1.1}. That is to say, if $T$ is the maximal existence time of the local smooth solution for the Boussinesq equations \eqref{1.1}, then \begin{equation}\label{1.3} T< \infty\Rightarrow\ \int_0^{T} \|\nabla u(s)\|_{L^{\infty}} ds =+\infty \end{equation} When $\kappa=0,$ the diffusive equation in Boussinesq equations\eqref{1.1} is reduced to a transport equation $$ \partial_t\theta +u\cdot\nabla\theta = 0, $$ and Boussinesq system \eqref{1.1} namely becomes the following parabolic-hyperbolic system (for simplicity taking $\nu=1$) \begin{equation} \label{1.4} \begin{gathered} \partial_t u +u\cdot\nabla u +\nabla p = \Delta u+\theta e_3,\\ \operatorname{div}u=0, \\ \partial_t\theta +u\cdot\nabla\theta = 0 \end{gathered} \end{equation} together with the initial data \begin{equation}\label{1.5} u(x,0)=u_0,\quad \theta(x,0)=\theta_0. \end{equation} It should be mentioned that the temperature function $ \theta(x,t)$ in the transport equation does not gain smoothness whatsoever. The blow-up issue of the zero-diffusive Boussinesq equations \eqref{1.4}-\eqref{1.5} is more difficult compared with that of Boussinesq system \eqref{1.1} with full viscosities. Fan and Zhou \cite{FZ} recently studied the blow-up criterion of the local smooth solution of the zero-diffusive Boussinesq equations \eqref{1.4}-\eqref{1.5} and derived the following Beale-Kato-Majda criterion \begin{equation}\label{1.6} \int_0^T \| \nabla \times u\|_{\dot{B}^{0}_{\infty,\infty}(\mathbb{R}^3)}ds < \infty \end{equation} Jia, Zhang and Dong \cite{JZD} further refined the blow-up criterion for local smooth solutions of zero-diffusive Boussinesq equations \eqref{1.4}-\eqref{1.5} in the large critical Besov space \begin{equation}\label{1.9} \int_0^T \|u\|^p_{B^s_{q,\infty}(\mathbb{R}^3)}ds < \infty \end{equation} with $\frac{2}{p}+\frac{3}{q}=1+s$ and $$\ \frac{3}{1+s}
t\}$, \emph{i.e.} $$ m(\varphi,t):=m\{x\in \mathbb{R}^3:|\varphi(x)|> t\}. $$ In particular, when $q=\infty $, \[ \|\varphi\|_{L^{p,\infty}} = \sup_{t\geq 0}\{t(m(\varphi,t))^{\frac1p}\} <\infty\,. \] The Lorents space $L^{p,\infty}$ is also called weak $L^p$ space. The norm is equivalent to the norm \begin{equation*} \|f\|_{L^{q,\infty}} = \sup_{0<|E|<\infty}|E|^{1/q-1}\int_{E}|f(x)| dx. \end{equation*} As stated by Triebel \cite{Tr}, Lorentz space $L^{p,q}(\mathbb{R}^3)$ may be defined by real interpolation methods \begin{equation}\label{2.1} L^{p,q}(\mathbb{R}^3) =(L^{p_{1}}(\mathbb{R}^3),\,L^{p_{2}}(\mathbb{R}^3))_{\alpha,q}, \end{equation} with $$ \frac{1}{p}=\frac{1-\alpha}{p_{1}}+\frac{\alpha}{p_{2}},\quad 1\leq p_{1}
3. \end{eqnarray*} If $T$ is the maximal existence time of the solution $(u,\theta) $, then for $$ \frac{2}{q}+\frac{3}{p}=1,\quad\,\, 3
3. \] If the velocity satisfies \begin{equation*} \int_0^T\frac{ \||u_1|+|u_2|\|^q_{L^{p,\infty}} } {1+\ln ( e+\|\nabla u\|^2_{L^2}) } ds<\infty,\quad \frac{2}{q}+\frac{3}{p}=1,\quad 3
T$.
\end{corollary}
\begin{remark} \label{rmk2.1} \rm
When $\nu=\kappa=0,$ the existence and uniqueness of local smooth
solution $(u,\theta)$ for zero-dissipation Boussinesq equations
\eqref{1.1} have been investigated by Chae and Nam \cite{CN},
therefore, we only need to prove the blow-up criterion of Theorem
\ref{thm2.1}. Moreover, once the proof of Theorem \ref{thm2.1} is obtained,
the proof of Corollary 2.1 follows directly from Theorem \ref{thm2.1} and we omit
it here.
\end{remark}
\section{Proof of Theorem \ref{thm2.1}}
\subsection{$L^p$ estimate for $ \theta$}
Multiplying both sides of the transport equation of zero-diffusive
Boussinesq equations \eqref{1.4}-\eqref{1.5} by
$|\theta|^{p-2}\theta$ and integrating in $\mathbb{R}^3$, we have
\begin{equation}
\frac{d}{dt}\int_{\mathbb{R}^3} |\theta|^p\,dx=0, \ \ \ p\geq2
\end{equation}
where we have used
$$
\int_{\mathbb{R}^3} u\cdot\nabla\theta \theta dx=0.
$$
Integrating in time becomes
\begin{equation}\label{3.1}
\operatorname{ess\,sup}_{0