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NONEXISTENCE OF SOLITON-LIKE SOLUTIONS FOR
DEFOCUSING GENERALIZED KDV EQUATIONS

SOONSIK KWON, SHUANGLIN SHAO

Abstract. We consider the global dynamics of the defocusing generalized
KdV equation

∂tu + ∂3
xu = ∂x(|u|p−1u).

We use Tao’s theorem [5] that the energy moves faster than the mass to prove

a moment type dispersion estimate. As an application of the dispersion esti-
mate, we show that there is no soliton-like solutions with a certain decaying

assumption.

1. Introduction

In this short note, we prove a dispersion estimate of the second moment type for
the defocusing generalized KdV equation

∂tu+ ∂3
xu = ∂x(|u|p−1u), u : R× R→ R. (1.1) gkdv

As an application, we show that there is no soliton-like solution with decaying
condition.

Equation (1.1) satisfies the mass and energy conservation laws:

M(u) =
∫
u2(x) dx

E(u) =
∫

1
2
u2
x +

1
p+ 1

|u|p+1 dx

The local well-posedness of the Cauchy problem on the energy space H1(R) is well
known [2] and the energy conservation law implies the global existence.

In the focusing case, where the sign of the nonlinear term is opposite, there are
the soliton solutions u(t, x) = Q(x− t), where Q is the ground state solution

Q(x) =
( p+ 1

2 cosh2(p−1
2 x)

)1/(p−1)

.

From the Pohozaev identity, one can show that there is no such soliton solution
of permanent form in the defocusing case. Furthermore, it is conjectured that the
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nonlinear global solution scatters to a linear solution. Indeed,

lim
t→±∞

‖u(t)− e−t∂
3
xu±‖L2

x
→ 0.

If it were true, as this describes a concrete asymptotic behavior, it implies that
there is no spacially localized solutions such as L2-compact solutions - there exists
a function x(t) such that for any ε > 0, there exists R = R(ε) > 0 such that∫
|x−x(t)|>R u

2(t, x) dx < ε. But toward this direction, there is only a partial result
[3].

The purpose of this note is to show an intermediate version. We prove the
nonexistence of soliton-like solutions. Main ingredient is the fact that the energy
moves faster than the mass to the left.

2. Results

Define the center of mass and the center of energy

〈x〉M (t) =
1

M(u)

∫
xu2(t, x) dx,

〈x〉E(t) =
1

E(u)

∫
x(

1
2
u2
x +

1
p+ 1

|u|p+1) dx.

Tao [5] showed the following monotonicity estimate regarding the center of mass
and the center of energy.

th:tao Theorem 2.1 (Tao [5]). Let p ≥
√

3. We have

∂t〈x〉M − ∂t〈x〉E > 0. (2.1)

In particular, we have the dispersion estimate: for any function x(t),

sup
t∈R

∫
|x− x(t)|(ρ(t, x) + e(t, x)) dx =∞ , (2.2) tao dispersion

where ρ(t, x) = u2(t, x) and e(t, x) = 1
2u

2
x + 1

p+1 |u|
p+1.

This theorem shows that the center of energy moves faster than the center of
mass. This behavior is intuitive. From the stationary phase of the linear equation
ut + uxxx = 0, one can observe that the group velocity is −3ξ2, where ξ is the
frequency of the wave. Group velocity is negative definite and so every wave moves
to the left. Moreover, the higher frequency waves move faster than low frequency
waves. Since the energy is more weighted on high frequencies than mass, the center
of energy moves faster to the left. The second part of Theorem 2.1 is a result from
the fact that the distance between 〈x〉M and 〈x〉E goes to infinity. We use this
property to study a dispersion estimate of moment type.

th:dispersion Theorem 2.2. Let p ≥
√

3. Let u(t, x) be a nonzero global Schwartz solution to
(1.1). Then for any function x(t),

sup
t∈R

∫
(x− x(t))2u2(t, x) dx =∞. (2.3) eq:dispertion

This can be seen as an improvement of (2.2), since we use solely the mass density.
Roughly speaking, Theorem 2.2 tells that the mass cannot be localized around the
center of mass (or any x(t)), but has to spread out in time, while Theorem 2.1
tells that the center of mass and the center of energy cannot coexist in a moving
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local region. Usually, such a dispersion behavior is characterized as a time decay of
solutions or the boundedness of space-time norms, such as the Strichartz estimates.
Theorem 2.2 provides another form of dispersion estimate.

As a corollary, we observe that there is no soliton-like solution under decaying
assumption.

co:nonexistence Corollary 2.3. Assume that u(t, x) is a global soliton-like solution in the sense
that there exists x(t) ∈ R such that for any R > 0,

sup
t∈R

∫
|x−x(t)|>R

u2(t, x) dx .
1

R2+ε
.

Then u ≡ 0.

There are some works of this type. de Bouard and Martel [1] showed for the
KP-II equation the nonexistence of L2- compact solutions under certain positivity
condition on x′(t). Their work can be written for the defocusing gKdV equation
with x′(t) > 0 condition. This can read that there is no soliton-like solution moving
to the right, as a real soliton solution moves to the right. Here, we do not specify a
direction. In [4], Martel and Merle assume a similar decaying condition, and show
the nonexistence of minimal mass blow-up solutions for critical gKdV equation
(p=5).

In the rest of the note, we provide the proof of Theorem 2.2 and Corollary 2.3.

Proof of Theorem 2.2. As 〈x〉M = 1
M(u)

∫
xu2(x) dx is a critical point of

f(a) =
∫

(x− a)2u2(x) dx,∫
(x− x(t))2u2(t, x) dx is minimized at x(t) = 〈x〉M . So, it suffices to show

sup
t∈R

∫
(x− 〈x〉M )2u2(t, x) dx =∞. (2.4) dispersion

This simple observation allows us to compute the moment explicitly. We use equa-
tion (1.1) and integration by parts to compute

d

dt

∫
(x− 〈x〉M )2u2(t, x) dx

= −
∫

2(x− 〈x〉M )u2 dx · d
dt
〈x〉M +

∫
(x− 〈x〉M )22uut dx

= 0 +
∫

(x− 〈x〉M )22u(−uxxx + ∂x(|u|p−1u)) dx

≥ −6
∫
u2
x(x− 〈x〉M ) dx− 4

∫
(x− 〈x〉M )|u|p+1 dx

+
4

p+ 1

∫
(x− 〈x〉M )|u|p+1 dx

= −12
∫ (1

2
u2
x +

1
p+ 1

|u|p+1
)

(x− 〈x〉M ) dx− 4p− 12
p+ 1

∫
|u|p+1(x− 〈x〉M ) dx

= −12E(u)
(
〈x〉E − 〈x〉M

)
− 4p− 12

p+ 1

∫
|u|p+1(x− 〈x〉M ) dx
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The second term is bounded because of the Sobolev embedding and conservation
laws: ∫

|u|p+1(x− 〈x〉M ) dx ≤ ‖u‖p−1
L∞

(∫
u2(t, x)(x− 〈x〉M )2 dx+M(u)

)
≤ 2(E(u) +M(u))(C +M(u)) ≤ C1.

We show (2.4) by contradiction, assuming that

sup
t∈R

∫
(x− 〈x〉M )2u2(t, x) dx < C.

We have ∫
|x−〈x〉M |=O(1)

u2(t, x) dx ≥ c,

and so ∫
|x−〈x〉M |=O(1)

|u|p+1(t, x) dx ≥ c1.

Then as the argument in Tao [5] (reviewing the proof of Theorem 1), we obtain

∂t〈x〉M − ∂t〈x〉E ≥ c2.

Since 〈x〉E − 〈x〉M monotonically decreases, we have eventually

d

dt

∫
(x− 〈x〉M )2u2(t, x) dx ≥ −12E(u)(〈x〉E − 〈x〉M )− C1 > 0.

This makes a contradiction. �

Proof of Corollary 2.3. We simply estimate∫
(x− x(t))2u2(t, x) dx ≤M(u) +

∞∑
k=0

∫
{2k+1>|x−x(t)|≥2k}

(x− x(t))2u2(t, x) dx

.M(u) +
∞∑
k=0

22(k+1) · 2(−2−ε)k <∞.

Hence, by Theorem 2.2, u ≡ 0. �

Acknowledgements. We want to thank Stefan Steinerberger for pointing out an
error in the first draft. S.K. is partially supported by NRF(Korea) grant 2010-
0024017. S.S. is partially supported by DMS-1160981.

References

[1] A. de Bouard, Y. Martel; Non existence of L2-compact solutions of the Kadomtsev-
Petviashvili II equation, Math. Ann. 328 (2004), 525–544.

[2] C. E. Kenig, G. Ponce, L. Vega; Well-posedness and scattering results for the generalized

Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math. 46 (1993),
no. 4, 527–620.

[3] R. Killip, S. Kwon, S. Shao, M. Visan; On the mass-critical generalized KdV equation,

Discrete Contin. Dyn. Syst. 32 (2012), no. 1, 191–221.
[4] Y. Martel, F. Merle; Nonexistence of blow-up solution with minimal L2-mass for the critical

gKdV equation, Duke Math. J. 115 (2002), no. 2, 385–408.
[5] T. Tao; Two remarks on the generalised Korteweg-de Vries equation, Discrete Contin. Dyn.

Syst. 18 (2007), no. 1, 1–14.



EJDE-2015/51 NONEXISTENCE OF SOLITON-LIKE SOLUTIONS 5

Soonsik Kwon

Department of Mathematical Sciences, Korea Advanced Institute of Science and Tech-

nology, 291 Daehak-ro Yuseong-gu, Daejeon 305-701, Korea
E-mail address: soonsikk@kaist.edu

Shuanglin Shao
Department of Mathematics, University of Kansas, Lawrence, KS 66045, USA

E-mail address: slshao@math.ku.edu


	1. Introduction
	2. Results
	Acknowledgements

	References

