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OPTIMAL CONTROL OF AN SIR MODEL WITH CHANGING
BEHAVIOR THROUGH AN EDUCATION CAMPAIGN

HEM RAJ JOSHI, SUZANNE LENHART, SANJUKTA HOTA, FOLASHADE AGUSTO

Abstract. An SIR type model is expanded to include the use of education
or information given to the public as a control to manage a disease outbreak

when effective treatments or vaccines are not readily available or too costly to

be widely used. The information causes a change in behavior resulting in three
susceptible classes. We study stability analysis and use optimal control theory

on the system of differential equations to achieve the goal of minimizing the

infected population (while minimizing the cost). We illustrate our results with
some numerical simulations.

1. Introduction

The effects of changing behavior is important in epidemic outcomes, and now
such effects are beginning to be included in models [10, 11]. Management strategies
of how to motivate people to make such behavior changes will become increasingly
important. Before the HIV drugs become readily available, the decrease in Uganda
HIV rates, in contrast to other countries in the region, was an interesting phenome-
non. Some studies indicate that the abstinence, be faithful (AB) and condoms (C)
campaigns started by the Ugandan government in 1992 had changed people’s behav-
iors and attitudes, and thus reversed a troubling pattern of increase in HIV/AIDS
[12, 23]. Other government and nongovernmental agencies began campaigns to
distribute information and educational materials about the disease; some organiza-
tions emphasized the AB behavior and others the C behavior. Some argue that the
Ugandan government initially emphasized only AB strategies, and the effects of C
did not appear until later [26]. Once the emphasis shifted to the C-type campaigns,
there was a dramatic drop in new HIV infections. See [2, 6, 7, 17] about the ad-
vances in HIV education and prevention and their effects on the epidemic. Using
data about the numbers of organizations giving information and the percentages of
the types of behavior recommended and HIV epidemic data in Uganda, Joshi et al
[16] developed a SIR model of differential equations, that divided the susceptible
class into subclasses based on the AB and C behavior and the resulting different
infectivity rates. Parameters in this work [16] were estimated to fit with data about
numbers of deaths and infected cases, and the level and type of information given
by organizations in Uganda from 1997-2005.
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When a new virus strain surfaces, vaccines, the usual first line of defense, may
not be available. Education or public health campaigns may encourage individuals
to change behavior. Recent studies showed the effects of face masks on the trans-
mission of H1N1 influenza during the 2009 pandemic [1]. An economic analysis
with SEIR models of differential equations involving face masks for that pandemic
showed the reduction of infected cases and of financial losses [28, 29]. Persons could
change their behavior to wear surgical face masks or N95 respirators and obtain
some level of protection against influenza [18, 24].

We are investigating the level of education or information given to the public as
a control to manage a disease outbreak when the effective treatments or vaccines
are not readily available or too costly to be widely used. We adapt the model from
[16] to have three susceptible classes depending on behavior and having different
transmission rates and with time-varying education campaign level. With limited
resources, the balance between benefits of lower numbers of infecteds and the cost of
the education campaign is investigated using optimal control theory on this system
of differential equations; the level of education is taken as the control. In [4, 5],
simpler models with differential equations and controls on the level of information
represented the influence of the education campaign on the infectivity coefficients
and the death rate due to the disease. See [22] for stability analysis of a model with
two susceptible classes with an education feature.

In the next section, we formulate our model and discuss briefly its stability
analysis. The optimal control problem, with our goal expressed as an objective
functional is given in section 3. Our numerical illustrations and some concluding
comments are presented in the following section.

2. Mathematical Model

We develop an optimal control model of Susceptibles, Infected and Recovered-
an SIR type model. In the system of differential equations of the model, the control
is the education (or information) level, which helps to change the behavior of some
individuals in the susceptible class. Here by “education”, we mean information
campaigns or educational outreach materials that give needed information about
the disease. This change in behavior leads to subdividing susceptibles into three
subclasses, namely S, S1 and S2. A proportion of the susceptible populations, S,
decide to change their behavior due to an effect of a successful education campaign
and thus enter in the S1 or S2 class. These two classes, S1 and S2, have lower
transmission rates than the S class and will contribute to lower the number of new
infections and thus also lower the recovered/removed population.

We consider optimal control of an ordinary differential equation model, which
describes the interaction of education with Susceptibles as following:

S′(t) = −(α1 + α2)E(t)S(t)− β1S(t)I(t) + Λ− dS(t)

S′1(t) = α1E(t)S(t)− β2S1(t)I(t)− dS1(t)

S′2(t) = α2E(t)S(t)− β3S2(t)I(t)− dS2(t)

I ′(t) = β1S(t)I(t) + β2S1(t)I(t) + β3S2(t)I(t)− dI(t)− γI(t)

R′(t) = γI(t)

(2.1)

with initial conditions S(0), S1(0), S2(0), I(0), and R(0). The rate of entering into
the S class is Λ and the natural death rate is d. Individuals only enter the general
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Susceptible class S. Now that we have three susceptible classes, we need three
infection rates β1, β2, β3 for S, S1, and S2 respectively for their interactions with
the Infected class I. Notice that, as a result of interactions of individuals in class
S with the control, education E, a proportion of the susceptibles leave the general
susceptible class S and move to S1 and S2. The rate of moving into class Si for
i = 1, 2 is αiES. Also, as a result of each susceptible class interacting with the
infected class we have individuals leaving at their respective rates and moving to
the infected class. The rate γ is the transition rate where individuals leave the
infected class I and move to the removed class R. The removed class R could
represent recovered, infected or removed individuals due to disease related deaths
(like in Uganda as in [16]).

Since model (2.1) represents human populations, all parameters in the model are
non-negative and one can show that the solutions of the system are non-negative,
given non-negative initial values. The model (2.1) will be analyzed in a biologically-
feasible region, Γ ⊂ R5

+ with

Γ =
{

(S(t), S1(t), S2(t), I(t), R(t)) ∈ R5
+ : 0 ≤ N(t) ≤ Λ

d

}
,

where N = S + S1 + S2 + I +R. The following steps are followed to establish the
positive invariance of Γ (i.e., solutions in Γ remain in Γ for all t > 0). The rate of
change of the total populations is obtained by adding the equations of the model
(2.1) to give

N ′(t) = Λ− dN(t). (2.2)
Solving the differential equation (2.2), we find that

N(t) = N(0)e−dt +
Λ
d

(1− e−dt).

In particular, N(t) = Λ
d , if N(0) = Λ

d . Thus, the region Γ is positively-invariant.
Hence, it is sufficient to consider the dynamics of the flow generated by (2.1) in
Γ. In this region, the model is epidemiologically and mathematically well-posed
[14, 20]. Thus, every solution of the basic model (2.1) with initial conditions in
Γ remains in Γ for all t > 0. Therefore, the ω-limit sets of the system (2.1) are
contained in Γ. This result is summarized below.

Lemma 2.1. The region Γ ⊂ R5
+ is positively-invariant for the basic model (2.1)

with non-negative initial conditions in R5
+.

To consider the stability of the model, we temporarily assume that the control
E is just a constant parameter. Under this assumption, E(t) = e, where e is a
constant and the model (2.1) has a disease free equilibrium (DFE), obtained by
setting the right-hand sides of the equations in the model to zero, given by

E0 = (S∗, S∗1 , S
∗
2 , I
∗, R∗)

=
( Λ

(α1 + α2)e+ d
,

Λ
(α1 + α2)e+ d

α1e

d
,

Λ
(α1 + α2)e+ d

α2e

d
, 0, 0

)
.

The stability of E0 can be established using the next generation operator method
on the system (2.1). We take, I, as our infected compartment, then using the
notation in [27], the Jacobian matrices F and V for the new infection terms and
the remaining transfer terms are respectively given by,

F = [β1S
∗ + β2S

∗
1 + β3S

∗
2 ] and V = [d+ γ].
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It follows that the basic reproduction number of the system (2.1), denoted by
R0, is given by

R0 = ρ(FV −1) =
β1S

∗ + β2S
∗
1 + β3S

∗
2

d+ γ
, (2.3)

where ρ is the spectral radius.
Further, using [27, Theorem 2], the following result is established.

Lemma 2.2. The DFE of model (2.1) (with E(t) = e), given by E0, is locally
asymptotically stable (LAS) if R0 < 1, and unstable if R0 > 1.

The basic reproduction number (R0) measures the average number of new in-
fections generated by a single infected individual in a completely susceptible popu-
lation [3, 8, 14, 27]. Thus, Lemma 2.2 implies that the infection can be eliminated
from the population (when R0 < 1) if the initial sizes of the sub-populations are in
the basin of attraction of the DFE, E0. We do not consider an endemic equilibrium
since we are considering the case when a disease outbreak has just started.

3. Formulation and analysis of the optimal control problem

Now we turn our focus to using a time-varying control function E(t), which
represents the level of the educational campaign that causes susceptible individuals
to change their behavior. The control set E is

E = {E(t) : 0 ≤ a ≤ E(t) ≤ b < 1, 0 ≤ t ≤ T, E(t) is Lebesgue measurable}.

Our goal is to find the control E(t) and associated state variables S(t), S1(t),
S2(t), I(t), and R(t) to minimize the following objective functional:

J [E] =
∫ T

0

(I(t)−A(S + S1 + S2) +BE) dt.

By choosing appropriate positive balancing constants A and B, our goal is to mini-
mize the infected population, and maximize the susceptible population while mini-
mizing the cost of the control. If one only wants to minimize the infected population
and not be concerned with the level of the S, S1 and S2 populations, one would take
A = 0, The structure of this model gives bounded solutions for finite final T . This
objective functional and the differential equations are linear in the control with
bounded states, and one can show by standard results that an optimal control and
corresponding optimal states exist [9].

By using Pontryagin’s Maximum Principle [9, 21, 25] we derive necessary condi-
tions for our optimal control and corresponding states. The Hamiltonian is

H = I(t)−A(S(t) + S1(t) + S2(t)) +BE(t)

+ λ1(−α1E(t)S(t)− α2E(t)S(t)− β1S(t)I(t) + Λ− dS(t))

+ λ2(α1E(t)S(t)− β2S1(t)I(t)− dS1(t))

+ λ3(α2E(t)S(t)− β3S2(t)I(t)− dS2(t))

+ λ4(β1S(t)I(t) + β2S1(t)I(t) + β3S2(t)I(t)− dI(t)− γI(t))

+ λ5(γI(t))

(3.1)
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Given an optimal control E∗, there exist adjoint functions, λ1, λ2, λ3, λ4, λ5,
corresponding to the states S, S1, S2, I, and R such that:

λ′1 = −∂H
∂S

= −[−A+ λ1(−α1E − α2E − β1I − d) + α1λ2E + α2λ3E + β1λ4I],

λ′2 = − ∂H
∂S1

= −[−A+ λ2(−β2I − d) + β2λ4I],

λ′3 = − ∂H
∂S2

= −[−A+ λ3(−β3I − d) + β3λ4I],

λ′4 = −∂H
∂I

= −[1 + λ1(−β1S) + λ2(−β2S1)− β3λ3S2 + λ4(β1S + β2S1

+ β3S2 − d− γ) + γλ5],

λ′5 = −∂H
∂R

= 0.

(3.2)

where λ1(T ) = 0, λ2(T ) = 0, λ3(T ) = 0, λ4(T ) = 0, and λ5(T ) = 0 are the transver-
sality conditions.

The Hamiltonian is minimized with respect to the control variable at E∗. Since
the Hamiltonian is linear in the control, we must consider if the optimal control is
bang-bang (at its lower or upper bound), singular or a combination. The singular
case could occur if the slope or the switching function,

∂H

∂E
= B + [−(α1 + α2)λ1 + α1λ2 + α2λ3]S, (3.3)

is zero on non-trivial interval of time. Note that the optimal control would be at
its upper bound or its lower bound according to:

∂H

∂E
< 0 or > 0.

To investigate the singular case, let us suppose ∂H
∂E = 0 on some non-trivial in-

terval. In this case, we calculate
d

dt

(∂H
∂E

)
= 0

and then we will show that control is not present in that equation. To solve for the
value of the singular control, we will further calculate

d2

dt2
(∂H
∂E

)
= 0.

We simplify the time derivative of ∂H
∂E ,

0 =
d

dt

(∂H
∂E

)
=

d

dt
{B + [−(α1 + α2)λ1 + α1λ2 + α2λ3]S}

= [−(α1 + α2)λ1 + α1λ2 + α2λ3]S′ + [−(α1 + α2)λ′1 + α1λ
′
2 + α2λ

′
3]S

(3.4)

We calculate both sums separately and add them together. The first sum can be
written as:

[−(α1 + α2)λ1 + α1λ2 + α2λ3]S′

= [−(α1 + α2)λ1 + α1λ2 + α2λ3][−(α1 + α2)ES − β1SI + Λ− dS]
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= (α1 + α2)2λ1ES + β1(α1 + α2)λ1SI − (Λ− dS)(α1 + α2)λ1

− α1(α1 + α2)λ2ES − α1β1λ2SI + (Λ− dS)α1λ2

− α2(α1 + α2)λ3ES − α2β1λ3SI + (Λ− dS)α2λ3

The second sum can be written as:

(α1 + α2){−A+ λ1[−(α1 + α2)E − β1I − d] + α1λ2E + α2λ3E + β1λ4I}S
− α1[−A+ λ2(−β2I − d) + β2λ4I]S − α2[−A+ λ3(−β3I − d) + β3λ4I]S

= −(α1 + α2)2λ1ES − β1(α1 + α2)λ1IS − d(α1 + α2)λ1S + α1(α1 + α2)λ2ES

+ α2(α1 + α2)λ3ES + β1(α1 + α2)λ4SI + α1(β2I + d)λ2S − α1β2λ4SI

+ α2(β3I + d)λ3S − α2β3λ4SI

Thus combining, we have

0 =
d

dt

(∂H
∂E

)
= −Λ(α1 + α2)λ1 − α1β1λ2SI + Λα1λ2

− α2β1λ3SI + Λα2λ3 + β1(α1 + α2)λ4SI

+ α1β2λ2SI − α1β2λ4SI + α2β3λ3SI − α2β3λ4SI

= [−Λ(α1 + α2)λ1 + Λα1λ2 + Λα2λ3] + (α1β2 − α1β1)λ2SI

+ (α2β3 − α2β1)λ3SI + [β1(α1 + α2)− α1β2 − α2β3]λ4SI

= Λ[α1(λ2 − λ1) + α2(λ3 − λ1)]

+ {α1(β2 − β1)λ2 + α2(β3 − β1)λ3 + [α1(β1 − β2) + α2(β1 − β3)]λ4}SI.

We see that the control does not explicitly show in this expression, so next we
calculate the second derivative with respect to time.

0 =
d2

dt2
(∂H
∂E

)
= Λ[α1(λ′2 − λ′1) + α2(λ′3 − λ′1)] +

{
α1(β2 − β1)λ′2 + α2(β3 − β1)λ′3

+ [α1(β1 − β2) + α2(β1 − β3)]λ′4
}
SI +

{
α1(β2 − β1)λ2

+ α2(β3 − β1)λ3 + [α1(β1 − β2) + α2(β1 − β3)]λ4

}
(SI ′ + S′I)

(3.5)

Using systems (2.1) and (3.2), we simplify (3.5) as follows

0 =
d2

dt2
(∂H
∂E

)
= −Λ

{
[β1(α1 + α2)λ1 − α1β2λ2 − α2β3λ3 + (α1(β2 − β1) + α2(β3 − β1))λ4]I

+ d[(α1 + α2)λ1 − α1λ2 − α2λ3] +
[
(α1 + α2)2λ1

− (α1 + α2)(α1λ2 + α2λ3)
]
E
}

+
{
α1(β2 − β1)(β2I + d)λ2

+ α2(β3 − β1)(β3I + d)λ3 + (α1β2(β1 − β2) + α2β3(β1 − β3))λ4I

− (α1(β1 − β2) + α2(β1 − β3))((β1S + β2S1 + β3S2 − d− γ)λ4

+ 1 +A− β1λ1S − β2λ2S1 − β3λ3S2 + γλ5)
}
SI

+ [α1(β2 − β1)λ2 + α2(β3 − β1)λ3 + (α1(β1 − β2) + α2(β1 − β3))λ4]
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×
{

(β1S + β2S1 + β3S2 − (d+ γ))SI + (−(α1 + α2)ES − β1SI + Λ− dS)I
}
.

The above equation can be written in the form

d2

dt2
(∂H
∂E

)
= Φ1(t)E(t) + Φ2(t) = 0

and we can solve for the singular control as

Esingular(t) = −Φ2(t)
Φ1(t)

,

if

Φ1(t) 6= 0 and a ≤ −Φ2(t)
Φ1(t)

≤ b

with

Φ1(t)

= −Λ[(α1 + α2)2λ1 − (α1 + α2)(α1λ2 + α2λ3)]−
[
α1(β2 − β1)λ2

+ α2(β3 − β1)λ3 + (α1(β1 − β2) + α2(β1 − β3))λ4

]
(α1 + α2)SI

= −Λ[(α1 + α2)2λ1 − (α1 + α2)(α1λ2 + α2λ3)]

− [α1(β1 − β2)(λ4 − λ2) + α2(β1 − β3)(λ4 − λ3)](α1 + α2)SI

= −Λ(α1 + α2)
B

S
− [α1(β1 − β2)(λ4 − λ2) + α2(β1 − β3)(λ4 − λ3)](α1 + α2)SI

and

Φ2(t)

= −Λ
{

[β1(α1 + α2)λ1 − α1β2λ2 − α2β3λ3 + (α1(β2 − β1) + α2(β3 − β1))λ4]I

+ d
B

S

}
+
{
α1(β2 − β1)(β2I + d)λ2 + α2(β3 − β1)(β3I + d)λ3 + (α1β2(β1 − β2)

+ α2β3(β1 − β3))λ4I − (α1(β1 − β2) + α2(β1 − β3))((β1S + β2S1 + β3S2

− d− γ)λ4 + 1 +A− β1λ1S − β2λ2S1 − β3λ3S2 + γλ5)
}
SI +

[
α1(β2 − β1)λ2

+ α2(β3 − β1)λ3 + (α1(β1 − β2) + α2(β1 − β3))λ4]
{

(β1S + β2S1 + β3S2

− (d+ γ))SI + (−β1SI + Λ− dS)I
}

To check the generalized Legendre-Clebsch condition for the singular control to
be optimal, we require d

dE
d2

dt2

(
∂H
∂E

)
= Φ1(t) to be negative [19]. To summarize, our

control characterization is: On a nontrivial interval,

if
∂H

∂E
< 0 at t, then E∗(t) = b,

if
∂H

∂E
> 0 at t, then E∗(t) = a,

if
∂H

∂E
= 0, then Esingular(t) = −Φ2

Φ1
.

Hence, our control is optimal at t provided Φ1(t) < 0 and a ≤ −Φ2(t)
Φ1(t) ≤ b.
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Table 1. Description of the variables and parameters for model (2.1)

Variable Description

S(t) Susceptible humans

S1(t), S2(t) Susceptible humans who change their
behavior due to education campaign

I(t) Infected humans

R(t) Removed humans

Parameter Description Baseline value

Λ Recruitment rate 0.005

d Death rate 0.0015

α1 α2 Transfer rate to the educated susceptible classes 0.0019, 0.0152
β1, β2, β3 Infection rate 0.0040, 0.0002, 0.0016

γ Removal rate 0.005

a, b Control lower and upper bound 0, 0.85
A, B Balancing constant 0, 5× 10−2

Figure 1. Simulation results for (2.1), using the parameter values
in Table 1. Dashed lines are for the “without control”case, and
solid lines for the “with control”case.
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Figure 2. Simulation results for (2.1) varying α2, using the pa-
rameter values in Table 1, solid lines for α2 = 0.0152, and dashed
lines for α2 = 0.152.

4. Numerical results and conclusions

The optimality system is the state and adjoint systems coupled with the opti-
mal control characterization. We solved optimality system numerically using the
forward-backward sweep method [13, 21]. Starting with an initial guess for the
control, the state system is solved forward in time. Using those new state values,
the adjoint system is solved backward in time. The control is updated using a
convex combination of the old control values and the new control values from the
characterization. The iterative method is repeated until convergence.

We note that the uniqueness of the optimal control can be proven for the final
time T sufficiently small. But in our numerical simulations, we did not find an
indication of non-uniqueness and did not encounter any occurrence of the singular
case.

We explore the transmission model (2.1) to study the effects of time dependent
control measures using parameter values in Table 1 and initial conditions, S(0) =
5, S1(0) = 0, S2(0) = 0, I(0) = 1.2, R(0) = 0.08, E(0) = 0.5, except when
otherwise stated. With no control, the basic reproductive number R0 is 2.0513,
thus, indicating the disease free equilibrium is unstable. Here S(0), S1(0), S2(0),
I(0) and R(0), as well as the corresponding states in the figures, are in millions of
individuals.
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Figure 3. Simulation results for (2.1) varying Λ, using the pa-
rameter values in Table 1, solid lines for Λ = 0.005, R0 = 2.0513,
and dashed lines for Λ = 0.05 R0 = 20.5128.

Figure 1 shows a higher number of susceptible individuals in the absence of
educational campaign (without control) compared to the presence of educational
campaigns (with control). This is due to the fact that susceptible individuals in the
community are not changing their behavior which causes them to move to either of
the two other susceptible classes S1 and S2.

In Figure 2, we varied the transfer rate into the susceptible class S2 by increasing
α2 ten fold (i.e. α2 = 0.152) and then compare the two educational campaign cases.
We observed that the increase naturally lead to an increase in the S2 class which
results in a subsequent reduction in the total number of infected individuals in the
community and the length of the time with positive control from about 31 days to
26 days. Less control effort is needed due to an increasing rate of behavior rate
(change of transition rate) for S2.

In varying the recruitment or birth rate Λ from Λ = 0.005 to Λ = 0.05 (a ten fold
increase), we observed by comparing the two educational campaign cases in Figure
3, an increase in the various classes which resulted in an increase in the control
time from about 31 days to about 35 days. We equally observed a ten fold increase
in R0 from 2.0513 to 20.513.

Next we consider the balancing constant A. We increase the constant A from
A = 0 to A = 10, this indicates that it is important to maximize the various
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Figure 4. Simulation results for (2.1) varying the balancing con-
stant A, using parameter the values in Table 1, solid lines for A = 0,
and dashed lines for A = 10.

susceptible populations. We observed from Figure 4, an increase in the various
classes which resulted in an increase in the control time from about 31 days to
about 45 days.

Lastly, we varied the control upper bound from 0.85 to 2, and we observed from
Figure 5, a decrease in the susceptible class S and an increase in classes S1 and S2

leading to a reduction in the total number of infected. With this increase in the
upper bound, there is a decrease in the control time from about 31.5 days to about
26.5 days.

In conclusion, we illustrated optimal controls for several scenarios with a model
with three susceptible classes due to changing behavior. The behavior changes
result from information distributed to susceptibles. This work demonstrates an
optimal control tool in making decisions about allocating efforts to slow down an
epidemic with an information educational campaign. In future work, we will in-
vestigate models in which education campaigns and treatment are both important
options for the disease management.
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