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COLLAGE-TYPE APPROACH TO INVERSE PROBLEMS FOR
ELLIPTIC PDES ON PERFORATED DOMAINS

HERB E. KUNZE, DAVIDE LA TORRE

Abstract. We present a collage-based method for solving inverse problems for

elliptic partial differential equations on a perforated domain. The main results
of this paper establish a link between the solution of an inverse problem on a

perforated domain and the solution of the same model on a domain with no
holes. The numerical examples at the end of the paper show the goodness of

this approach.

1. Introduction

In recent years a great deal of attention has been paid to the problem of pa-
rameter estimation in distributed systems, that is the determination of unknown
parameters in the functional form of the governing model of the phenomenon under
study [8, 17, 18, 20]. In the mathematical literature this kind of problem is called
an inverse problem. According to Keller [7], “we call two problems inverse of one
another if the formulation of each involves all or part of the solution of the other.
Often, for historical reasons, one of the two problems has been studied extensively
for some time, while the other one is newer and not so well understood. In such
cases, the former is called the direct problem, while the latter is the inverse prob-
lem”. There is a fundamental difference between the direct and the inverse problem;
often the direct problem is well-posed while the corresponding inverse problem is
ill-posed. Hadamard [6] introduced the concept of well-posed problem to describe a
mathematical model that has the properties of existence, uniqueness and stability
of the solution. When one of these properties fails to hold, the mathematical model
is said to be an ill-posed problem. There are many inverse problems in the literature
that are ill-posed whereas the corresponding direct problems are well-posed. The
literature is rich in papers studying ad hoc methods to address ill-posed inverse
problems by minimizing a suitable approximation error along with utilizing some
regularization techniques [19].

Many inverse problems may be recast as the approximation of a target element x
in a complete metric space (X, d) by the fixed point x̄ of a contraction mapping T :
X → X. Thanks to a simple consequence of Banach’s Fixed Point Theorem known
as the Collage Theorem, most practical methods of solving the inverse problem for
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fixed point equations seek an operator T for which the collage distance d(x, Tx) is
as small as possible.

Theorem 1.1 (Collage Theorem [1]). Let (X, d) be a complete metric space and
T : X → X a contraction mapping with contraction factor c ∈ [0, 1). Then for any
x ∈ X,

d(x, x̄) ≤ 1
1− c

d(x, Tx), (1.1)

where x̄ is the fixed point of T .

This theorem vastly simplifies this type of inverse problem as it is much easier
to estimate d(x, Tx) than it is to find the fixed point x̄ and then compute d(x, x̄).
One now seeks a contraction mapping T that minimizes the so-called collage error
d(x, Tx) – in other words, a mapping that sends the target x as close as possible
to itself. This is the essence of the method of collage coding which has been the
basis of most, if not all, fractal image coding and compression methods. Barnsley
[1] was the first to see the potential of using the Collage Theorem above for the
purpose of fractal image approximation and fractal image coding [5]. However,
this method of collage coding may be applied in other situations where contractive
mappings are encountered. We have shown this to be the case for inverse problems
involving several families of differential equations: ordinary differential equations
[9, 14], random differential equations [10, 12], boundary value problems [2, 11, 13],
parabolic partial differential equations [15], stochastic differential equations [3], and
others.

In practical applications, from a family of contraction mappings Tλ, λ ∈ Λ ⊂ Rn,
one wishes to find the parameter λ̄ for which the approximation error d(x, x̄λ) is as
small as possible. In practice the feasible set is often taken to be Λc = {λ ∈ Rn : 0 ≤
cλ ≤ c < 1} which guarantees the contractivity of Tλ for any λ ∈ Λc. A difference
between this “collage” approach and the one based on Tikhonov regularization
is the following: in the collage approach, the constraint λ ∈ Λc guarantees that
Tλ is a contraction and, therefore, replaces the effect of the regularization term
in the Tikhonov approach (see [19] and [20]). The collage approach works well
for low-dimensional parametrization in particular, while Tikhonov regularization is
a fundamentally non-parametric methodology. The collage-based inverse problem
can be formulated as an optimization problem as follows:

min
λ∈Λc

d(x, Tλx). (1.2)

This is typically a nonlinear and nonsmooth optimization model. Several algorithms
can be used to solve it including, for instance, penalization methods, particle swarm
ant colony techniques, and so on.

The article is organized as follows: Section 2 recalls the extended approach based
on the Generalized Collage Theorem to solving inverse problems for elliptic partial
differential equations. Section 3 presents a brief introduction of porous media and
perforated domains and the formulation of the inverse problem. Section 4 illustrates
the main results and, finally, Section 5 lists some numerical examples.

2. Inverse problems for elliptic PDEs by the generalized collage
theorem

Many physical phenomena in science and engineering can be described through
partial differential equations which include the parameters of the process in the
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operators of the model. The direct problem typically requires finding the unique
solution of such a well-posed problem. The inverse problem seeks to estimate the
parameter values given information about the solution.

Let us consider the following variational equation associated with an elliptic
equation:

a(u, v) = φ(v), v ∈ H, (2.1)

where φ(v) and a(u, v) are linear and bilinear maps, respectively, both defined on
a Hilbert space H. Let us denote by 〈·, ·〉 the inner product in H, ‖u‖2 = 〈u, u〉
and d(u, v) = ‖u− v‖, for all u, v ∈ H. The inverse problem may now be viewed as
follows: Suppose that we have an observed solution u and a given (restricted) family
of bounded, coercive bilinear functionals aλ(u, v), λ ∈ Rn. We now seek “optimal”
values of λ. The existence and uniqueness of solutions to this kind of equation are
provided by the classical Lax-Milgram representation theorem. Suppose that we
have a “target” element u ∈ H, a family of bilinear functionals aλ, and a family
of linear functionals φλ. Then, by the Lax-Milgram theorem, there exists a unique
vector uλ ∈ H such that φλ(v) = aλ(uλ, v) for all v ∈ H. We would like to
determine if there exists a value of the parameter λ such that uλ = u or, more
realistically, such that ‖uλ − u‖ is small enough. The following theorem will be
useful for the solution of this problem.

Theorem 2.1 (Generalized Collage Theorem). [11] For all λ ∈ Λ, suppose that
aλ(u, v) : Λ×H×H → R is a family of bilinear forms and φλ : Λ×H → R is a family
of linear functionals. Let uλ denote the solution of the equation aλ(u, v) = φλ(v)
for all v ∈ H as guaranteed by the Lax-Milgram theorem. Then, given a target
element u ∈ H,

‖u− uλ‖ ≤ 1
mλ

Fλ(u), (2.2)

where
Fλ(u) = sup

v∈H, ‖v‖=1

∣∣aλ(u, v)− φλ(v)
∣∣ (2.3)

and mλ > 0 is the coercivity constant of aλ.

To ensure that the approximation uλ is close to a target element u ∈ H, we can,
by the Generalized Collage Theorem, try to make the term Fλ(u)/mλ as close to
zero as possible. The appearance of the mλ factor complicates the procedure as
does the factor 1/(1−c) in standard collage coding, i.e., (1.1). If infλ∈Λm

λ ≥ m > 0
then the inverse problem can be reduced to the minimization of the function Fλ(u)
on the space Λ; that is,

min
λ∈Λ

Fλ(u). (2.4)

The choice of λ according to (2.4) for minimizing the residual is, in general, not
stabilizing (see [4]). However, as the next sections show, under the condition
infλ∈Λm

λ ≥ m > 0 our approach is stable. Following our earlier studies of in-
verse problems using fixed points of contraction mappings, we shall refer to the
minimization of the functional Fλ(u) as a “generalized collage method.” Such
an optimization problem has a solution that can be approximated with a suitable
discrete and quadratic program, derived from the application of the Generalized
Collage Theorem and an adequate use of an orthonormal basis in the Hilbert space
H, as seen in [11].
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Example 2.2. As an illustrative example, we choose K(x, y) = Ktrue(x, y) =
8 +x2 + 2y2 and f(x, y) = x2 + 4y2 and consider the steady-state diffusion problem

∇ · (K(x, y)∇u(x, y)) = f(x, y), Ω = [0, 1]2,

u(x, y) = 0, ∂Ω.
(2.5)

We solve the diffusion problem numerically and sample the solution u at 36 uni-
formly distributed points strictly inside Ω, (xi, yj) = ( i7 ,

j
7 ), i, j = 1, . . . , 6. The

level curves of the solution are illustrated in Figure 1, which also presents the mesh
used by the numerical solver.

Figure 1. Level curves of solutions and the numerical solver mesh
for Example 2.2.

Next, we define Kλ(x, y) = λ0 + λ1x
2 + λ2y

2 and fλ(x, y) = λ3x
2 + λ4y

2. Note
that if we leave all of the parameters in Kλ variable, then, due to linearity, any
nonzero multiple of the resulting parameter vector will correspond to the same so-
lution, so we fix λ0 = 1. Using the 36 data points, we seek to estimate the values of
λi in Kλ(x, y) and/or fλ(x, y) by applying the generalized collage theorem. To four
decimal places, we obtain (λ0, λ1, λ2, λ3, λ4) = (1, 0.1291, 0.0988, 0.1330, 0.4574),
corresponding to (8, 1.0327, 0.7906, 1.0641, 3.6590). If we increase the number of
points, the results improve. The results are also robust with respect to the intro-
duction of low-amplitude additive noise [11, 13].

3. Inverse problems on perforated domains

A porous medium (or perforated domain) is a material characterized by a par-
titioning of the total volume into a solid portion often called the “matrix” and a
pore space usually referred to as “holes” that can be either materials different from
that of the matrix or real physical holes. When formulating differential equations
over porous media, the term “porous” implies that the state equation is written
in the matrix only, while boundary conditions should be imposed on the whole
boundary of the matrix, including the boundary of the holes. Porous media can be
found in many areas of applied sciences and engineering including petroleum engi-
neering, chemical engineering, civil engineering, aerospace engineering, soil science,
geology, material science, and many more areas. Figure 2 presents an example of a
two-dimensional perforated domain.
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Figure 2. A two-dimensional perforated domain.

Since porosity in materials can take different forms and appear in varying de-
grees, solving differential equations over porous media is often a complicated task
and the holes’ size and their distribution play an important role in its character-
ization. Furthermore numerical simulations over perforated domains need a very
fine discretization mesh which often requires a significant computational time. The
mathematical theory of differential equations on perforated domains is usually based
on the theory of “homogenization” in which heterogeneous material is replaced by
a fictitious homogeneous one. Of course this implies the need of convergence re-
sults linking together the model on a perforated domain and on the associated
homogeneous one. In the case of porous media, or heterogeneous media in general,
characterizing the properties of the material is a tricky process and can be done on
different levels, mainly the microscopic and macroscopic scales, where the micro-
scopic scale describes the heterogeneities and the macroscopic scale describes the
global behavior of the composite.

In this article we focus on the analysis of inverse problems for elliptic partial
differential equations on perforated domains. Thus far, we have illustrated the
importance of inverse problems for practical applications and some results for the
case of homogeneous media. Now, starting from a target function, which is supposed
to be the solution to a partial differential equation on a perforated domain for
certain values of unknown parameters, we aim to estimate these parameters by
solving an inverse problem on a homogenized domain with no holes. The next
section establishes some results relating the solution to an inverse problem on a
porous medium and the corresponding problem on a homogenized domain.

4. Main results

Given a compact and convex set Ω, in the following let us denote by ΩB the col-
lection of circular holes ∪mj=1B(xj , ε) where xj ∈ Ω, ε is a strictly positive number,
and the holes B(xj , ε) are nonoverlapping and lie strictly inside Ω. We denote by
Ωε the closure of the set Ω\ΩB . In the remaining part of this section we consider
the problem

∇ · (Kλ(x, y)∇u(x, y)) = fλ(x, y), in Ωε,

u(x, y) = 0, on ∂Ωε,
(4.1)
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and the problem

∇ · (Kλ(x, y)∇u(x, y)) = fλ(x, y), in Ω,

u(x, y) = 0, on ∂Ω.
(4.2)

where λ is a parameter belonging to the compact set Λ ⊂ Rn. The results provided
in this section are related to the Dirichlet problem but they can be easily extended
to the case of Neumann boundary conditions ( ∂u∂n = 0 on ∂ΩB).

Let us introduce, using classical notation, the Sobolev spaces H = H1
0 (Ω) and

Hε = H1
0 (Ωε) and the variational formulation of the above equations (4.1) and (4.2)

as follows:
• (Pε) Find u ∈ Hε such that

aλε (u, v) = φλε (v), ∀v ∈ Hε (4.3)

• (P ) Find u ∈ H such that

aλ(u, v) = φλ(v), ∀v ∈ H (4.4)

As any function in Hε can be extended to be zero over the holes, it is trivial to
prove that Hε can be embedded in H. In the sequel, let Πεu be the projection
of u ∈ H onto Hε. It is easy to prove that ‖u − Πεu‖H → 0 whenever ε → 0.
When Neumann boundary conditions are considered, it is still possible to extend
a function in Hε to a function of H: these extension conditions are well studied
(see [16]) and they typically hold when the domain Ω has a particular structure.
In any case, it holds for a wide class of disperse media, that is media consisting of
two media that do not mix.

Let us also assume the following hypotheses:
• the continuous and bilinear forms aλε and aλ are uniformly coercive and

bounded with respect to λ and ε, namely there exists two positive constants
m and M such that

aλε (u, u) ≥ m‖u‖2 ∀u ∈ Hε

aλε (u, v) ≤M‖u‖‖v‖ ∀u, v ∈ Hε

aλ(u, u) ≥ m‖u‖2 ∀u ∈ H

aλ(u, v) ≤M‖u‖‖v‖ ∀u ∈ H

(4.5)

• the linear functionals φλε and φλ are uniformly bounded with respect to λ
and ε, namely there exists a positive constant µ such that

φλε (u) ≤ µ‖u‖ ∀u ∈ Hε

φλ(u) ≤ µ‖u‖ ∀u ∈ H
(4.6)

Using classical results from the theory of PDEs we know that, under the hypotheses
(4.5) and (4.6) above, (4.3) and (4.4) have unique solutions uλε and uλ for each λ ∈ Λ
and for each positive ε.

The inverse problem of interest can now be stated as follows:
Given a target u, which is a solution of (4.1) for certain unknown values λ and
ε, determine an estimation of λ using (4.2) instead. In other words, we want to
estimate the unknown parameter λ by solving an inverse problem on a domain with
no holes.
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From a practical perspective, starting from a set of data ui, i = 1, . . . , s, sampled
on the porous domain Ωε, u is obtained from ui by applying some interpolation
technique.

The following results demonstrate some relationships between (4.1) and (4.2).
For this purpose and for each u ∈ Hε, let us introduce the function

Fλε (u) = sup
v∈Hε, ‖v‖Hε =1

|aλε (u, v)− φλε (v)|. (4.7)

associated with problem (4.1).

Proposition 4.1. The following estimate holds:

‖Πεu− uλε‖Hε
≤ Fλ(u)

m
+
M

m
‖u−Πεu‖H (4.8)

Proof. Let us first notice that the function Πεu is an element of Hε. The thesis
follows from the following chain of inequalities and the observation

‖Πεu− uλε‖Hε ≤
1
m
Fλε (Πεu) ≤ 1

m
Fλ(Πεu) ≤ Fλ(u)

m
+
M

m
‖u−Πεu‖H

for all λ ∈ Λ, ε > 0. �

Proposition 4.2. There exists a constant C, that does not depend on ε, such that
the following estimate holds:

Fλ(Πεu) ≤ Fλε (Πεu) + Cε (4.9)

for all λ ∈ Λ, ε > 0.

Proof. The following calculations hold:

Fλ(Πεu) = sup
v∈H, ‖v‖H=1

|aλ(Πεu, v)− φλ(v)|

≤ sup
v∈H, ‖v‖H=1

|aλ(Πεu, v)− aλ(Πεu,Πεv)|

+ sup
v∈H, ‖v‖H=1

|aλ(Πεu,Πεv)− φλ(Πεv)|

+ sup
v∈H, ‖v‖H=1

|φλ(v)− φλ(Πεv)|

= Fλε (Πεu) + (M‖Πεu‖H + µ) sup
v∈H, ‖v‖H=1

‖v −Πεv‖H

≤ Fλε (Πεu) + Cε

�

Proposition 4.3. Suppose that Fλ(u), Fλε (v) : Λ → R+ are continuous for all
u ∈ H, v ∈ Hε, and ε > 0. Let λε be a sequence of minimizers of Fλε (u) over Λ.
Then there exists εn → 0 and λ∗ ∈ Λ such that λεn

→ λ∗, with λ∗ a minimizer of
Fλ(u) over Λ.

Proof. As λε is a sequence of vectors in the compact space Λ, there exists a con-
vergent subsequence λεn

→ λ∗ ∈ Λ when εn → 0. Computing we have:

Fλ
∗
(u) = lim

εn→0
Fλεn (Πεn

u) ≤ lim
εn→0

F
λεn
εn (Πεn

u) + Cεn

≤ lim
εn→0

Fλεn
(Πεnu) + Cεn
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≤ lim
εn→0

Fλ(u) +M‖u−Πεn
u‖H + Cεn = Fλ(u)

�

In closing this section, we note that all of the above results can be extended to
the case where the radii of the holes are different, that is B(xj , εj), in which case
we define ε = maxj εj .

5. Numerical examples

We provide two numerical examples of an inverse problem on a perforated do-
main. In both cases, we set Ω = [0, 1]2.

Example 5.1. We extend Example 2.2, placing nine holes of assorted sizes inside
Ω, as in Figure 3

Figure 3. The domain, mesh, and level curves of solutions for Example 5.1.

As in Example 2.2, we choose K(x, y) = Ktrue(x, y) = 8+x2 +2y2 and f(x, y) =
x2 + 4y2 and consider

∇ · (K(x, y)∇u(x, y)) = f(x, y), in Ωε,

u(x, y) = 0, on ∂Ω,
∂u

∂n
(x, y) = 0, on ∂ΩB ,

(5.1)

where ΩB is the union of the nine holes. We solve the diffusion problem numerically
and sample the solution uε at M ×M uniformly-distributed points strictly inside
Ω. The level curves of the solution are illustrated in Figure 3. If a sample point
lies inside a hole, we obtain no information at the point. We define Kλ(x, y) =
λ0 +λ1x

2 +λ2y
2 and fλ(x, y) = λ3x

2 +λ4y
2. Using the M2 (or fewer) data points,

we seek to estimate the values of λi in Kλ(x, y) and/or fλ(x, y) by applying the
generalized collage theorem to solve the related inverse problem on Ω with no holes.

The results for various cases are presented in Table 1. In the case that we seek
to recover all five of the parameters, we choose to normalize λ0 = 1, so the desired
values of the other parameters are scaled by 1/8. We mention that if we instead
set λ0 = 0, the solution we obtain to the inverse problem is very poor, as we would
expect. We see that the estimates obtained are quite good.
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Estimating Kλ(x, y) = λ0 + λ1x
2 + λ2y

2

given fλ(x, y) = x2 + 4y2

M λ0 λ1 λ2

4 7.9606 0.9177 1.8065
5 8.1955 0.8381 1.3709
6 8.0474 0.9170 1.6289

Estimating fλ(x, y) = λ3x
2 + λ4y

2

given Kλ(x, y) = 8 + x2 + 2y2

M λ3 λ4

4 0.9817 4.1071
5 0.9766 4.1385
6 0.9827 4.1106

Estimating both Kλ(x, y) = 1 + λ1x
2 + λ2y

2

and fλ(x, y) = λ3x
2 + λ4y

2

M λ1 λ2 λ3 λ4

4 0.0178 0.3233 0.0977 0.5323
5 0.0879 0.1429 0.1196 0.4784
6 0.0832 0.1707 0.1178 0.4837
9 0.1264 0.2111 0.1015 0.4728

Table 1. Results for the inverse problem in Example 5.1. For the
top problem, the true values are (λ0, λ1, λ2) = (8, 1, 2); for the mid-
dle problem, the true values are (λ3, λ4) = (1, 4); and for the bot-
tom problem, the true values are (λ1, λ2, λ3, λ4) =
(0.0125, 0.2500, 0.0125, 0.500).

Example 5.2. For ε ∈ {0.1, 0.025, 0.01}, define Nε = 1
10ε and

ΩB = ∪Nε
i,j=1Bε

((
i− 1

2
)
ε,

(
j − 1

2
)
ε
)
,

a domain with N2
ε uniformly-distributed holes of radius ε. Choosing K(x, y) =

Ktrue(x, y) = 10 + 2x+ 3y, we consider the steady-state diffusion problem

∇ · (K(x, y)∇u(x, y)) = x2 + y2, in Ωε,

u(x, y) = 0, on ∂Ω,
∂u

∂n
(x, y) = 0, on ∂ΩB .

(5.2)

For a fixed value of ε, we solve the diffusion problem numerically and sample the
solution at M ×M uniformly-distributed points strictly inside Ω. If such a point
lies inside a hole, we obtain no information at the point. Using the M2 (or fewer)
data points, we use the generalized collage theorem to solve the related inverse
problem, seeking a diffusivity function of the form K(x, y) = λ0 + λ1x+ λ2y. The
level curves are illustrated in Figure 4.

The results for M = 9, 49, and 99, are given in Table 2. We see that as the
size of the holes decreases (even while the number increases), the solution to the
inverse problem produces better estimates of the parameters. In addition, we see
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Figure 4. Level curves of solutions in Example 5.2, with ε = 0.1,
0.025, and 0.01.

that if a hole is too large, as in the N = 1 case, the estimates are very poor. In
this case, the hole needs to be incorporated into the macroscopic-scale model, as it
can’t be considered part of the smaller-scale model. In the other cases of the table,
the estimates are good.

Recovered parameters
ε Nε M λ0 λ1 λ2

0.1 1 9 13.2068 −0.5921 0.6250
49 13.2428 −0.5837 0.6346
49 13.2419 −0.5798 0.6398

0.025 4 9 9.8434 1.8148 2.8119
49 9.9758 1.6894 2.6875
99 9.9787 1.6838 2.6820

0.01 10 9 9.9811 1.6221 2.6199
49 10.0069 1.6041 2.6014
99 10.0069 1.6039 2.6014

Table 2. Results for the inverse problem in Example 5.2. True
values are (λ0, λ1, λ2) = (10, 2, 3).
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