\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2015 (2015), No. 44, pp. 1--7.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2015 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2015/44\hfil Integration by parts] {Integration by parts for the $L^r$ Henstock-Kurzweil integral} \author[P. Musial, F. Tulone \hfil EJDE-2015/44\hfilneg] {Paul Musial, Francesco Tulone} \address{Paul Musial \newline Department of Mathematics and Computer Science, Chicago State University \newline 9501 South King Drive, Chicago, Illinois 60628, USA} \email{pmusial@csu.edu} \address{Francesco Tulone \newline Department of Mathematics and Computer Science \newline University of Palermo, Via Archirafi, 34, 90132 Palermo, Italy} \email{francesco.tulone@unipa.it} \thanks{Submitted December 8, 2014. Published February 16, 2015.} \subjclass[2000]{26A39} \keywords{Henstock-Kurzweil; integration by parts} \begin{abstract} Musial and Sagher \cite{Musial Sagher} described a Henstock-Kurzweil type integral that integrates $L^r$-derivatives. In this article, we develop a product rule for the $L^r$-derivative and then an integration by parts formula. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{definition}[theorem]{Definition} \allowdisplaybreaks \section{Introduction} \begin{definition}[\cite{Musial Sagher}]\rm A real-valued function $f$ defined on $[a,b]$ is said to be $L^r$ Henstock-Kurzweil integrable ($f\in HK_r[ a,b] $) if there exists a function $F\in L^r[ a,b] $ so that for any $\varepsilon >0$ there exists a gauge function $\delta ( x) >0$ so that whenever $\{ ( x_i,[c_i,d_i] ) \} $ is a $\delta $-fine tagged partition of $[ a,b] $ we have \[ \sum_{i=1}^{n}\Big( \frac{1}{d_i-c_i}( L) \int_{c_i}^{d_i}| F( y) -F( x_i) -f( x_i) ( y-x_i) | ^rdy\Big) ^{1/r}<\varepsilon . \] \end{definition} In the sequel, if an integral is not specified, it is a Lebesgue integral. It is shown in \cite{Musial Sagher} that if $f$ is $HK_r$-integrable on $[ a,b] $, the following function is well-defined for all $x\in [ a,b] $: \begin{equation} F( x) =( HK_r) \int_{a}^{x}f( t) \,dt \label{HKrprim} \end{equation} Here the function $F$ is called the {\it indefinite} $HK_r$ {\it integral of} $f$. Our aim is to establish an integration by parts formula for the $ HK_r $ integral. In a manner similar to L. Gordon \cite{LGordon} we state the following \begin{theorem}\label{thm-int-by-parts} Suppose that $f$ is $HK_r$-integrable on $[ a,b] $, and $G$ is absolutely continuous on $[ a,b] $ with $G'\in L^{r'}( [ a,b] ) $, where $1\leq r<\infty ,r'=r/(r-1)$ if $r>1$, and $r'=\infty$ if $r=1$. Then $fG$ is $HK_r$-integrable on $[ a,b] $ and if $F$ is the indefinite $HK_r$ integral of $f$, then \[ ( HK_r) \int_{a}^{b}f( t) G( t)\,dt =F( b) G( b) -\int_{a}^{b}F(t) G'( t) \,dt. \] \end{theorem} We note that if $r=1$ so that $r'=\infty$, the condition on $G$ is that it is a Lipschitz function of order 1 on $[a,b]$. In the classical case where $f$ is Henstock-Kurzweil integrable ($r=\infty,r' =1$), Theorem \ref{thm-int-by-parts} holds, but it is enough to assume that $G$ is of bounded variation on $[a,b]$. In that case the integral on the right is the Riemann-Stieltjes integral $\int_{a}^{b}F dG$. See \cite{R Gordon} for a proof of this statement. To prove Theorem \ref{thm-int-by-parts} we will need a product rule for the $L^r$-derivative. We will also utilize a characterization of the space of $HK_r$-integrable functions that involves generalized absolute continuity in $L^r $ sense ($ACG_r( [ a,b] ) )$. \section{Product rule for the $L^r$-derivative} \begin{definition}[\cite{Calderon Zygmund}]\rm For $1\leq r<\infty $, a function $F\in L^r( [ a,b]) $ is said to be $L^r$-differentiable at $x\in [ a,b] $ if there exists $a\in \mathbb{R}$ such that \[ \int_{-h}^{h}| F( x+t) -F( x) -at|^rdt=o( h^{r+1}). \] \end{definition} It is clear that if such a number $a$ exists, then it is unique. We say that $a$ is the {\it{$L^r$-derivative}} of $F$ at $x$, and denote the value $a$ by $F_r'( x)$. \begin{theorem}\label{Thm:Lr-product-rule} For $1\leq r<\infty $, let $x\in \mathbb{R}$ and suppose $F\in L^r( I) $ where $I$ is an interval having $x$ in its interior, and suppose $F$ is $L^r$-differentiable at $x$. Suppose also that $G\in L^{\infty }( I) $ and that $G$ is $L^r$-differentiable at $x$. Then $FG$ is $L^r$-differentiable at $x$ and $( FG) _r'( x) =F_r'(x) G( x) +F( x) G_r'( x) $. \end{theorem} \begin{proof} Let $\varepsilon >0$. We need to choose $\gamma $ so that for $00$ and $N>0$ so that $F\in L^r( [ x-\gamma_{0},x+\gamma _{0}] ) $ and that \[ \operatorname{esssup}_{[ x-\gamma _{0},x+\gamma _{0}] }G0$ there exist $\eta >0$ and a gauge function $\delta (x) $ defined on $E$ so that if $\mathcal{P}=\{ (x_i,[c_i,d_i]) \} $ is a finite collection of non-overlapping $\delta $-fine tagged intervals having tags in $E$ and satisfying \[ \sum_{i=1}^{q}( d_i-c_i) <\eta \] then \[ \sum_{i=1}^{q}\Big( \frac{1}{d_i-c_i}\int_{c_i}^{d_i}| F( y) -F( x_i) | ^rdy\Big) ^{1/r}<\varepsilon . \] \end{definition} \begin{definition}[\cite{Musial Sagher}] \rm We say that $F\in ACG_r( E) $ if $E$ can be written \[ E=\cup_{i=1}^{\infty }E_i \] and $F\in AC_r( E_i)$ for all $i$. \end{definition} \begin{lemma} \label{T:ACG products} Suppose that $F$ and $G$ are in $ACG_r( [ a,b] ) $, and that $G\in L^{\infty }( [ a,b]) $. Then $FG\in ACG_r( [ a,b] ) $. \end{lemma} \begin{proof} The function $F\in ACG_r( [ a,b] ) $ and so we can find a sequence of sets $\{ A_{n}\} _{n=1}^{\infty }$ so that $[ a,b] =\cup _{n=1}^{\infty }A_{n}$ and $F\in AC_r( A_{n}) $ for all $n$. Since $G$ belongs to $ACG_r( [ a,b]) $, we can also find a sequence of sets $\{ B_{m}\} _{m=1}^{\infty }$ so that $[ a,b] =\cup _{m=1}^{\infty }B_{m}$ and $G\in AC_r( B_{m}) $ for all $m$. We can then write \[ [ a,b] =\cup_{n=1}^{\infty }\cup_{m=1}^{\infty }( A_{n}\cap B_{m}) . \] We will rewrite the sequence $\{ A_{n}\cap B_{m}\} _{n,m\geq 1}$ as $\{ E_{k}\} _{k\geq 1}$. We then have that both $F$ and $G$ are in $AC_r( E_{k}) $ for all $k\geq 1$. We will show that $FG\in ACG_r( E_{k} ) $ for all $k$. Let $N=1+\left\Vert G\right\Vert _{\infty }$ and fix $k$. \ For $j\geq 1$ let \[ U_{j}=\{ x\in E_{k}:j-1\leq | F( x) | 0$. There exist $\eta >0$ and a gauge function $\delta ( x) $ defined on $U_{j}$ so that if $\mathcal{P}=\{ x_i,[ c_i,d_i] \} $ is a finite collection of non-overlapping $\delta $-fine tagged intervals having tags in $U_{j}$ and satisfying \[ \sum_{i=1}^{q}( d_i-c_i) <\eta \] then \begin{gather*} \sum_{i=1}^{q}\Big( \frac{1}{d_i-c_i}\int_{c_i}^{d_i}| F( y) -F( x_i) | ^rdy\Big) ^{1/r}<\frac{\varepsilon }{2N}, \\ \sum_{i=1}^{q}\Big( \frac{1}{d_i-c_i}\int_{c_i}^{d_i}| G( y) -G( x_i) | ^rdy\Big) ^{1/r}<\frac{\varepsilon }{2j}. \end{gather*} Then for such $\mathcal{P}$, \begin{align*} &\sum_{i=1}^{q}\Big( \frac{1}{d_i-c_i}\int_{c_i}^{d_i}| F( y) G( y) -F( x_i) G( x_i) | ^rdy\Big) ^{1/r} \\ &\leq \sum_{i=1}^{q}\Big( \frac{1}{d_i-c_i}\int_{c_i}^{d_i} | F( y) G( y) -F( x_i) G(y) | ^rdy\Big) ^{1/r} \\ &\quad +\sum_{i=1}^{q}\Big( \frac{1}{d_i-c_i}\int_{c_i}^{d_i}| F( x_i) G( y) -F( x_i) G(x_i) | ^rdy\Big) ^{1/r}. \\ &\leq N\Big( \sum_{i=1}^{q}\Big( \frac{1}{d_i-c_i} \int_{c_i}^{d_i}| F( y) -F( x_i)| ^rdy\Big) ^{1/r}\Big) \\ &\quad +| F( x_i) | \Big( \sum_{i=1}^{q}( \frac{1}{d_i-c_i}\int_{c_i}^{d_i}| G( y) -G( x_i) | ^rdy) ^{1/r}\Big) \\ &\leq N\big( \frac{\varepsilon }{2N}\big) + j( \frac{\varepsilon }{2j})=\varepsilon. \end{align*} Now we can conclude that for $\mathcal{P}$, \[ \sum_{i=1}^{q}\Big( \frac{1}{d_i-c_i}\int_{c_i}^{d_i}| F( y) G( y) -F( x_i) G( x_i) | ^rdy\Big) ^{1/r}<\varepsilon \] and so that $FG\in ACG_r( [ a,b] ) .$\bigskip \end{proof} \section{Linearity of $ACG_r(E)$} We now show that $ACG_r(E)$ is a linear space. \begin{theorem} \label{T:Linearity of ACGr} Suppose $F$ and $G$ are in $ACG_r( E) $. Then for any constants $a$ and $b$ we have that $aF+bG\in ACG_r( E)$. \end{theorem} \begin{proof} Write $E$ as $\cup _{n=1}^{\infty }E_{n}$. We will show that $ aF+bG\in AC_r( E_{n}) $ for every $n$. First we show that $aF\in AC_r( E_{n}) $. Let $\varepsilon >0$ and choose $\eta >0$ and a gauge function $\delta (x) $ defined on $E_{n}$ so that if $\mathcal{P}=\{ x_i,[c_i,d_i] \} $ is a finite collection of non-overlapping $\delta $-fine tagged intervals having tags in $E$ and satisfying \[ \sum_{i=1}^{q}( d_i-c_i) <\eta \] then \[ \sum_{i=1}^{q}\Big( \frac{1}{d_i-c_i}\int_{c_i}^{d_i}| F( y) -F( x_i) | ^rdy\Big) ^{1/r }<\frac{\varepsilon }{| a| +1}. \] Then \begin{align*} &\sum_{i=1}^{q}\Big( \frac{1}{d_i-c_i}\int_{c_i}^{d_i}| aF( y) -aF( x_i) | ^rdy\Big) ^{1/r} \\ &=| a| \Big( \sum_{i=1}^{q}\Big( \frac{1}{d_i-c_i} \int_{c_i}^{d_i}| F( y) -F( x_i) | ^rdy\Big) ^{1/r}\Big) \\ &< | a| \big( \frac{\varepsilon }{| a| +1}\big) <\varepsilon . \end{align*} Now we show that $F+G\in ACG_r( E) $. Let $\varepsilon >0 $ and choose $\eta >0$ and a gauge function $\delta ( x) $ defined on $E_{n}$ so that if $\mathcal{P}=\{ x_i,[ c_i,d_i ] \} $ is a finite collection of non-overlapping $\delta $-fine tagged intervals having tags in $E$ and satisfying \[ \sum_{i=1}^{q}( d_i-c_i) <\eta\,, \] then \begin{gather*} \sum_{i=1}^{q}\Big( \frac{1}{d_i-c_i}\int_{c_i}^{d_i}| F( y) -F( x_i) | ^rdy\Big) ^{1/r} <\frac{\varepsilon }{2},\\ \sum_{i=1}^{q}\Big( \frac{1}{d_i-c_i}\int_{c_i}^{d_i}| G( y) -G( x_i) | ^rdy\Big) ^{1/r}<\frac{\varepsilon }{2}. \end{gather*} Then we have for this $\mathcal{P}$, using Minkowski's inequality, \begin{align*} &\sum_{i=1}^{q}\Big( \frac{1}{d_i-c_i}\int_{c_i}^{d_i}| F( y) +G( y) -(F( x_i) +G( x_i))| ^rdy\Big) ^{1/r} \\ &\leq \sum_{i=1}^{q}\Big( \frac{1}{d_i-c_i}\int_{c_i}^{d_i} | F( y) +F( x_i) | ^rdy\Big) ^{1/r} \\ &\quad +\sum_{i=1}^{q}\Big( \frac{1}{d_i-c_i}\int_{c_i}^{d_i}| G( y) -G( x_i) | ^rdy\Big) ^{1/r} \\ &< \frac{\varepsilon }{2}+\frac{\varepsilon }{2}=\varepsilon . \end{align*} \end{proof} We will use the following characterization of $HK_r$-integrable functions. \begin{theorem}[\cite{Musial Sagher}] \label{T:Sufficient Conditions HKr} Let $1\leq r<\infty $. A function $f$ is $HK_r$-integrable on $[ a,b] $ if and only if there exists a function $F\in ACG_r( [ a,b] ) $ so that $F_r^{'}=f$ a.e. \end{theorem} \section{Integration by Parts} We are now ready to give the proof of Theorem \ref{thm-int-by-parts}. \begin{proof} Define \begin{gather*} V( x) =f( x) G( x),\\ J( x) =F( x) G( x) -\int_{a}^{x}F( t) G'( t) \,dt. \end{gather*} We note that $FG' $ is integrable by H\"{o}lder's inequality \cite{Wheedan and Zygmund}. Our task is to show that $J$ is the $HK_r$-integral of $V$. By Theorem \ref{T:Sufficient Conditions HKr}, we see that it is sufficient to demonstrate that $J\in ACG_r([a,b])$ and that $J_r^{'}=V$ a.e. We note that the function \[ \int_{a}^{x}F( t) G'( t) \,dt \] is absolutely continuous on $[ a,b] $ and therefore is in $ACG_r( [ a,b] )$ \cite{Musial Sagher}. Its derivative, and therefore its $L^r$-derivative, is equal to $F( x) G'(x) $ a.e. in $[ a,b] $. Using Theorem \ref{Thm:Lr-product-rule} we can see that $FG$ has an $L^r$-derivative equal to $F_r'G+FG'$ a.e. in $[ a,b] $. Using the linearity of the $L^r$-derivative, we have that $J_r^{'}=V$ a.e. Thus all that remains is to show that $J\in ACG_r( [ a,b]) $. By Theorem \ref{T:Linearity of ACGr} it is sufficient to show that $FG\in ACG_r( [ a,b] ) $. The function $F\in ACG_r( [ a,b] ) $. Since $G\in AC([a,b])$, it is also in $ACG_r( [ a,b] ) $ and $G$ is also in $L^{\infty }$ so by Lemma \ref{T:ACG products}, $FG\in ACG_r( [ a,b] )$ and Theorem \ref{thm-int-by-parts} is proved. \end{proof} \begin{thebibliography}{0} \bibitem{Calderon Zygmund} Calderon, A. P.; Zygmund, A.; \emph{Local properties of solutions of elliptic partial differential equations}, Studia. Math. \textbf{20} (1961), pp. 171-225. \bibitem{LGordon} Gordon, L.; \emph{Perron's integral for derivatives in $L^r$}, Studia Math. \textbf{28} (1966/1967), pp. 295-316. \bibitem{R Gordon} Gordon, R. A.; \emph{The Integrals of Lebesgue, Denjoy, Perron, and Henstock}, Grad. Stud. Math. 4, Amer. Math. Soc., 1994. \bibitem{Musial Sagher} Musial, P.; Sagher, Y.; \emph{The $L^r$ Henstock-Kurzweil integral}, Stud. Math. \textbf{160} (1) (2004), pp. 53-81. \bibitem{Wheedan and Zygmund} Wheedan, R.; Zygmund, A.; \emph{Measure and Integral}, Marcel Dekker, Inc., New York, 1977. \end{thebibliography} \end{document}