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DYNAMICS OF THE p-LAPLACIAN EQUATIONS WITH
NONLINEAR DYNAMIC BOUNDARY CONDITIONS

XIYOU CHENG, LEI WEI

ABSTRACT. In this article, we study the long-time behavior of the p-Laplacian
equation with nonlinear dynamic boundary conditions for both autonomous
and non-autonomous cases. For the autonomous case, some asymptotic reg-
ularity of solutions is proved. For the non-autonomous case, we obtain the
existence and structure of a compact uniform attractor in L™ () x L"(T")
(r = min(ry,r2)).

1. INTRODUCTION

In this article, we consider the asymptotic behavior of solutions of the following
p-Laplacian equations with nonlinear dynamic boundary conditions:

u — Apu+ f(u) = h(z,t), inQ,

72 (1.1)
ug + |VulP"“0,u+ g(u) =0, onT,

where Q is a bounded domain in RY (N > 3) with a smooth boundary I', A, denotes
the p-Laplacian operator, which is defined as Apu = div(|Vu[P~2Vu), p > 2, and
about the external forcing h(z,t), we consider two cases: the autonomous case
h(z,t) = h(x) € L1 (), where 7| is conjugate to 71, and the non-autonomous case
h(x,t), which will be given later in Sections 3 and 4 respectively. The functions f
and g € C(R,R), satisfy the following conditions:

Cils|™ — k1 < f(s)s < Cols|"™ + ko, 71>, (1.2)
Csls|™ — ks < g(s)s < Cyls|™ + kg, 12 >2, (1.3)
fl(s) = =1, ¢'(s) >—m, (1.4)

here I,m >0, C;, k; > 0,1=1,2,3,4.

In the case p = 2, the problem is a general reaction-diffusion equation,
the dynamical behavior have been studied in [3] [4, [8, 22| 25| 26] 27, 31] for the
Dirichlet boundary conditions and [T0} 111 T4} [15] 28], 29] for the dynamic boundary
conditions.

The long-time behavior of the solutions of has been considered by many
researchers, e.g., see [3| 4 8, 27] and the references therein.
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For the autonomous systems; i.e., h(z,t) = h(x), in the Dirichlet boundary case,
the nonlinear eigenvalue problem for the p-Laplacian operator was considered in [18]
by using the Ljusternik-Schnirelman principle. In [3], Babin & Vishik established
the existence of a (L2(), (Wy P(Q) N L(£2)).,)-global attractor. In [27], a special
case of f = ku was discussed by Temam. In [5], Carvalho, Cholewa and Dlotko
considered the existence of global attractors for problems with monotone operators,
and as an application, they proved the existence of (L?(92), L?(£2))-global attractor
for p-Laplacian equation, see also Cholewa & Dlotko [8]. In [6], Carvalho & Gentile
obtained that the corresponding semigroup has a (L2(£2), W, *(£2))-global attractor
under some additional conditions. In [30], Yang, Sun and Zhong obtained the
existence of a (L2(Q), Wy ?(Q) N L™ (2))-global attractor, which holds only under
the assumptions and . Some asymptotic regularity of the solutions was
proved by Liu, Yang and Zhong in [20]. In the dynamic boundary case, recently,
Gal et al [16] [I7] presented firstly the general result for the problem , the
well-posedness and the asymptotic behavior of the solutions were studied.

Inspired by the ideas of [20, 26l 29], we obtain the asymptotic regularity of
the solutions of equation , where we only assume the external forcing h(z) €
L (Q), r] is conjugate to r1. As a direct application of the asymptotic regularity
results, we can obtain the existence of a global attractor in (W1P(Q) N L™ (£2)) x
(Wi=1/p»(I') 0 L™>(T')) immediately. Moreover, we also can show further that the
global attractor attracts every L?(Q) x L?(T')-bounded subset with (WP(Q) N
LH9(Q)) x (W=/P2(T) N L™2+Y(T))-norm for any 6, € [0, 00).

For the non-autonomous systems, in the Dirichlet boundary case, the existence of
the (L2(Q), W, P(Q) N L™ (Q))-uniform attractor was proved by Chen and Zhong in
[7]. However, for the nonlinear dynamic boundary conditions, the non-autonomous
p-Laplacian equation is less considered. In this article, we obtain the existence and
structure of a compactly uniform attractor in L™ () x L"(T") (r = min(rq,r2)),
which holds only under the assumptions 7, and no any restrictions on
p,r1,72 and N.

The main results of this article are Theorem (asymptotic regularity), Theo-
rem (global attractor) and Theorem (uniform attractor and its structure).

Hereafter, we assume that

2<p<N.

For the case p = 2, system is a reaction-diffusion equation and we refer
the reader to [I5, 28]; and if p > N, then embeddings W'P(Q) — L*1(Q) and
WP(Q) — L*2(T) hold for any s1,s2 € [1,00), which make the nonlinear terms
f(-) and g(-) to be trivial terms.

For convenience, hereafter | -|| and |- ||r stand for the norm in L?*(2) and L?(T),
{-,-) and {-,-)r stand for the inner product in L?(Q)) and L?(T), respectively. C,
C; denote general positive constants, ¢ = 1, ..., which will be different in different
estimates.

This article is organized as follows: in Section 2, we introduce some preliminary
results; in Section 3, for the autonomous cases, i.e., h(x,t) = h(z), we prove some as-
ymptotic regularity of the solution; in Section 4, for the non-autonomous cases, the
existence and structure of a uniform attractor in L™ (Q) x L"(T") (r = min(ry,72))
is obtained.
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2. PRELIMINARIES

In this section, we give some auxiliary results which will be used later. We first
introduce the spaces of time-dependent external forcing h(z,t) to be considered in
this article (see[]).

Definition 2.1 ([4]). A function ¢ is said to be translation bounded in L (R; X),
if

t+1
Il =sup [ el < +oc.
teR Jt
Denote by LZ(R; X) the set of all translation bounded functions in L (R; X).

We now introduce a class of functions that was defined first in [21].

Definition 2.2 ([21]). A function ¢ € L (R; X) is said to be normal if for any
€ > 0, there exists n > 0 such that

t+n 9
sup / ol ds < e.
teR J¢

Denote by L2 (R; X) the set of all normal functions in L?

loc

(R; X).
Lemma 2.3 ([21]). If ¢o € L2(R; X), then for any T € R,
im s | e (o) 3ds =0,
y=o0 4>y )y
uniformly (with respect to ¢ € H(pg)), where H(po) = {po(t+ h)|h € R} .
The next result is an estimate of the p-Laplacian operator; see [9] for the proof.

Lemma 2.4. Let p > 2. Then there exists constant K > 0 such that for any
a,be RN,
(laP~2a — [b]P~2b, a — b) > K|a — bJ?, (2.1)

where K depends only on p and N; (-,-) denotes the inner product of RV,

3. AUTONOMOUS CASES: h(z,t) = h(x)
In this section, we consider the autonomous case of ; that is,
ur — Apu+ f(u) = h(z), inQ,
ug + |VulP?0,u+g(u) =0, onT, (3.1)
u(z,0) = uo(x),

where h(x) € L™ (), 7} is conjugate to r1.

3.1. Mathematical setting. At first, following [17], it is more convenient to in-
troduce the unknown function v(t) := u(t)r, defined on the boundary I, so we
think of our problem as a coupled system of two parabolic equations, one in the
bulk € and the other on the boundary I'. Thus, the function u(t) tracks diffusion
in the bulk, while v(¢) records the information on the boundary. Throughout the
remainder of this section, we formulate the problem as following:
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Problem (P). Let Q C RY (N > 3) be a bounded domain with a smooth boundary
I':= 09 (e.g., of class C?). The nonlinearities f and g satisfy (1.2)-(1.4)). For any
given pair of initial data (ug,vo) € L?(Q2) x L*(T"), find (u(t),v(t)) with

(u,0) € C([0,+00); L*(2) x L*(I")) N L>®((0, 00); WHP(Q) x W'=1/PP(T)),
(u,v) € Wii2((0,00); L*() x L*(T)),
u € LP ([0, +00); WHP(Q)),

loc

v e LP ([0,+00); W!=1/PP(T))
(3.2)
such that (u(0),v(0)) = (ug,vp), and for almost all ¢ > 0, (u(t),v(t)) satisfies

u(t)r = v(t) a.e. for t € (0,00), and the following partial differential equations:
Opu — div(|VulP~2Vu) + f(u) = h(z), in Q x (0,+00),

Ly (3.3)
v+ |Vu|P"“0u+ g(v) =0, onT x (0,400).

Secondly, we give the following existence and uniqueness results, where we use
the definition of weak solution as in [I7, Definition 2.3]. For more details we refer
the reader to [17].

Theorem 3.1 ([I7]). Let Q be a bounded smooth domain in RN (N > 3), f and

g satisfy (L.2)-(L4), h(z) € L™ (Q). Then for any initial data (ug,ve) € L2(2) x
L*(T) and any T > 0, the problem (P) has a unique weak solution (u(t),v(t)) €
C([0,T]; L3(Q2) x L3(T)). In addition to the reqularity stated in (3.2)), we also have
that

u(t) € L™(0,T; L™ (Q)), wv(t) € L™(0,T;L™(T)).
Furthermore, (ug,vo) — (u(t),v(t)) is continuous on L*(Q) x L?(T).
By Theorem we can define the operator semigroup {S(¢)}>0 on the phase
space L?(Q) x L*(T) as follows:
S(t) : L*(Q) x LA(T) — L*(Q) x L*(T),  S(t)(uo, vo) = (u(t),v(t)),  (3.4)
which is continuous in L*(Q) x L(T).
Next, exactly as in [I7], we have the following dissipative results.

Lemma 3.2 ([I7]). Under the assumption of Theorem[2.3, {S(t)}i0 has a posi-
tively invariant (L?(2) x L2(T), WhP(Q)N L™ (Q) x W=VPP(T)N L7 (T'))-bounded
absorbing set; that is, there is a positive constant M, such that for any bounded
subset B C L?(Q2) x L*(T), there exists a positive constant T which depends only
on the L*(Q) x L*(I')-norm of B such that

/ |Vu(t)\pdx+/ Ju(t) dx—i—/ ()2 dS < M for allt > T and (up,vo) € B.
Q Q r
Lemma 3.3 ([I7]). Under the assumption of Theorem[2.5, for any bounded subset
B C L*(Q) x L3(T"), there exists a positive constant Ty which depends only on the
L2(Q2) x L?(T')-norm of B such that
/ lug (s)|? d —|—/ lv(8)|?dS < M’ for all s > Ty and (ug,vo) € B, (3.5)
Q r

where M’ is a positive constant which depends on M.
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Hereafter, from Lemma [3.2] we denote one of the positively invariant absorbing
set by By with
Bo C {(u(t),v(t)) : |lu®)llwre@nrm@) + [vEwi-1/pp@ar=@ < M},
note that here the positive invariance means S(t)By C By for any ¢ > 0.
3.2. Asymptotic regularity. In this subsection, we consider the asymptotic reg-
ularity of solutions of systems (3.1), which excel the regularity allowed by the

corresponding elliptic equation.
At first, we consider the elliptic equation

—div(|Ve|P~2Ve) + f(¢) = h(z) in Q,
IVo[P~20,6 4+ g(¢) =0 onT.

Due to the assumptions (1.2)—(1.4)), from the classical results about elliptic equa-
tions, we know that (3.6) at least has one solution ¢(z) with

o(z) € WHP(Q) N L™ (Q). (3.7)

For the rest of this article, we assume that ¢(x) denotes a fixed solution of (3.6)).
Then, for the solution (u(x,t),v(x,t)) of (3.1), we decompose (u(x,t),v(x,t)) as

follows
(u(x,t),v( ﬂt)) = (
with ug(x) = ¢(x) + w(x,0),v9(z) =
the equation
— div(|Vu[P~2Vu) + div(|[Ve[P2Ve) + f(u) — f(¢) =0 in Q,
W+ [VulP~20,u — [Vo[P20,¢ + g(v) — g(¢) =0, on T,
{E(Iat) = w(xat)\l—‘a (39)
w(z,0) = uo(z) — ¢(),
w(z,0) =vo(z) — ¢(x).
It is easy to see that this equation is also globally well posed. Moreover, thanks
to Lemma E without loss of generality, hereafter we assume (ug,v9) € By and so
(w(x,0), @(z,0)) € (WHP(Q) N L™ (Q)) x (W/PP(T) 0 L™2(D)).
At the same time, from the positive invariance of By and (3.7) we have that

(3.6)

() + w(z,1), ¢(z) + w(z,1)) (3.8)
¢(z) + w(zx,0), where (w(x,t),w(x,t)) solves

lw(@, )lwrr@nLr @ + 10z, Ollwr-1/me@ape @) < M (3.10)

for all ¢ > 0, with some positive constant Mj.
The main result of this section reads as follows.

Theorem 3.4. Let Q be a bounded smooth domain in RN (N > 3), f and g satisfy

(L2) (T4, r(x € L1 (), and suppose that {S(t)};>o is the semigroup generated
by the solutwns of equation with initial data (ug,ve) € L*(Q) x L*(T'). Then,
for any 4, € [0,00), there exists a bounded subset Bj, satisfying the following
properties:

Bsy = {(w,@) HNwllwrr@nzm+s @)
Fl@llwi-1mr@ynpraer ) S Aprira,Noy < OO},

and for any bounded subset B C L?(Q2) x L*(T"), there exists a
T =T(|BllL2(0), | BllL2(r), 6 7)
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such that
St)B C ¢(x)+ Bs, forallt > T, (3.11)
where ¢(x) is a fized solution of (3.6)), (w(x,t),w(x,t)) satisfies (3.9); the constant

Ap i ro N5~ depends only on p,ri,72, N, 0,7.

Proof. We use the Moser-Alikakos iteration technique [2] to prove the following
induction estimates about the solution of . For clarity, we separate our proof
into two steps.

Step 1: We first claim that

For each k = 0,1,2,..., there exist two positive constants Ty and My, which
depend only on k,p,r1,72, N and || Bo|lw1.r()nrr (@) xwi-1/pp(mynLr2(r), Such that
for any (ug,vo) € By and t > Ty, we have

/ ()| da + / @) dS < My, (Ay)
Q T

and

t+1 N-—p N—p
/ (/ [w(s)|7++ dm)ﬁds—i—/ /|w )7+t dS) ~=t Tds < (By)
t Q

where (w(t), w(t)) is the solution of equation (3.9), and

k

o :2(%)’%@72)[2(%:;)121], k=0,1,2,.... (3.12)
=0

(i) Initialization of the induction (k = 0). From (3.10]), we can deduce (A4p) imme-
diately. To prove (Bp), we multiply (3.9) by w and w, and integrate over 2, then
we obtain

33 [ ol des 55 [1aPas+ [ (vl 2u = [9ep-2v6, Vu) da
@ (3.13)
+ [ = f@)wde+ [ (o) - s(@)ads —o.
By , we have
[ = s@pwds >t [ i, (3.14)
Q Q
[ o)~ g@nads > -m [ jirzas. (3.15)
T I
Then applying Lemma we have
/<|Vu|p_2Vu — |Vo|P2V ¢, V) dx > K/ |Vwl|? da. (3.16)
Q Q
Inserting (3.14)—(3.16) into (3.13), we obtain
1d [ _,
2dt/| ia/rm\ dS—I—K/Q|Vw|pdx
z/ |w\2da;+m/ |w|* dS (3.17)
Q r

c(/ \w|2d:c+/ [w[*dS).
Q r
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Then, for any ¢ > 0, integrating the above inequality over [t, ¢+ 1] and using (3.10]),
we deduce that

t+1
/ / |Vw(z,s)|Pdrds < Cx o, forallt >0, (3.18)
¢ Q

By the Sobolev embeddings (e.g., see Adams and Fourier [I])

p(N—-1) p(N—-1)

WHP(Q) — L= (Q), WhP(Q) — L™v= (D),
from (3.18)), for all ¢ > 0, we have

t+1 p(N—1) N—p
/ (/ lw(z,s)| ¥=7 dz) ¥ 'ds
t Q

2 (3.19)
< C1/ / |Vw(z, s)|P deds < Ck av N,
t Q
t+1 ~ p(N-1) N-p
/ (/|w(x,s)| N=p dS) V¥ 'ds
¢ til (3.20)
< CQ/ / |Vw(x,s)\p dwds < CK,M,]\/Il,N7
t Q
where C1, Cy are constants of embeddings WP(Q) — L= (Q) and WP(Q) —

p(N—1)

L ~=» (T), note that here C7,Cy depend only on N. This implies (By) holds.

(ii) The induction argument. We now assume that (Ay) and (By) hold for k > 1,
and we need only to prove that (Axy1) and (Bgi1) hold. Multiplying (3.9) by

|w|7*+1 2w and |w|7*+1~2w, and integrating over 2, we obtain

1 d
S |wlor da +/ @7+ dS
0k+1dt(/ﬂ‘ | 1"| | )
+(oner = 1) [ (Va0 = V6P 2V6, Vulul 2 do (3.21)
Q

+/ (f(w) = f(9))|w|7+ *wda +/ (9(v) = g(¢)) ||+ 2w dS = 0.
Q I
Similar to 7, we have
/ (F(w) = F(6))w]7+ 2w da > —1 / w7+ da, (3.22)
Q Q

/(g(v) = g(@)|@|7 P dS > _m/ @[+ dS, (3.23)
T r

(Ok41—1) / (|Vu|P~2Vu — |Vo[P2V e, Vw)|w|7* 2 dz

N (3.24)

> K(ogs+1 — 1)/ |vw|p|w|ak+172 dz,
Q

so we have

1 d _
7(/ Jw|*+1 da +/ ||+ dS) + K(og41 — 1)/ |Vw|p\w|‘7’€+1—2 da
Ok+1 dt Q T 0

< z/ |+ dx+m/ @]+ dS < c(/ ||+ dx+/ @[+ dS).
Q r Q r

(3.25)
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Then, combining with (By) and application of the uniform Gronwall lemma to

(3.25)) we can get (Ag+1) immediately. For (Bjgy1), we integrate the above inequality
over [t,t + 1] and use (Agy1), we have

41
/ / |Vw|P|w|o*+1 72 dxds < Myy, forallt >0, (3.26)
t Q

where M1 depends on k,p,71,72, N, M, M;. By the embeddings W'?(Q) —
p(N

L= (€2) and WP (Q) — L= (T") again, we have

N—1 e

- N=

(/ |w|(ak+1—2+p)N_p dl’) '
Q

(3.27)
D p o —2
<Cp- (——— w|7 72|\ Vw|P de,
L) [ v
pr
(/ @] (25 g)
(3.28)
p -2
<Oy (—L P12 P d
> (0k+1*2+P) /|w| [Vl de,
and from the definition of oy, we have
N-1
(O'k+1 -2 -l—p)m = Ok42- (329)

Combining (3.26)—(3.29), we deduce (Bg+1) immediately.

Step 2: Based on Step 1, since N > 3, from the definition of oy given in (3.12]),
it is easy to see that o — o0 as k — oc.

Hence, for any 4,7 € [0,00), we can take k so large that 71 + 8 < op, re+v < 0%
Consequently, we can define B;s ., as

Biy 1= {(2.2) 1+ 8lrey + 12154
12+ Olsssmn ey + IEITE T oy < M+ M,
where z(t);r = Z(t), and recall that ¢(z) is a fixed solution of (3.6]). O

Hence, from Theorem [3.4] using the interpolation inequality, we can obtain im-
mediately the following results.

Theorem 3.5. Under the assumptions of Theorem [3.4) the semigroup {S(t)}i=0
has a (L?(Q) x L*(I'), W'P(Q) N L™ (Q) x WI=1/»P(I') N L"2(T"))-global attractor
/. Moreover, o attracts every L*(Q2) x L?(T)-bounded subset with (WP(£2) N
LHo(Q)) x (WP (T) O L™2HY(T))-norm for any 6,y € [0,00); and <7 allows
the decomposition o/ = ¢(x) + Ay with Ay is bounded in (WLP(Q) N L™1T(Q)) x
(Wi=L/pP(T)NLr2HY(D)) for any 6,7 € [0,00), and ¢(x) is a fized solution of (3.6).

Proof. From Theorem combining with the (L2(Q2) x L*(T), L?(Q) x L*(T"))-
asymptotic compactness (obtained in [I7]) and the interpolation inequality, it is
easily to verify that {S(¢)}:>0 is asymptotically compact in L™ (2) x L™(T"), then
it is sufficient to verify that {S(¢)}:>0 is asymptotically compact in W1P(§) x
Wi=1/pp(T).
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Let By be a (WhP(Q) N L™ (Q)) x (W'=/P»(T') N L™ (T))-bounded absorbing
set obtained in Lemma then we need only to show that

for any {(u0n> UOn)} - BO and t, — 00, {(un (tﬂ)v Un (tn))}%o:1 is precom-
pact in WhP(Q) x W'=1/p»(T),

where uy, (t,) = S(tn)uon, Un(tn) = S(tn)von.

In fact, we know that {(u, (t,), vn(tn))}52; is precompact in L?(Q2) x L*(T) and
in L™ () x L™(T).

Without loss of generality, we assume that {(un, (tn, ), Vn, (tn,)) o2 is a Cauchy
sequence in L?(Q) x L?(T) and L™ () x L™2(T).

Now, we prove that {(unkﬁ)7 Vny, (tny,)) 152, is a Cauchy sequence in WP (Q) x

(3.30)

W1=1/P»(T). From Lemma [2.4] and after standard transformations, we know that
there exists a constant K > 0, such that

K”v(u’ﬂk (tnk) — Un; (tnj )) HiP(Q)

<= Lt () = Fltmg (b)) + St (b)) + Fltn, (tn,))s timg (b)) — 1 ()

dt dt
d d
+ < - %vnk (t’ﬂk) - g(”“k (t’ﬂk)) + %Unj (tnj) + g<vnj (tnj))’vnk (tnk) - v’ﬂj (tnj>>F
d d
< —_ - — ) ) — ) )

15 () = F G, (i ) =, (0,
+/F\%Unk (tn,) — %vnj (tn,)][Vny (tni) = Vn, ()|

+ / 19V (b)) = 90, (b, ) [V (b ) — Uy (),

so we have
KHV(unk (tnk) — Unp; (tnj))‘lgp(g)

d d
S||%u”k (tn,) — 7 Un; (tn;)H l[wny, (tny,) — Un,; (tn])H

dt
d d
+ ||avnk (tnk) - %Unj (tnj)Hl" ”Unk (tnk) — Un; (tnj)”l“
+ C(l + [, (En ) @ T ([t (e, ) s (Q)) Hunk (tny) = Un, (tnj)HL"'l Q)

+ 5(1 + ||v’ﬂk (t’ﬂk)”?m (F) + ||vnj (t’ﬂj)H?Tz(F)) ank (tnk) - vnj (tnj>‘

Lra (D)

(3.31)
Combining Lemma Lemma [3.3] and the compactness of L™ (€2) x L"(T"), and
since WP (Q) < W1=1/P2(T"), we know that the norms on Wh?(Q) x W'=1/»»(T)

and W1P(Q) are equivalent, (3.31)) yields (3.30) immediately. O
4. NON-AUTONOMOUS CASE
In this section, we discuss the non-autonomous case of (1.1f); that is,
u — Apu+ f(u) = h(z,t), inQ,
uy + |VulP20,u+ g(u) =0, onT, (4.1)

u(z,7) = u,(z), in €,
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where h(z,t) € L} (R; L*(Q)).

4.1. Mathematical setting. Similar to the autonomous cases (e.g., Problem (p)
and Theorem , for each h € X, we can also easily obtain the following well-
posedness result and the time-dependent terms make no essential complications.
Theorem 4.1 ([17]). Let Q be a bounded smooth domain in RN (N > 3), f and
g satisfy [1.2)-(T4), h(z,t) € LE(R; L*(Q)). Then for any initial data (u.,v,) €
L*(Q) x L*(T"), and any 7,T € R, T > 7, the solution (u(t),v(t)) of problem
is globally defined and satisfies

u(t) € C([r,T); L*(Q)) N LY (7, T; WHP(Q)) N L™ (7, T L™ (),
u(t) € C([r, T); L*(T)) N LY (7, T; W =Y/PP(D)) 0 L™ (7, T; L™ (T)),
where v(t) := u(t)|r. Furthermore, (ur,v:) — (u(t),v(t)) is continuous on L*(Q) x
L2(T).

We now define the symbol space ¥ for (4.1). Taking a fixed symbol o¢(s) =

ho(s), ho(s) € L(R; L*(€2)). We denote by Ly, (R; L*(€2)) the space Li (R; L*(12))
endowed with local weak convergence topology. Set
Yo ={ho(s+h)| h € R}, (4.2)
and let
3 be the closure of $g in LY (R; L3 (). (4.3)
Systems (4.1)) can be rewritten in the operator form
Oy = Ao(t) ),  Yli=r = yr, (4.4)

where o(t) = h(t) is the symbol of equation ([£.4). Thus, from Theorem we
know that problem is well posed for all o(s) € ¥ and generates a family of
processes {U,(t,7)},0 € ¥ given by the formula U, (¢, 7)y, = y(t), and the y(t) is
the solution of (4.1)).

4.2. Existence of a bounded uniformly (w. r. t. o € X) absorbing set
n (WHP(Q) N L™ () x (W=1/»P(T) 0 L™2(T)). In this subsection, (WhP(£2) N
L™ (Q) x W=1/PP(T') 0 L2 (T'))-bounded uniformly (with respect to o € X) ab-
sorbing set is obtained. The proof is similar to [I7] (autonomous case).

Theorem 4.2. Let Q be a bounded smooth domain in RN (N > 3), f and g satisfy
(L2) (L4, h(x,t) € LE(R; L*(2)). Then the family of processes {U,(t,7)},0 €
corresponding to has a bounded uniformly (with respect to o € ¥.) absorbing
set By in (W'P(Q) N L™ (Q)) x (W=YP2(T) N L"=(T)), that is, there is a positive
constant M, such that for any T € R and any bounded subset B, there ezists a
positive constant T = T(B,T) > T such that

/\Vu |pdx+/|u |”dw—|—/\v ®)|™dS <M

forallt =T, (ur,v;) € B, 0 € 3.
Proof. Multiplying (4.1) by u and v, and integrating by parts, we obtain

d
24 2 p
th/‘ 2d dt/r|v| dS—i—/Q|Vu| d:v—i—/ﬂf(u)udx—i—/rg(v)vds

(4.5)
= / ho(t)u dx,
Q
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combining with assumptions (|1.2)—(1.4), Young’s inequality and Poincaré inequal-
ity, we obtain

i e+ g [ Pas ] i dn [

— w|* dx + — v[*dS +C u|* dx + v|*dS

i, gy [ePas (| W [pras
< Clay,s(r) + Cllhol|*.

Applying the suitable version of Gronwall’s inequality to (4.6]), we can find Ty > 0
and pg > 0, such that

lu)|* + [lv(®)lIF < o3, for any t > T. (4.7)

Let F(s) = [, f(r)dr, G(s) = [; g(7)dr, by assumptions (1.2)-(L3) again, from
(4.5)), we obtain

d d
—/ \u|2dx+—/|v|2ds+/ |Vu|pdz+C1/F(u)d:c+C2/G(v)dS
dt Jo dt Jr ) % r

< Ciay,s(r) + Cllhol*.

Integrating this inequality above from ¢ to ¢ + 1, and combining (4.7)), it follows
that for any ¢t > Tp,

t+1
/ (/ \Vu\pdx—i—cl/F(u)dm—i—Cg/G(v)dS)ds
t Q ) r
t+1
< Covsmn +C [ IholPds
t

< Cla,S(1), 0, l1hol12+

On the other hand, multiplying (L.1)) by u; and v;, we have
1d d
/ |ut|2dx+/ lvg|* dS + f—/ |Vul? dz + —(/ F(u) dx—i—/ G(v)dS)
Q r pdt Jo dt* Ja r

1 1
S §/§l‘h0‘2d(1}‘+§/9|ut|2dm,

so we obtain

(4.8)

(4.9)

d » 2
a(/Q|Vu| da:—&—p/QF(u)da:—&—p/FG(v)dS) < C|lhol|* (4.10)

Combining (4.8) and (4.10), by the uniformly Gronwall lemma, we have that for
anyt >Tp+1,0€3,

A|Vu|p dil?‘i’/QF(’u) diL"i’\/FG(’U) ds S C|Q‘,S(F)7PO>HhH§’ (411)
which implies that for any t > Ty + 1, 0 € X,
/ VP da +/ "™ da +/ o] dS < M, (4.12)
Q Q r
where M depends on [2], S(T), po, ||h]|3. O

As a direct result of Theorem @ we have the existence of a uniform attractor
in LQ(Q) X LQ(F):
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Corollary 4.3. Under the assumptions of Theorem the family of processes
{Us(t,7)},0 € 3 corresponding to has a uniform attractor As in L?(Q) x
L3(T') , which is compact in L*(2)x L?(T) and attracts every L?(Q) x L*(T")-bounded
subset with L?(2) x L?(T')-norm. Moreover,

As = WO,E(BO) = UJEEICJ(S)v VseR,

where Ky (s) is the section at t = s of the kernel K, of the process {Uy(t,T)} with
symbol o.

Proof. Theorem and the Sobolev compactness imbedding theorem imply the
existence of a uniform attractor Ay in L2(2) x L*(T') immediately. O

4.3. Existence of a uniform attractor in L™ (Q) x L"(T") (r = min(ry,r2)).
First, we give some a priori estimates for the solution of (4.1} to verify the uniformly
asymptotic compactness in L™ (2) x L™ (T"). The idea of the proof comes from [31].

Theorem 4.4. Assume that h(t) is normal in L (R; L*(2)), f and g satisfy (L.2))-
(1.3). Then for any e > 0, 7 € R and any bounded subset B C L*(Q) x L*(T),
there exist two positive constants T =T (B,e,7) and M = M(e), such that

|Ug (t, T)ur ™ —l—/ |Ug (t, 7)o" < ¢,

/Q(IUa(t,T)uleM) L(|Us (t,7) v |2 M)

forallt >T, (u;,v.) € B, 0 € 3.
Proof. We multiply (4.1) by (u— M):_l_1 and (v — M):_l_l, and integrate over (2,
then we have

1d 1d

|lu— M|™ de + —— |lv— M|™ dS

r1dt Q(u>M) r1dt Jrwsnn

—l—(rl—l)/ (u—M)”_2|Vu|pdx+/ fw)(u— M) dr
+[ g dyrtas
I'(v>M)

:/ ho(t)(u — M)" " da,
Q(u>M)

where (u — M)y denotes the positive part of (u — M); that is,

u—M, u>M,
0, u < M.

From conditions (1.2))—(1.3), we can take M large enough such that

Cslv[™! < g(v), inT(u(t) > M),
Calu™ ™ < fu), in Qu(t) > M).
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Let @ = Qu(t) > M), I'y = T'(v(t) > M), using Young’s inequality and the
inequalities above, we obtain
1d
i o,

+(r— 1)/ (u— M) 2|Vl dz
Q

1d
lu — M|™ dx + — — v — M|t dS
1 dt Ty

(4.14)
+ 04/ " (w— MY e Cs [ Jol (0 — MYt dS
1951

Iy
C 1
<2 Ju=MP"2de+ — | |ho(t)|? da,
Ql 2C4 Ql
so we have

1d 1d

—— lu — M|™ de + —— |lv— M|t dS
1 dt N T1 dt T,

+ (r — 1)/ (u — M) 72| Vu|P dz
Q

CyM™ =2
+ 4T / |u — M|™ dx + CgM’"2‘2/ |v — M|™ dS
Q1 Iy

1
< — [ |ho(t)]*dz.
< g [ o) da

By using the Gronwall lemma and together with the Lemma[2.3] we can choose M
large enough, such that

/ |lu — M|™ dm+/ |[v— M| dS <e. (4.15)
Q1 I
Noting that
1 )
— [ul™ dx < / |lu — M|™ dz, (4.16)
2" Jo(uz2m) Q(u>M)
1
P [vo|™ dS < / v — M|™ dS, (4.17)
2 Jrw>2n) (v>M)
combining (4.15)—(4.17), we obtain
/ ()" dz + / o(t)[™ dS < 27e. (4.18)
Q(u>2M) T'(v>2M)

7‘171

Repeating the same steps above, just taking (u + M)™ ! instead of (u — M),
(v+ M)" " instead of (v — M)’ ™", we deduce that

/ |u(®)|™ dx +/ [v(t)|™ dS < 2™e. (4.19)
Qu<—2M) T(v<—2M)
Combining (4.18)—(4.19), we obtain
/ lu(t)|™ dz +/ lo(t)|"™ dS < 2Me. (4.20)
Q(Ju(t)|=2M) L(Jv(t)|>2M)
([l

Now we state the existence and structure of a uniform attractor in L™ (Q)x L"(T")
(r = min(r1,72)).
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Theorem 4.5. Assume that h(t) is normal in L2 _(R;L?(Q)), f and g satisfy

loc

(1.2)—(1.4). Then the family of processes {U,(t,7)},0 € ¥ corresponding to (4.1))
has a compact uniform (with respect to o € 3) attractor o/ in L™ (Q) x L™(I)

(r = min(ry,72)) and o5, satisfies
ofs, = WOE(BO) = UUEZKU(S), Vs € R,

where K, (s) is the section at t = s of the kernel K, of the process {Uy(t,7)} with
symbol o.

Proof. From Corollary and Theorem it is easy to verify that {U,(¢,7)},0 €
Y has uniformly asymptotic compactness in L™ (Q2) x L™ (T"), which combining
with Theorem we can obtain the existence of a compactly uniform attractor
in L™(Q) x L™(T") (r = min(rq,72)). Then, similar to [24, 28], we can obtain the
structure of &%, see more details in [24] 28§]. O
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