\documentclass[reqno]{amsart} \usepackage{hyperref} \usepackage{amssymb,mathrsfs} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2015 (2015), No. 37, pp. 1--15.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2015 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2015/37\hfil Dynamics of the $p$-Laplacian equations] {Dynamics of the $p$-Laplacian equations with nonlinear dynamic boundary conditions} \author[X. Cheng, L. Wei \hfil EJDE-2015/37\hfilneg] {Xiyou Cheng, Lei Wei} \address{Xiyou Cheng \newline School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, China.\newline Key Laboratory of Applied Mathematics and Complex Systems, Gansu Province, China} \email{chengxy@lzu.edu.cn} \address{Lei Wei (corresponding author)\newline School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou 221116, China} \email{wlxznu@163.com} \thanks{Submitted May 6, 2014. Published February 10, 2015.} \subjclass[2000]{37L05, 35B40, 35B41} \keywords{$p$-Laplacian equation; boundary condition; asymptotic regularity; \hfill\break\indent attractor} \begin{abstract} In this article, we study the long-time behavior of the $p$-Laplacian equation with nonlinear dynamic boundary conditions for both autonomous and non-autonomous cases. For the autonomous case, some asymptotic regularity of solutions is proved. For the non-autonomous case, we obtain the existence and structure of a compact uniform attractor in $L^{r_1}(\Omega)\times L^{r}(\Gamma)$ ($r=\min(r_1,r_2)$). \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{definition}[theorem]{Definition} \newtheorem{corollary}[theorem]{Corollary} \allowdisplaybreaks \section{Introduction} In this article, we consider the asymptotic behavior of solutions of the following $p$-Laplacian equations with nonlinear dynamic boundary conditions: \begin{equation}\label{1.1.1} \begin{gathered} u_{t}-\Delta_p u+f(u)=h(x,t), \quad \text{in } \Omega, \\ u_{t}+|\nabla u|^{p-2}\partial_n u+g(u)=0, \quad \text{on } \Gamma, \end{gathered} \end{equation} where $\Omega$ is a bounded domain in $\mathbb{R}^N$ $(N\geqslant 3)$ with a smooth boundary $\Gamma$, $\Delta_p$ denotes the $p$-Laplacian operator, which is defined as $\Delta_pu=\operatorname{div}(|\nabla u|^{p-2} \nabla u)$, $p \geqslant 2$, and about the external forcing $h(x,t)$, we consider two cases: the autonomous case $h(x,t)=h(x)\in L^{r_1'}(\Omega)$, where $r_1'$ is conjugate to $r_1$, and the non-autonomous case $h(x,t)$, which will be given later in Sections 3 and 4 respectively. The functions $f$ and $g\in C^{1}(\mathbb{R},\mathbb{R})$, satisfy the following conditions: \begin{gather}\label{1.1.2} C_1|s|^{r_1}-k_1 \leq f(s)s\leq C_2|s|^{r_1}+k_2,\quad r_{1}\geq p,\\ \label{1.1.3} C_3|s|^{r_2}-k_3\leq g(s)s\leq C_4|s|^{r_2}+k_4,\quad r_{2}\geq2, \\ \label{1.1.4} f'(s)\geq -l, \quad g'(s)\geq -m, \end{gather} here $l,m>0$, $C_i,k_i>0$, $i=1,2,3,4$. In the case $p=2$, the problem \eqref{1.1.1} is a general reaction-diffusion equation, the dynamical behavior have been studied in \cite{Ba,CV,CD2,Mar,Robin,Sun,Tem,ZYS} for the Dirichlet boundary conditions and \cite{CS1,CS2,ES2,FZ,Y1,YY1} for the dynamic boundary conditions. The long-time behavior of the solutions of \eqref{1.1.1} has been considered by many researchers, e.g., see \cite{Ba,CV,CD2,Tem} and the references therein. For the autonomous systems; i.e., $h(x,t) = h(x)$, in the Dirichlet boundary case, the nonlinear eigenvalue problem for the $p$-Laplacian operator was considered in \cite{A. Le} by using the Ljusternik-Schnirelman principle. In \cite{Ba}, Babin \& Vishik established the existence of a $(L^2(\Omega),\, (W_0^{1,\,p}(\Omega)\cap L^q(\Omega))_w)$-global attractor. In \cite{Tem}, a special case of $f=ku$ was discussed by Temam. In \cite{CCD}, Carvalho, Cholewa and Dlotko considered the existence of global attractors for problems with monotone operators, and as an application, they proved the existence of $(L^2(\Omega),\,L^2(\Omega))$-global attractor for $p$-Laplacian equation, see also Cholewa \& Dlotko \cite{CD2}. In \cite{CG2}, Carvalho \& Gentile obtained that the corresponding semigroup has a $(L^2(\Omega),W_0^{1,\,p}(\Omega))$-global attractor under some additional conditions. In \cite{YSZ}, Yang, Sun and Zhong obtained the existence of a $(L^2(\Omega),W_0^{1,\,p}(\Omega)\cap L^{r_1}(\Omega))$-global attractor, which holds only under the assumptions \eqref{1.1.2} and \eqref{1.1.4}. Some asymptotic regularity of the solutions was proved by Liu, Yang and Zhong in \cite{LYZ}. In the dynamic boundary case, recently, Gal $et$ $al$ \cite{G2,G1} presented firstly the general result for the problem \eqref{1.1.1}, the well-posedness and the asymptotic behavior of the solutions were studied. Inspired by the ideas of \cite{LYZ,Sun,YY1}, we obtain the asymptotic regularity of the solutions of equation \eqref{1.1.1}, where we only assume the external forcing $h(x)\in L^{r_1'}(\Omega)$, $r_1'$ is conjugate to $r_1$. As a direct application of the asymptotic regularity results, we can obtain the existence of a global attractor in $(W^{1,p}(\Omega)\cap L^{r_1}(\Omega))\times (W^{1-1/p,p}(\Gamma)\cap L^{r_2}(\Gamma))$ immediately. Moreover, we also can show further that the global attractor attracts every $L^2(\Omega)\times L^2(\Gamma)$-bounded subset with $(W^{1,p}(\Omega)\cap L^{r_1+\delta}(\Omega))\times (W^{1-1/p,p}(\Gamma)\cap L^{r_2+\gamma}(\Gamma))$-norm for any $\delta,\gamma\in [0,\infty)$. For the non-autonomous systems, in the Dirichlet boundary case, the existence of the $(L^2(\Omega),W_0^{1,p}(\Omega)\cap L^{r_1}(\Omega))$-uniform attractor was proved by Chen and Zhong in \cite{CZ}. However, for the nonlinear dynamic boundary conditions, the non-autonomous $p$-Laplacian equation is less considered. In this article, we obtain the existence and structure of a compactly uniform attractor in $L^{r_1}(\Omega)\times L^{r}(\Gamma)$ ($r=\min(r_1,r_2)$), which holds only under the assumptions \eqref{1.1.2}--\eqref{1.1.4}, and no any restrictions on $p,r_{1},r_{2}$ and $N$. The main results of this article are Theorem \ref{t1.1} (asymptotic regularity), Theorem \ref{c1.3} (global attractor) and Theorem \ref{t3.9} (uniform attractor and its structure). Hereafter, we assume that \[ 2
0$, there exists $\eta>0$ such that $$ \sup_{t\in\mathbb{ R}}\int_t^{t+\eta}\|\varphi\|_X^2ds\leq\varepsilon. $$ Denote by $L_{n}^2(\mathbb{R};X)$ the set of all normal functions in $L_{\rm loc}^2(\mathbb{R};X)$. \end{definition} \begin{lemma}[\cite{LWZ}] \label{l3.0} If $\varphi_0\in L_{n}^2(\mathbb{R};X)$, then for any $\tau\in \mathbb{R}$, $$ \lim_{\gamma\to\infty}\sup_{t\geq\tau} \int_{\tau}^te^{-\gamma(t-s)}\|\varphi(s)\|_X^2ds=0, $$ uniformly (with respect to $\varphi\in H(\varphi_0)$), where $H(\varphi_0)= \{\varphi_0(t+h)\,|\,h\in\mathbb{R}\}$ . \end{lemma} The next result is an estimate of the $p$-Laplacian operator; see \cite{Di} for the proof. \begin{lemma}\label{l2.1} Let $p\geqslant 2$. Then there exists constant $K >0$ such that for any $a,b\in \mathbb{R}^N$, \begin{equation}\label{0.1} \langle |a|^{p-2}a-|b|^{p-2}b,\,a-b \rangle \geqslant K |a-b|^p, \end{equation} where $K$ depends only on $p$ and $N$; $\langle \cdot,\cdot\rangle$ denotes the inner product of $\mathbb{R}^N$. \end{lemma} \section{Autonomous cases: $h(x,t) = h(x)$} In this section, we consider the autonomous case of \eqref{1.1.1}; that is, \begin{equation}\label{1.3.1} \begin{gathered} u_{t}-\Delta_p u+f(u)=h(x), \quad \text{in } \Omega, \\ u_{t}+|\nabla u|^{p-2}\partial_n u+g(u)=0, \quad \text{on } \Gamma, \\ u(x,0)=u_0(x), \end{gathered} \end{equation} where $h(x)\in L^{r_1'}(\Omega)$, $r_1'$ is conjugate to $r_1$. \subsection{Mathematical setting} At first, following \cite{G1}, it is more convenient to introduce the unknown function $v(t):=u(t)_{\mid \Gamma}$, defined on the boundary $\Gamma$, so we think of our problem as a coupled system of two parabolic equations, one in the bulk $\Omega$ and the other on the boundary $\Gamma$. Thus, the function $u ( t) $ tracks diffusion in the bulk, while $v ( t) $ records the information on the boundary. Throughout the remainder of this section, we formulate the problem as following: \noindent \textbf{Problem (P).} Let $\Omega \subset \mathbb{R}^{N}$ $(N\geq 3)$ be a bounded domain with a smooth boundary $ \Gamma :=\partial \Omega $ (e.g., of class $C^2$). The nonlinearities $f$ and $g$ satisfy \eqref{1.1.2}--\eqref{1.1.4}. For any given pair of initial data $(u_0,v _0)\in L^2( \Omega ) \times L^2( \Gamma ) $, find $(u ( t) ,v ( t) )$ with \begin{equation}\label{1.1.2'} \begin{gathered} ( u ,v ) \in C( [ 0,+\infty ) ; L^2(\Omega)\times L^2(\Gamma)) \cap L^{\infty } ( ( 0,+\infty ) ;W^{1,p}(\Omega)\times W^{1-1/p,p}(\Gamma)) , \\ ( u ,v ) \in W_{\rm loc}^{1,2}((0,\infty );L^2(\Omega)\times L^2(\Gamma)), \\ u \in L_{\rm loc}^{p}( [ 0,+\infty ) ;W^{1,p}(\Omega ) ) , \\ v \in L_{\rm loc}^{p}( [ 0,+\infty ) ;W^{1-1/p,p}( \Gamma ) ) \end{gathered} \end{equation} such that $(u (0),v (0))=(u _0,v _0)$, and for almost all $t\geq 0$, $( u ( t) ,v ( t) ) $ satisfies $u ( t) _{\mid \Gamma }=v ( t) $ a.e. for $t\in ( 0,\infty ) $, and the following partial differential equations: \begin{equation} \label{2.3} \begin{gathered} \partial _{t}u -\operatorname{div} (|\nabla u|^{p-2}\nabla u) +f( u ) =h(x),\quad \text{in }\Omega \times (0,+\infty ), \\ \partial _{t}v +|\nabla u|^{p-2}\partial_n u +g( v ) =0, \quad \text{on }\Gamma \times (0,+\infty ). \end{gathered} \end{equation} Secondly, we give the following existence and uniqueness results, where we use the definition of weak solution as in \cite[Definition 2.3]{G1}. For more details we refer the reader to \cite{G1}. \begin{theorem}[\cite{G1}] \label{t3.0} Let $\Omega$ be a bounded smooth domain in $\mathbb{R}^N (N\geqslant 3)$, $f$ and $g$ satisfy \eqref{1.1.2}--\eqref{1.1.4}, $h(x)\in L^{r_1'}(\Omega)$. Then for any initial data $(u_0,v_0)\in L^2(\Omega)\times L^2(\Gamma)$ and any $T>0$, the problem {\rm (P)} has a unique weak solution $(u(t),v(t))\in \mathcal{C}([0,T]; L^2(\Omega)\times L^2(\Gamma))$. In addition to the regularity stated in \eqref{1.1.2'}, we also have that $$ u(t)\in L^{r_1}(0,T;L^{r_1}(\Omega)), \quad v(t)\in L^{r_2}(0,T;L^{r_2}(\Gamma)). $$ Furthermore, $(u_0,v_0)$ $\mapsto$ $(u(t),v(t))$ is continuous on $L^2(\Omega)\times L^2(\Gamma)$. \end{theorem} By Theorem \ref{l3.0}, we can define the operator semigroup $\{S(t)\}_{t \geqslant 0}$ on the phase space $L^2(\Omega)\times L^2(\Gamma)$ as follows: \begin{equation} \label{3.1} S(t):L^2(\Omega)\times L^2(\Gamma) \to L^2(\Omega)\times L^2(\Gamma), \quad S(t)(u_0,v_0)= (u(t),v(t)), \end{equation} which is continuous in $L^2(\Omega)\times L^2(\Gamma)$. Next, exactly as in \cite{G1}, we have the following dissipative results. \begin{lemma}[\cite{G1}] \label{l3.2} Under the assumption of Theorem \ref{l3.0}, $\{S(t)\}_{t\geqslant 0}$ has a positively invariant $(L^2(\Omega)\times L^2(\Gamma),W^{1,p}(\Omega)\cap L^{r_1}(\Omega)\times W^{1-1/p,p}(\Gamma)\cap L^{r_2}(\Gamma))$-bounded absorbing set; that is, there is a positive constant $M$, such that for any bounded subset $B\subset L^2(\Omega)\times L^2(\Gamma)$, there exists a positive constant $T$ which depends only on the $L^2(\Omega)\times L^2(\Gamma)$-norm of $B$ such that \[ \int_{\Omega}|\nabla u(t)|^p\,dx +\int_{\Omega}|u(t)|^{r_1}\,dx+\int_{\Gamma}|v(t)|^{r_2}\,dS \leqslant M \quad \text{for all $t \geqslant T$ and $(u_0,v_0)\in B$}. \] \end{lemma} \begin{lemma}[\cite{G1}] \label{l4.1} Under the assumption of Theorem \ref{l3.0}, for any bounded subset $B\subset L^2(\Omega)\times L^2(\Gamma)$, there exists a positive constant $T_1$ which depends only on the $L^2(\Omega)\times L^2(\Gamma)$-norm of $B$ such that \begin{equation} \label{2.00} \int_\Omega |u_t(s)|^2\,dx+\int_\Gamma |v_t(s)|^2\,dS\leqslant M'\quad \text{for all $s \geqslant T_1$ and $(u_0,v_0)\in B$}, \end{equation} where $M'$ is a positive constant which depends on $M$. \end{lemma} Hereafter, from Lemma \ref{l3.2}, we denote one of the positively invariant absorbing set by $B_0$ with \[ B_0\subset\{(u(t),v(t)):\|u(t)\|_{W^{1,p}(\Omega)\cap L^{r_1}(\Omega)}+ \|v(t)\|_{W^{1-1/p,p}(\Gamma)\cap L^{r_2}(\Gamma)} \leqslant M\}, \] note that here the positive invariance means $S(t)B_0\subset B_0$ for any $t\geqslant 0$. \subsection{Asymptotic regularity} In this subsection, we consider the asymptotic regularity of solutions of systems \eqref{1.3.1}, which excel the regularity allowed by the corresponding elliptic equation. At first, we consider the elliptic equation \begin{equation}\label{3.5} \begin{gathered} -\operatorname{div} (|\nabla \phi|^{p-2}\nabla \phi)+f(\phi)=h(x) \quad \text{in }\Omega,\\ |\nabla \phi|^{p-2}\partial_n \phi+g(\phi)=0 \quad \text{on } \Gamma. \end{gathered} \end{equation} Due to the assumptions \eqref{1.1.2}--\eqref{1.1.4}, from the classical results about elliptic equations, we know that \eqref{3.5} at least has one solution $\phi(x)$ with \begin{equation}\label{3.6} \phi(x)\in W^{1,p}(\Omega)\cap L^{r_1}(\Omega). \end{equation} For the rest of this article, we assume that $\phi(x)$ denotes a fixed solution of \eqref{3.5}. Then, for the solution $(u(x,t),v(x,t))$ of \eqref{1.3.1}, we decompose $(u(x,t),v(x,t))$ as follows \begin{equation} (u(x,t),v(x,t))=(\phi(x)+w(x,t),\phi(x)+\widetilde{w}(x,t)) \end{equation} with $u_0(x)=\phi(x)+w(x,0),v_0(x)=\phi(x)+\widetilde{w}(x,0)$, where $(w(x,t),\widetilde{w}(x,t))$ solves the equation \begin{equation}\label{3.7} \begin{gathered} w_{t}-\operatorname{div} (|\nabla u|^{p-2}\nabla u)+ \operatorname{div} (|\nabla \phi|^{p-2}\nabla \phi)+f(u)-f(\phi)=0 \quad \text{in } \Omega,\\ \widetilde{w}_{t}+|\nabla u|^{p-2}\partial_n u -|\nabla \phi|^{p-2}\partial_n \phi+g(v)-g(\phi)=0, \quad \text{on }\ \Gamma, \\ \widetilde{w}(x,t):=w(x,t)_{\mid \Gamma},\\ w(x,0)=u_0(x)-\phi(x),\\ \widetilde{w}(x,0)=v_0(x)-\phi(x). \end{gathered} \end{equation} It is easy to see that this equation is also globally well posed. Moreover, thanks to Lemma \ref{l3.2}, without loss of generality, hereafter we assume $(u_0,v_0)\in B_0$ and so $(w(x,0),\widetilde{w}(x,0))\in (W^{1,p}(\Omega)\cap L^{r_1}(\Omega))\times (W^{1-1/p,p}(\Gamma)\cap L^{r_2}(\Gamma))$. At the same time, from the positive invariance of $B_0$ and \eqref{3.6} we have that \begin{equation}\label{a3.8} \|w(x,t)\|_{W^{1,p}(\Omega)\cap L^{r_1}(\Omega)} + \|\widetilde{w}(x,t)\|_{W^{1-1/p,p}(\Gamma)\cap L^{r_2}(\Gamma)} \leqslant M_1 \end{equation} for all $t\geqslant 0$, with some positive constant $M_1$. The main result of this section reads as follows. \begin{theorem}\label{t1.1} Let $\Omega$ be a bounded smooth domain in $\mathbb{R}^N$ $(N\geqslant3)$, $f$ and $g$ satisfy \eqref{1.1.2}--\eqref{1.1.4}, $h(x)\in L^{r_1'}(\Omega)$, and suppose that $\{S(t)\}_{t\geq 0}$ is the semigroup generated by the solutions of equation \eqref{1.3.1} with initial data $(u_0,v_0)\in L^2(\Omega)\times L^2(\Gamma)$. Then, for any $\delta,\gamma\in[0,\infty)$, there exists a bounded subset $B_{\delta,\gamma}$ satisfying the following properties: \begin{align*} B_{\delta,\gamma}=\Big\{&(w,\widetilde{w}):\|w\|_{W^{1,p}(\Omega)\cap L^{r_1+\delta}(\Omega)} \\ &+ \|\widetilde{w}\|_{W^{1-1/p,p}(\Gamma)\cap L^{r_2+\gamma}(\Gamma)} \leqslant \Lambda_{p,r_1,r_2,N,\delta,\gamma}<\infty\Big\}, \end{align*} and for any bounded subset $B\subset L^2(\Omega)\times L^2(\Gamma)$, there exists a \[ T=T(\|B\|_{L^2(\Omega)},\|B\|_{L^2(\Gamma)},\delta,\gamma) \] such that \begin{equation}\label{1.8} S(t)B\subset \phi(x)+B_{\delta,\gamma}\quad \text{for all } t\geqslant T, \end{equation} where $\phi(x)$ is a fixed solution of \eqref{3.5}, $(w(x,t),\widetilde{w}(x,t))$ satisfies \eqref{3.7}; the constant $\Lambda_{p,r_1,r_2,N,\delta,\gamma}$ depends only on $p,r_1,r_2,N, \delta,\gamma$. \end{theorem} \begin{proof} We use the Moser-Alikakos iteration technique \cite{Al} to prove the following induction estimates about the solution of \eqref{3.7}. For clarity, we separate our proof into two steps. \smallskip \emph{Step 1}: We first claim that \emph{For each $k=0,1,2,\dots$, there exist two positive constants $T_k$ and $M_k$, which depend only on $k,p,r_1,r_2,N$ and $\|B_0\|_{W^{1,p}(\Omega)\cap L^{r_1}(\Omega)\times W^{1-1/p,p}(\Gamma)\cap L^{r_2}(\Gamma)}$, such that for any $(u_0,v_0)\in B_0$ and $t \geqslant T_k$, we have \begin{equation*}\tag{$A_k$}\label{1} \int_{\Omega}|w(t)|^{\sigma_k}\,dx +\int_{\Gamma}|\widetilde{w}(t)|^{\sigma_k}\,dS\leqslant M_k, \end{equation*}and \begin{align*}\tag{$B_k$}\label{2} \int_t^{t+1}\big(\int_{\Omega}|w(s)|^{\sigma_{k+1}}\,dx\big)^{\frac{N-p}{N-1}}ds +\int_t^{t+1}\big(\int_{\Gamma}|\widetilde{w}(s)|^{\sigma_{k+1}}\,dS\big)^{\frac{N-p}{N-1}}ds\leqslant M_k. \end{align*} where $(w(t),\widetilde{w}(t))$ is the solution of equation \eqref{3.7}, and \begin{equation}\label{a'} \sigma_k={2(\frac{N-1}{N-p})^k+(p-2)\big[\sum_{i=0}^{k}(\frac{N-1}{N-p})^i-1\big]},\quad k=0,1,2,\dots. \end{equation}} \noindent (i) Initialization of the induction ($k=0$). From \eqref{a3.8}, we can deduce $(A_0)$ immediately. To prove $(B_0)$, we multiply \eqref{3.7} by $w$ and $\widetilde{w}$, and integrate over $\Omega$, then we obtain \begin{equation} \label{3.01} \begin{aligned} &\frac{1}{2}\frac{d}{dt}\int_{\Omega} |w|^2\,dx+\frac{1}{2}\frac{d}{dt}\int_{\Gamma} |\widetilde{w}|^2\,dS+\int_{\Omega} \langle |\nabla u|^{p-2}\nabla u- |\nabla \phi|^{p-2}\nabla \phi, \nabla w \rangle \,dx \\ &+ \int_{\Omega} (f(u)-f(\phi))w \,dx +\int_{\Gamma} (g(v)-g(\phi))\widetilde{w} \,dS=0. \end{aligned} \end{equation} By \eqref{1.1.4}, we have \begin{gather}\label{3.02} \int_{\Omega}(f(u)-f(\phi)) w\,dx \geqslant -l\int_{\Omega}|w|^2\,dx,\\ \label{3.03} \int_{\Gamma}(g(v)-g(\phi)) \widetilde{w}\,dS \geqslant -m\int_{\Gamma}|\widetilde{w}|^2\,dS. \end{gather} Then applying Lemma \ref{l2.1}, we have \begin{equation} \label{3.9} \int_{\Omega} \langle |\nabla u|^{p-2}\nabla u- |\nabla \phi|^{p-2}\nabla \phi, \nabla w \rangle \,dx \geqslant K \int_{\Omega} |\nabla w|^{p} \,dx. \end{equation} Inserting \eqref{3.02}--\eqref{3.9} into \eqref{3.01}, we obtain \begin{equation} \label{3.04} \begin{aligned} &\frac{1}{2}\frac{d}{dt}\int_{\Omega} |w|^2\,dx+\frac{1}{2}\frac{d}{dt}\int_{\Gamma} |\widetilde{w}|^2\,dS + K \int_{\Omega} |\nabla w|^{p} \,dx\\ &\leqslant l \int_{\Omega}|w|^2\,dx+ m \int_{\Gamma}|\widetilde{w}|^2\,dS\\&\leqslant C\big(\int_{\Omega} |w|^2\,dx+\int_{\Gamma} |\widetilde{w}|^2\,dS\big). \end{aligned} \end{equation} Then, for any $t\geqslant 0$, integrating the above inequality over $[t,t+1]$ and using \eqref{a3.8}, we deduce that \begin{equation}\label{3.05} \int_t^{t+1}\int_{\Omega}|\nabla w(x,s)|^{p} \,dx\,ds\leqslant C_{K,M,M_1} \quad \text{for all } t\geqslant 0. \end{equation} By the Sobolev embeddings (e.g., see Adams and Fourier \cite{Adams}) \[ W^{1,p}(\Omega) \hookrightarrow L^{\frac{p(N-1)}{N-p}}(\Omega),\quad W^{1,p}(\Omega) \hookrightarrow L^{\frac{p(N-1)}{N-p}}(\Gamma), \] from \eqref{3.05}, for all $t\geqslant 0$, we have \begin{gather}\label{3.06} \begin{aligned} &\int_t^{t+1}\big(\int_{\Omega} | w(x,s)|^{\frac{p(N-1)}{N-p}}\,dx\big)^{\frac{N-p}{N-1}}ds \\ &\leqslant C_1\int_t^{t+1}\int_{\Omega} |\nabla w(x,s)|^{p} \,dx\,ds \leqslant C_{K,M,M_1,N}, \end{aligned} \\ \label{3.07} \begin{aligned} &\int_t^{t+1}\big(\int_{\Gamma} | \widetilde{w}(x,s)|^{\frac{p(N-1)}{N-p}}\,dS\big)^{\frac{N-p}{N-1}}ds\\ &\leqslant C_2\int_t^{t+1}\int_{\Omega} |\nabla w(x,s)|^{p} \,dx\,ds \leqslant C_{K,M,M_1,N}, \end{aligned} \end{gather} where $C_1,C_2$ are constants of embeddings $W^{1,p}(\Omega) \hookrightarrow L^{\frac{p(N-1)}{N-p}}(\Omega)$ and $W^{1,p}(\Omega) \hookrightarrow L^{\frac{p(N-1)}{N-p}}(\Gamma)$, note that here $C_1,C_2$ depend only on $N$. This implies ($B_0$) holds. \smallskip \noindent (ii) The induction argument. We now assume that $(A_k)$ and $(B_k)$ hold for $k\geqslant 1$, and we need only to prove that $(A_{k+1})$ and $(B_{k+1})$ hold. Multiplying \eqref{3.7} by $|w|^{\sigma_{k+1}-2} w$ and $|\widetilde{w}|^{\sigma_{k+1}-2} \widetilde{w}$, and integrating over $\Omega$, we obtain \begin{equation} \label{3.08} \begin{aligned} &\frac{1}{\sigma_{k+1}}\frac{d}{dt}\big(\int_{\Omega}|w|^{\sigma_{k+1}}\,dx+ \int_{\Gamma}|\widetilde{w}|^{\sigma_{k+1}}\,dS\big) \\ &+(\sigma_{k+1}-1)\int_{\Omega} \langle |\nabla u|^{p-2}\nabla u- |\nabla \phi|^{p-2}\nabla \phi, \nabla w \rangle|w|^{\sigma_{k+1}-2}\,dx \\ &+\int_{\Omega}\big(f(u)-f(\phi)\big)|w|^{\sigma_{k+1}-2} w\,dx+ \int_{\Gamma}\big(g(v)-g(\phi)\big)|\widetilde{w}|^{\sigma_{k+1}-2} \widetilde{w}\,dS =0. \end{aligned} \end{equation} Similar to \eqref{3.02}--\eqref{3.9}, we have \begin{gather}\label{3.09} \int_{\Omega}\big(f(u)-f(\phi)\big)|w|^{\sigma_{k+1}-2} w\,dx \geqslant -l \int_{\Omega}|w|^{\sigma_{k+1}}\,dx, \\ \label{3.010} \int_{\Gamma} (g(v)-g(\phi))|\widetilde{w}|^{\sigma_{k+1}-2}\widetilde{w} \,dS\geqslant -m\int_{\Gamma}|\widetilde{w}|^{\sigma_{k+1}}\,dS, \\ \label{3.15} \begin{aligned} &(\sigma_{k+1}-1)\int_{\Omega} \langle |\nabla u|^{p-2}\nabla u- |\nabla \phi|^{p-2}\nabla \phi, \nabla w \rangle|w|^{\sigma_{k+1}-2}\,dx \\ & \geqslant K (\sigma_{k+1}-1) \int_{\Omega} |\nabla w|^{p} |w|^{\sigma_{k+1}-2} \,dx, \end{aligned} \end{gather} so we have \begin{equation} \label{3.011} \begin{aligned} &\frac{1}{\sigma_{k+1}}\frac{d}{dt}\big(\int_{\Omega}|w|^{\sigma_{k+1}}\,dx +\int_{\Gamma}|\widetilde{w}|^{\sigma_{k+1}}\,dS\big)+K (\sigma_{k+1}-1) \int_{\Omega} |\nabla w|^{p} |w|^{\sigma_{k+1}-2} \,dx \\ &\leqslant l \int_{\Omega}|w|^{\sigma_{k+1}}\,dx+ m \int_{\Gamma}|\widetilde{w}|^{\sigma_{k+1}}\,dS\leqslant C\big(\int_{\Omega} |w|^{\sigma_{k+1}}\,dx+\int_{\Gamma} |\widetilde{w}|^{\sigma_{k+1}}\,dS\big). \end{aligned} \end{equation} Then, combining with $(B_k)$ and application of the uniform Gronwall lemma to \eqref{3.011} we can get ($A_{k+1}$) immediately. For $(B_{k+1})$, we integrate the above inequality over $[t,t+1]$ and use ($A_{k+1}$), we have \begin{equation}\label{3.012} \int_t^{t+1}\int_{\Omega}|\nabla w|^{p} |w|^{\sigma_{k+1}-2} \,dx\,ds\leqslant M_{k+1} \quad \text{for all }t\geqslant 0, \end{equation} where $M_{k+1}$ depends on $k,p,r_1,r_2,N,M,M_1$. By the embeddings $W^{1,p}(\Omega) \hookrightarrow L^{\frac{p(N-1)}{N-p}}(\Omega)$ and $W^{1,p}(\Omega) \hookrightarrow L^{\frac{p(N-1)}{N-p}}(\Gamma)$ again, we have \begin{gather}\label{3.013} \begin{aligned} &\Big( \int_{\Omega} |w|^{(\sigma_{k+1}-2+p)\frac{N-1}{N-p}}\,dx \Big)^{\frac{N-p}{N-1}} \\ &\leqslant C_1\cdot \big(\frac{p}{\sigma_{k+1}-2+p}\big)^p \int_{\Omega} |w|^{\sigma_{k+1}-2} |\nabla w|^{p} \,dx, \end{aligned} \\ \label{3.014} \begin{aligned} &\Big( \int_{\Gamma} |\widetilde{w}|^{(\sigma_{k+1}-2+p)\frac{N-1}{N-p}}\,dS \Big)^{\frac{N-p}{N-1}} \\ &\leqslant C_2\cdot \big(\frac{p}{\sigma_{k+1}-2+p}\big)^p \int_{\Omega} |w|^{\sigma_{k+1}-2} |\nabla w|^{p} \,dx, \end{aligned} \end{gather} and from the definition of $\sigma_k$, we have \begin{equation} \label{3.18} (\sigma_{k+1}-2+p)\frac{N-1}{N-p}=\sigma_{k+2}. \end{equation} Combining \eqref{3.012}--\eqref{3.18}, we deduce $(B_{k+1})$ immediately. \smallskip \emph{Step 2}: Based on Step 1, since $N\geqslant 3$, from the definition of $\sigma_k$ given in \eqref{a'}, it is easy to see that $\sigma_k\to \infty$ as $k\to \infty$. Hence, for any $\delta,\gamma\in [0,\infty)$, we can take $k$ so large that $r_1+\delta \leqslant \sigma_k$, $r_2+\gamma \leqslant \sigma_k$. Consequently, we can define $\mathcal{B}_{\delta,\gamma}$ as \begin{align*} \mathcal{B}_{\delta,\gamma} :=\Big\{&(z,\tilde{z}):\,\|z+\phi\|^p_{W^{1,p}(\Omega)} + \|z\|^{r_1+\delta}_{L^{r_1+\delta}(\Omega)}\\ &+\|\tilde{z}+\phi\|^p_{W^{1-1/p,p}(\Gamma)} +\|\tilde{z}\|^{r_2+\gamma}_{L^{r_2+\gamma}(\Gamma)} \leqslant M + M_k\Big\}, \end{align*} where $z(t) _{\mid\Gamma}=\tilde{z}(t)$, and recall that $\phi(x)$ is a fixed solution of \eqref{3.5}. \end{proof} Hence, from Theorem \ref{t1.1}, using the interpolation inequality, we can obtain immediately the following results. \begin{theorem}\label{c1.3} Under the assumptions of Theorem \ref{t1.1}, the semigroup $\{S(t)\}_{t\geqslant 0}$ has a $(L^2(\Omega)\times L^2(\Gamma), W^{1,p}(\Omega)\cap L^{r_1}(\Omega)\times W^{1-1/p,p}(\Gamma)\cap L^{r_2}(\Gamma))$-global attractor $\mathscr{A}$. Moreover, $\mathscr{A}$ attracts every $L^2(\Omega)\times L^2(\Gamma)$-bounded subset with $(W^{1,p}(\Omega)\cap L^{r_1+\delta}(\Omega))\times (W^{1-1/p,p}(\Gamma)\cap L^{r_2+\gamma}(\Gamma))$-norm for any $\delta,\gamma\in [0,\infty)$; and $\mathscr{A}$ allows the decomposition $\mathscr{A}=\phi(x)+\mathscr{A}_0$ with $\mathscr{A}_0$ is bounded in $(W^{1,p}(\Omega)\cap L^{r_1+\delta}(\Omega))\times (W^{1-1/p,p}(\Gamma)\cap L^{r_2+\gamma}(\Gamma))$ for any $\delta,\gamma\in [0,\infty)$, and $\phi(x)$ is a fixed solution of \eqref{3.5}. \end{theorem} \begin{proof} From Theorem \ref{t1.1}, combining with the $(L^2(\Omega)\times L^2(\Gamma),L^2(\Omega)\times L^2(\Gamma))$-asymptotic compactness (obtained in \cite{G1}) and the interpolation inequality, it is easily to verify that $\{S(t)\}_{t\geqslant 0}$ is asymptotically compact in $L^{r_1}(\Omega)\times L^{r_2}(\Gamma)$, then it is sufficient to verify that $\{S(t)\}_{t\geqslant 0}$ is asymptotically compact in $W^{1,p}(\Omega)\times W^{1-1/p,p}(\Gamma)$. Let $B_0$ be a $(W^{1,p}(\Omega)\cap L^{r_1}(\Omega))\times (W^{1-1/p,p}(\Gamma)\cap L^{r_2}(\Gamma))$-bounded absorbing set obtained in Lemma \ref{l3.2}, then we need only to show that \begin{equation} \label{4.1'} \parbox{11cm}{ for any $\{(u_{0n},v_{0n})\}\subset B_0$ and $t_n\to \infty$, $\{(u_{n}(t_n),v_{n}(t_n))\}_{n=1}^\infty$ is precompact in $W^{1,p}(\Omega)\times W^{1-1/p,p}(\Gamma)$, } \end{equation} where $u_{n}(t_n)=S(t_n)u_{0n},v_{n}(t_n)=S(t_n)v_{0n}$. In fact, we know that $\{(u_{n}(t_n),v_{n}(t_n))\}_{n=1}^\infty$ is precompact in $L^2(\Omega)\times L^2(\Gamma)$ and in $L^{r_1}(\Omega)\times L^{r_2}(\Gamma)$. Without loss of generality, we assume that $\{(u_{n_k}(t_{n_k}),v_{n_k}(t_{n_k}))\}_{n=1}^\infty$ is a Cauchy sequence in $L^2(\Omega)\times L^2(\Gamma)$ and $L^{r_1}(\Omega)\times L^{r_2}(\Gamma)$. Now, we prove that $\{(u_{n_k}(t_{n_k}),v_{n_k}(t_{n_k}))\}_{n=1}^\infty$ is a Cauchy sequence in $W^{1,p}(\Omega)\times W^{1-1/p,p}(\Gamma)$. From Lemma \ref{l2.1}, and after standard transformations, we know that there exists a constant $K>0$, such that \begin{align*} &K\|\nabla(u_{n_k}(t_{n_k})- u_{n_j}(t_{n_j}))\|_{L^p(\Omega)}^p \\ \leq &\big\langle-\frac{d}{dt}u_{n_k}(t_{n_k}) - f(u_{n_k}(t_{n_k})) + \frac{d}{dt}u_{n_j}(t_{n_j}) + f(u_{n_j}(t_{n_j})), u_{n_k}(t_{n_k})- u_{n_j}(t_{n_j}) \big\rangle \\ &+\big\langle-\frac{d}{dt}v_{n_k}(t_{n_k}) - g(v_{n_k}(t_{n_k})) + \frac{d}{dt}v_{n_j}(t_{n_j}) + g(v_{n_j}(t_{n_j})), v_{n_k}(t_{n_k})- v_{n_j}(t_{n_j}) \big\rangle_\Gamma \\ \leq &\int_\Omega\big|\frac{d}{dt}u_{n_k}(t_{n_k}) - \frac{d}{dt}u_{n_j}(t_{n_j})\big||u_{n_k}(t_{n_k})- u_{n_j}(t_{n_j})| \\ &+\int_\Omega|f(u_{n_k}(t_{n_k}))-f(u_{n_j}(t_{n_j}))| |u_{n_k}(t_{n_k})- u_{n_j}(t_{n_j})| \nonumber\\ &+\int_\Gamma\big|\frac{d}{dt}v_{n_k}(t_{n_k}) - \frac{d}{dt}v_{n_j}(t_{n_j})\big||v_{n_k}(t_{n_k})- v_{n_j}(t_{n_j})| \\ &+\int_\Gamma|g(v_{n_k}(t_{n_k}))-g(v_{n_j}(t_{n_j}))| |v_{n_k}(t_{n_k})- v_{n_j}(t_{n_j})|, \end{align*} so we have \begin{equation} \label{4.2} \begin{aligned} K&\|\nabla(u_{n_k}(t_{n_k})- u_{n_j}(t_{n_j}))\|_{L^p(\Omega)}^p \\ \leq &\big\|\frac{d}{dt}u_{n_k}(t_{n_k}) - \frac{d}{dt}u_{n_j}(t_{n_j})\big\|\text{ }\|u_{n_k}(t_{n_k})- u_{n_j}(t_{n_j})\|\\&+\big\|\frac{d}{dt}v_{n_k}(t_{n_k}) - \frac{d}{dt}v_{n_j}(t_{n_j})\big\|_\Gamma\text{ }\|v_{n_k}(t_{n_k})- v_{n_j}(t_{n_j})\|_\Gamma\\ &+C\big(1+\|u_{n_k}(t_{n_k})\|_{L^{r_1}(\Omega)}^{r_1} + \|u_{n_j}(t_{n_j})\|_{L^{r_1}(\Omega)}^{r_1}\big)\text{ }\big\|u_{n_k}(t_{n_k})- u_{n_j}(t_{n_j})\big\|_{L^{r_1}(\Omega)} \\ &+\widetilde{C}\big(1+\|v_{n_k}(t_{n_k})\|_{L^{r_2}(\Gamma)}^{r_2} + \|v_{n_j}(t_{n_j})\|_{L^{r_2}(\Gamma)}^{r_2}\big)\text{ }\big\|v_{n_k}(t_{n_k})- v_{n_j}(t_{n_j})\big\|_{L^{r_2}(\Gamma)}. \end{aligned} \end{equation} Combining Lemma \ref{l3.2}, Lemma \ref{l4.1} and the compactness of $L^{r_1}(\Omega)\times L^{r_2}(\Gamma)$, and since $W^{1,p}(\Omega)\hookrightarrow W^{1-1/p,p}(\Gamma)$, we know that the norms on $W^{1,p}(\Omega)\times W^{1-1/p,p}(\Gamma)$ and $W^{1,p}(\Omega)$ are equivalent, \eqref{4.2} yields \eqref{4.1'} immediately. \end{proof} \section{Non-autonomous case} In this section, we discuss the non-autonomous case of \eqref{1.1.1}; that is, \begin{equation}\label{4.4.1} \begin{gathered} u_{t}-\Delta_p u+f(u)=h(x,t), \quad \text{in } \Omega, \\ u_{t}+|\nabla u|^{p-2}\partial_n u+g(u)=0, \quad \text{on } \Gamma, \\ u(x,\tau)=u_{\tau}(x),\quad \text{in } \bar{\Omega}, \end{gathered} \end{equation} where $h(x,t)\in L_b^2(\mathbb{R}; L^2(\Omega))$. \subsection{Mathematical setting} Similar to the autonomous cases (e.g., Problem (p) and Theorem \ref{l3.0}), for each $h\in\Sigma$, we can also easily obtain the following well-posedness result and the time-dependent terms make no essential complications. \begin{theorem}[\cite{G1}] \label{l4.0} Let $\Omega$ be a bounded smooth domain in $\mathbb{R}^N$ $(N\geqslant 3)$, $f$ and $g$ satisfy \eqref{1.1.2}--\eqref{1.1.4}, $h(x,t)\in L_b^2(\mathbb{R}; L^2(\Omega))$. Then for any initial data $(u_{\tau},v_{\tau})\in L^2(\Omega)\times L^2(\Gamma)$, and any $\tau,T\in \mathbb{R}$, $T>\tau$, the solution $(u(t),v(t))$ of problem \eqref{4.4.1} is globally defined and satisfies \begin{gather*} u(t)\in \mathcal{C}([\tau,T];\,L^2(\Omega))\cap L_{\rm loc}^{p}( \tau,T; W^{1,p}(\Omega))\cap L^{r_1}(\tau,T;L^{r_1}(\Omega)),\\ v(t)\in \mathcal{C}([\tau,T];\,L^2(\Gamma)) \cap L_{\rm loc}^{p}(\tau,T; W^{1-1/p,p}(\Gamma))\cap L^{r_2}(\tau,T;L^{r_2}(\Gamma)), \end{gather*} where $v(t):=u(t)_{|\Gamma}$. Furthermore, $(u_{\tau},v_{\tau})\mapsto (u(t),v(t))$ is continuous on $L^2(\Omega)\times L^2(\Gamma)$. \end{theorem} We now define the symbol space $\Sigma$ for \eqref{4.4.1}. Taking a fixed symbol $\sigma_0(s)=h_0(s)$, $h_0(s) \in L_b^2(\mathbb{R}; L^2(\Omega))$. We denote by $L_{\rm loc}^{2, w}(\mathbb{R}; L^2(\Omega)) $ the space $L_{\rm loc}^2(\mathbb{R} ;L^2(\Omega)) $ endowed with local weak convergence topology. Set \begin{equation}\label{4.4.5} \Sigma_0=\{h_0(s+h)| \:h\in\mathbb{R}\}, \end{equation} and let \begin{equation}\label{4.4.6} \Sigma \text{ be the closure of $\Sigma_0$ in }L_{\rm loc}^{2, w}(\mathbb{R} ; L^2(\Omega)). \end{equation} Systems \eqref{4.4.1} can be rewritten in the operator form \begin{equation}\label{4.4.4} \partial_ty=A_{\sigma(t)}(y),\quad y|_{t=\tau}=y_{\tau}, \end{equation} where $\sigma(t)=h(t)$ is the symbol of equation \eqref{4.4.4}. Thus, from Theorem \ref{l4.0}, we know that problem \eqref{4.4.1} is well posed for all $\sigma(s)\in\Sigma$ and generates a family of processes $\{U_{\sigma}(t,\tau)\},\sigma\in\Sigma$ given by the formula $U_{\sigma}(t,\tau)y_{\tau}=y(t)$, and the $y(t)$ is the solution of \eqref{4.4.1}. \subsection{Existence of a bounded uniformly (w. r. t. $\sigma\in\Sigma$) absorbing set in $(W^{1,p}(\Omega)\cap L^{r_1}(\Omega))\times (W^{1-1/p,p}(\Gamma)\cap L^{r_2}(\Gamma))$} In this subsection, $(W^{1,p}(\Omega)\cap L^{r_1}(\Omega)\times W^{1-1/p,p}(\Gamma)\cap L^{r_2}(\Gamma))$-bounded uniformly (with respect to $\sigma\in\Sigma$) absorbing set is obtained. The proof is similar to \cite{G1} (autonomous case). \begin{theorem}\label{t3.5a} Let $\Omega$ be a bounded smooth domain in $\mathbb{R}^N$ $ (N\geqslant 3)$, $f$ and $g$ satisfy \eqref{1.1.2}--\eqref{1.1.4}, $h(x,t)\in L_b^2(\mathbb{R}; L^2(\Omega))$. Then the family of processes $\{U_{\sigma}(t,\tau)\},\sigma\in\Sigma$ corresponding to \eqref{4.4.1} has a bounded uniformly (with respect to $\sigma\in\Sigma$) absorbing set $B_0$ in $(W^{1,p}(\Omega)\cap L^{r_1}(\Omega))\times (W^{1-1/p,p}(\Gamma)\cap L^{r_2}(\Gamma))$, that is, there is a positive constant $M$, such that for any $\tau\in \mathbb{R}$ and any bounded subset $B$, there exists a positive constant $T=T(B,\tau)\geq\tau$ such that \[ \int_{\Omega}|\nabla u(t)|^p\,dx +\int_{\Omega}|u(t)|^{r_1}\,dx+\int_{\Gamma}|v(t)|^{r_2}\,dS \leqslant M \] for all $t \geqslant T$, $(u_{\tau},v_{\tau})\in B$, $\sigma\in\Sigma$. \end{theorem} \begin{proof} Multiplying \eqref{4.4.1} by $u$ and $v$, and integrating by parts, we obtain \begin{equation} \label{4.4.7} \begin{aligned} &\frac{1}{2}\frac{d}{dt}\int_\Omega |u|^2\,dx+\frac{1}{2}\frac{d}{dt}\int_{\Gamma} |v|^2\,dS + \int_{\Omega} |\nabla u|^{p} \,dx+\int_{\Omega}f(u)u\,dx+ \int_{\Gamma}g(v)v\,dS\\ &=\int_{\Omega}h_0(t)u\,dx, \end{aligned} \end{equation} combining with assumptions \eqref{1.1.2}--\eqref{1.1.4}, Young's inequality and Poincar\'{e} inequality, we obtain \begin{equation} \label{4.4.8} \begin{aligned} &\frac{d}{dt}\int_\Omega |u|^2\,dx+\frac{d}{dt}\int_{\Gamma} |v|^2\,dS+\mathcal{C}(\int_\Omega |u|^2\,dx+\int_{\Gamma} |v|^2\,dS)\\ &\leq \mathcal{C}_{|\Omega|,S(\Gamma)}+\mathcal{C}\|h_0\|^2. \end{aligned} \end{equation} Applying the suitable version of Gronwall's inequality to \eqref{4.4.8}, we can find $T_0>0$ and $\rho_0>0$, such that \begin{align}\label{4.4.9} \|u(t)\|^2+\|v(t)\|_{\Gamma}^2\leq \rho_0^2, \quad\text{for any }t\geq T_0. \end{align} Let $F(s)=\int_0^sf(\tau)d\tau$, $G(s)=\int_0^sg(\tau)d\tau$, by assumptions \eqref{1.1.2}--\eqref{1.1.3} again, from \eqref{4.4.7}, we obtain \begin{align*} &\frac{d}{dt}\int_\Omega |u|^2\,dx+\frac{d}{dt}\int_{\Gamma} |v|^2\,dS+\int_{\Omega} |\nabla u|^p\,dx+\mathcal{C}_1\int_{\Omega}F(u)\,dx+ \mathcal{C}_2\int_{\Gamma}G(v)\,dS\\&\leq \mathcal{C}_{|\Omega|,S(\Gamma)} +\mathcal{C}\|h_0\|^2. \end{align*} Integrating this inequality above from $t$ to $t+1$, and combining \eqref{4.4.9}, it follows that for any $t\geq T_0$, \begin{equation} \label{4.4.15} \begin{aligned} &\int_{t}^{t+1}(\int_{\Omega} |\nabla u|^p\,dx+\mathcal{C}_1\int_{\Omega}F(u)\,dx+ \mathcal{C}_2\int_{\Gamma}G(v)\,dS)ds\\ &\leq \mathcal{C}_{|\Omega|,S(\Gamma),\rho_0} +\mathcal{C}\int_{t}^{t+1}\|h_0\|^2ds\\ &\leq \mathcal{C}_{|\Omega|,S(\Gamma),\rho_0,\|h_0\|_b^2}. \end{aligned} \end{equation} On the other hand, multiplying \eqref{1.1.1} by $u_t$ and $v_t$, we have \begin{equation} \label{4.4.15'} \begin{aligned} &\int_\Omega|u_t|^2\,dx+\int_\Gamma|v_t|^2\,dS+\frac{1}{p}\frac{d}{dt}\int_\Omega |\nabla u|^p\,dx+\frac{d}{dt}\big(\int_{\Omega}F(u)\,dx+ \int_{\Gamma}G(v)\,dS\big)\\ &\leq\frac{1}{2}\int_\Omega|h_0|^2\,dx+\frac{1}{2}\int_\Omega|u_t|^2\,dx, \end{aligned} \end{equation} so we obtain \begin{equation} \label{4.4.16} \frac{d}{dt}(\int_\Omega |\nabla u|^p\,dx+p\int_{\Omega}F(u)\,dx+ p\int_{\Gamma}G(v)\,dS)\leq \mathcal{C}\|h_0\|^2. \end{equation} Combining \eqref{4.4.15} and \eqref{4.4.16}, by the uniformly Gronwall lemma, we have that for any $t\geq T_0+1$, $\sigma\in\Sigma$, \begin{equation} \label{4.4.17} \int_\Omega |\nabla u|^p\,dx+\int_{\Omega}F(u)\,dx+ \int_{\Gamma}G(v)\,dS \leq \mathcal{C}_{|\Omega|,S(\Gamma),\rho_0,\|h\|_b^2}, \end{equation} which implies that for any $t\geq T_0+1$, $\sigma\in\Sigma$, \begin{equation} \label{4.4.18} \int_\Omega |\nabla u|^p\,dx+\int_{\Omega}|u|^{r_1}\,dx+ \int_{\Gamma}|v|^{r_2}\,dS\leq M, \end{equation} where $M$ depends on $|\Omega|,S(\Gamma),\rho_0,\|h\|_b^2$. \end{proof} As a direct result of Theorem \ref{t3.5a}, we have the existence of a uniform attractor in $L^2(\Omega)\times L^2(\Gamma)$: \begin{corollary} \label{t3.3} Under the assumptions of Theorem \ref{t3.5a}, the family of processes $\{U_{\sigma}(t,\tau)\},\sigma\in\Sigma$ corresponding to \eqref{4.4.1} has a uniform attractor $\mathcal{A}_{\Sigma}$ in $L^2(\Omega)\times L^2(\Gamma)$ , which is compact in $L^2(\Omega)\times L^2(\Gamma)$ and attracts every $L^2(\Omega)\times L^2(\Gamma)$-bounded subset with $L^2(\Omega)\times L^2(\Gamma)$-norm. Moreover, \[ \mathcal{A}_{\Sigma}=\omega_{0,\Sigma}(B_0) =\cup_{\sigma\in \Sigma}\mathcal{K}_{\sigma}(s),\quad \forall\; s\in \mathbb{R}, \] where $\mathcal{K}_{\sigma}(s)$ is the section at $t=s$ of the kernel $\mathcal{K}_{\sigma}$ of the process $\{U_{\sigma}(t,\tau)\}$ with symbol $\sigma$. \end{corollary} \begin{proof} Theorem \ref{t3.5a} and the Sobolev compactness imbedding theorem imply the existence of a uniform attractor $\mathcal{A}_{\Sigma}$ in $L^2(\Omega)\times L^2(\Gamma)$ immediately. \end{proof} \subsection{Existence of a uniform attractor in $L^{r_1}(\Omega)\times L^{r}(\Gamma)$ ($r=\min(r_1,r_2)$)} First, we give some a priori estimates for the solution of \eqref{4.4.1} to verify the uniformly asymptotic compactness in $L^{r_1}(\Omega)\times L^{r_1}(\Gamma)$. The idea of the proof comes from \cite{ZYS}. \begin{theorem} \label{t3.4} Assume that $h(t)$ is normal in $L_{\rm loc}^2(\mathbb{R};L^2(\Omega))$, $f$ and $g$ satisfy \eqref{1.1.2}--\eqref{1.1.3}. Then for any $\varepsilon > 0$, $\tau\in\mathbb{R}$ and any bounded subset $B\subset L^2(\Omega)\times L^2(\Gamma)$, there exist two positive constants $T=T(B,\varepsilon,\tau)$ and $M=M(\varepsilon)$, such that \[ \int_{\Omega(|U_\sigma(t,\tau)u_\tau|\geq M)}{|U_\sigma(t,\tau)u_\tau|^{r_1}}+\int_{\Gamma(|U_\sigma(t,\tau)v_\tau|\geq M)}{|U_\sigma(t,\tau)v_\tau|^{r_1}}\leq \varepsilon, \] for all $t\geq T$, $(u_{\tau},v_{\tau})\in B$, $\sigma\in\Sigma$. \end{theorem} \begin{proof} We multiply \eqref{4.4.1} by $(u-M)^{r_1-1}_{+}$ and $(v-M)^{r_1-1}_{+}$, and integrate over $\Omega$, then we have \begin{equation} \label{4.4.27} \begin{aligned} &\frac{1}{r_1}\frac{d}{dt}\int_{\Omega(u\geq M)}|u-M|^{r_1}\,dx +\frac{1}{r_1}\frac{d}{dt} \int_{\Gamma(v\geq M)}|v-M|^{r_1}\,dS\\ &+(r_1-1)\int_{\Omega(u\geq M)}(u-M)^{r_1-2}|\nabla u|^p\,dx+\int_{\Omega(u\geq M)}f(u)(u-M)^{r_1-1}\,dx\\ &+\int_{\Gamma(v\geq M)}g(v)(v-M)^{r_1-1}\,dS\\ &=\int_{\Omega(u\geq M)}h_0(t)(u-M)^{r_1-1}\,dx, \end{aligned} \end{equation} where $(u-M)_{+}$ denotes the positive part of $(u-M)$; that is, \[ (u-M)_{+}= \begin{cases} u-M, & u\geq M, \\ 0, & u\leq M. \end{cases} \] From conditions \eqref{1.1.2}--\eqref{1.1.3}, we can take $M$ large enough such that \begin{gather*} \mathcal{C}_3|v|^{r_2-1}\leq g(v),\quad \text{in }\Gamma(v(t)\geq M),\\ \mathcal{C}_4|u|^{r_1-1}\leq f(u),\quad \text{in }\Omega(u(t)\geq M). \end{gather*} Let $\Omega_1=\Omega(u(t)\geq M)$, $\Gamma_1=\Gamma(v(t)\geq M)$, using Young's inequality and the inequalities above, we obtain \begin{equation} \label{4.4.32} \begin{aligned} &\frac{1}{r_1}\frac{d}{dt}\int_{\Omega_1}|u-M|^{r_1}\,dx +\frac{1}{r_1}\frac{d}{dt}\int_{\Gamma_1}|v-M|^{r_1}\,dS\\ &+(r_1-1)\int_{\Omega_1}(u-M)^{r_1-2}|\nabla u|^p\,dx\\ &+\mathcal{C}_4\int_{\Omega_1}|u|^{r_1-1}(u-M)^{r_1-1}\,dx +\mathcal{C}_3\int_{\Gamma_1}|v|^{r_2-1}(v-M)^{r_1-1}\,dS\\ &\leq \frac{\mathcal{C}_4}{2}\int_{\Omega_1}|u-M|^{2r_1-2}\,dx +\frac{1}{2\mathcal{C}_4}\int_{\Omega_1}|h_0(t)|^2\,dx, \end{aligned} \end{equation} so we have \begin{align*} &\frac{1}{r_1}\frac{d}{dt}\int_{\Omega_1}|u-M|^{r_1}\,dx +\frac{1}{r_1}\frac{d}{dt}\int_{\Gamma_1}|v-M|^{r_1}\,dS\\ &+(r_1-1)\int_{\Omega_1}(u-M)^{r_1-2}|\nabla u|^p\,dx\\ &+\frac{\mathcal{C}_4M^{r_1-2}}{2}\int_{\Omega_1}|u-M|^{r_1}\,dx +\mathcal{C}_3M^{r_2-2}\int_{\Gamma_1}|v-M|^{r_1}\,dS \\ &\leq\frac{1}{2\mathcal{C}_4}\int_{\Omega_1}|h_0(t)|^2\,dx. \end{align*} By using the Gronwall lemma and together with the Lemma \ref{l3.0}, we can choose $M$ large enough, such that \begin{align}\label{4.4.33} \int_{\Omega_1}|u-M|^{r_1}\,dx +\int_{\Gamma_1}|v-M|^{r_1}\,dS\leq\varepsilon. \end{align} Noting that \begin{gather}\label{4.4.34} \frac{1}{2^{r_1}}\int_{\Omega(u\geq 2M)}|u|^{r_1}\,dx\leq \int_{\Omega(u\geq M)}|u-M|^{r_1}\,dx,\\ \frac{1}{2^{r_1}}\int_{\Gamma(v\geq 2M)}|v|^{r_1}\,dS\leq \int_{\Gamma(v\geq M)}|v-M|^{r_1}\,dS,\label{4.4.34'} \end{gather} combining \eqref{4.4.33}--\eqref{4.4.34'}, we obtain \begin{equation} \label{4.4.35} \int_{\Omega(u\geq 2M)}|u(t)|^{r_1}\,dx+\int_{\Gamma(v\geq 2M)}|v(t)|^{r_1}\,dS\leq 2^{r_1}\varepsilon. \end{equation} Repeating the same steps above, just taking $(u+M)_{-}^{r_1-1}$ instead of $(u-M)_{+}^{r_1-1}$, $(v+M)_{-}^{r_1-1}$ instead of $(v-M)_{+}^{r_1-1}$, we deduce that \begin{equation} \label{4.4.36} \int_{\Omega(u\leq -2M)}|u(t)|^{r_1}\,dx +\int_{\Gamma(v\leq -2M)}|v(t)|^{r_1}\,dS\leq 2^{r_1}\varepsilon. \end{equation} Combining \eqref{4.4.35}--\eqref{4.4.36}, we obtain \begin{equation} \label{4.4.37} \int_{\Omega(|u(t)|\geq 2M)}|u(t)|^{r_1}\,dx+\int_{\Gamma(|v(t)|\geq 2M)}|v(t)|^{r_1}\,dS\leq 2^{r_1}\varepsilon. \end{equation} \end{proof} Now we state the existence and structure of a uniform attractor in $L^{r_1}(\Omega)\times L^{r}(\Gamma)$ ($r=\min(r_1,r_2)$). \begin{theorem} \label{t3.9} Assume that $h(t)$ is normal in $L_{\rm loc}^2(\mathbb{R};L^2(\Omega))$, $f$ and $g$ satisfy \eqref{1.1.2}--\eqref{1.1.4}. Then the family of processes $\{U_{\sigma}(t,\tau)\}, \sigma\in\Sigma$ corresponding to \eqref{4.4.1} has a compact uniform (with respect to $\sigma\in\Sigma$) attractor $\mathscr{A}_{\Sigma}$ in $L^{r_1}(\Omega)\times L^{r}(\Gamma)$ ($r=\min(r_1,r_2)$) and $\mathscr{A}_{\Sigma}$ satisfies \[ \mathscr{A}_{\Sigma}=\omega_{0,\Sigma}(B_0)=\cup_{\sigma\in \Sigma}\mathcal{K}_{\sigma}(s),\quad \forall s\in \mathbb{R}, \] where $\mathcal{K}_{\sigma}(s)$ is the section at $t=s$ of the kernel $\mathcal{K}_{\sigma}$ of the process $\{U_{\sigma}(t,\tau)\}$ with symbol $\sigma$. \end{theorem} \begin{proof} From Corollary \ref{t3.3} and Theorem \ref{t3.4}, it is easy to verify that $\{U_{\sigma}(t,\tau)\}, \sigma\in\Sigma$ has uniformly asymptotic compactness in $L^{r_1}(\Omega)\times L^{r_1}(\Gamma)$, which combining with Theorem \ref{t3.5a}, we can obtain the existence of a compactly uniform attractor in $L^{r_1}(\Omega)\times L^{r}(\Gamma)$ ($r=\min(r_1,r_2)$). Then, similar to \cite{PZ,Y1}, we can obtain the structure of $\mathscr{A}_{\Sigma}$, see more details in \cite{PZ,Y1}. \end{proof} \subsection*{Acknowledgments} This work is partly supported by the NNSF of China \\ (11101404, 11201204, 11471148) and by the State Scholarship Fund of China Scholarship Council (201308620021). \begin{thebibliography}{99} \bibitem{Adams} R. A. Adams and J. J. F. Fourier; \emph{Sobolev spaces}, 2nd ed., Academic Press, 2003. \bibitem{Al} A. D. Alikakos; \emph{An application of the invariance principle to reaction-diffustion equations}, J. Differential Equations, 33 (1979), 201-225. \bibitem{Ba} A. V. Babin, M. I. Vishik; \emph{Attractors of Evolution Equations}, North-Holland, Amsterdam, 1992. \bibitem{CV} V. V. Chepyzhov, M. I. Vishik; \emph{ Attractors for Equations of Mathematical Physics}, Amer. Math. Soc., Providence, RI, 2002. \bibitem{CCD} A. N. Carvalho, J. W. Cholewa, T. Dlotko; \emph{Global attractors for problems with monotone operators}, Boll. Un. Mat. Ital., (8) 2-B (1999), 693-706. \bibitem{CG2} A. N. Carvalho, C. B. Gentile; \emph{Asymptotic behaviour of non-linear parabolic equations with monotone principal part}, J. Math. Anal. Appl., 280 (2003), 252-272. \bibitem{CZ} G. X. Chen, C. K. Zhong; \emph{Uniform attractors for non-autonomous p-Laplacian equations}, Nonlinear Anal., 68 (2008), 3349-3363. \bibitem{CD2} J. W. Cholewa, T. Dlotko; \emph{Global Attractors in Abstract Parabolic Problems}, Cambridge University Press, 2000. \bibitem{Di} E. DiBenedetto; \emph{Degenerate parabolic equations}, Springer-Verlag, 1993. \bibitem{CS1} I. Chueshov, B. Schmalfuss; \emph{Parabolic stochastic partial differential equations with dynamical boundary conditions}, Differential Integral Equations, 17 (2004), 751-780. \bibitem{CS2} I. Chueshov, B. Schmalfuss; \emph{Qualitative behavior of a class of stochastic parabolic PDES with dynamical boundary conditions,} Discrete Contin. Dyn. Syst, 18 (2007), 315-338. \bibitem{EMZ} M. Efendiev, A. Miranville, S. V. Zelik; \emph{Exponential attractors and finite-dimensional reduction of non-autonomous dynamical systems}, Proc. Royal Soc. Edinburgh, 135A (2005), 703-730. \bibitem{EO} M. Efendiev, M. Otani; \emph{Infinite-dimensional attractors for evolution equations with p-Laplacian and their Kolmogorov entropy}, Differential Integral Equations, 20 (2007), 1201-1209. \bibitem{ES2} J. Escher; \emph{Quasilinear parabolic systems with dynamical boundary conditions,} Comm. Partial Differential Equations, 18 (1993), 1309-1364. \bibitem{FZ} Z. H. Fan, C. K. Zhong; \emph{Attractors for parabolic equations with dynamic boundary conditions,} Nonlinear Anal., 68 (2008), 1723-1732. \bibitem{G2} C. G. Gal, M. Grasselli; \emph{The non-isothermal Allen-Cahn equation with dynamic boundary conditions,} Discrete Contin. Dyn. Syst., 12 (2008), 1009-1040. \bibitem{G1} C. G. Gal, M. Warma; \emph{Well-posedness and the global attractor of some quasi-linear parabolic equations with nonlinear dynamic boundary conditions,} Differential Integral Equations, 23 (2010), 327-358. \bibitem{A. Le} A. Le; \emph{Eigenvalue problems for the p-Laplacian}, Nonlinear Anal., 64 (2006), 1057-1099. \bibitem{Lions} J. L. Lions; \emph{Quelques M\'{e}thodes de R\'{e}solution des Probl\`{e}mes aux Limites Nonlin\'{e}aires,} Dunod, Paris, 1969. \bibitem{LYZ} Y. W. Liu, L. Yang, C. K. Zhong; \emph{Asymptotic regularity for p-Laplacian equation,} Journal of Mathematical Physics, 51 (2010), 1-7. \bibitem{LWZ} S. S. Lu, H.Q. Wu, C.K. Zhong; \emph{Attractors for nonautonomous 2D Navier-Stokes equations with normal external forces}, Discrete Contin. Dyn. Syst., 13(2005), 701-719. \bibitem{Mar} M. Marion; \emph{Attractors for reactions-diffusion equations: existence and estimate of their dimension}, Appl. Anal, 25 (1987), 101-147. \bibitem{Mey} N. Meyers; \emph{An $L^p$-estimate for the gradient of solutions of second order elliptic divergence equations}, Ann. Sc. Norm. Sup. Pisa., 17 (1963), 189-206. \bibitem{PZ} V. Pata, S. Zelik; \emph{A result on the existence of global attractors for semigroups of closed operators}, Comm. Pure Appl. Anal, 6 (2007), 481-486. \bibitem{Robin} J. C. Robinson; \emph{Infinite-Dimensional Dynamical Systems}, Cambridge University Press, 2001. \bibitem{Sun} C.Y. Sun; \emph{Asymptotic regularity for some dissipative equations}, J. Differential Equations, 248 (2010), 342-362. \bibitem{Tem} R. Temam; \emph{Infinite-Dimensional Dynamical Systems in Mechanics and Physics}, Springer-Verlag, New York, 1997. \bibitem{Y1} L. Yang; \emph{Uniform attractors for the closed process and applications to the reaction-diffusion equation with dynamical boundary condition}, Nonlinear Anal., 71 (2009), 4012-4025. \bibitem{YY1} L. Yang, M. H. Yang; \emph{Long-time behavior of reaction-diffusion equations with dynamical boundary condition}, Nonlinear Anal., 74 (2011), 3876-3883. \bibitem{YSZ} M. H. Yang, C. Y. Sun, C. K. Zhong; \emph{The existence of global attractors for the p-Laplacian equation}, J. Math. Anal. Appl., 327 (2007), 1130-1142. \bibitem{ZYS} C. K. Zhong, M. H. Yang, C. Y. Sun; \emph{The existence of global attractors for the norm-to-weak continuous semigroup and application to the nonlinear reaction-diffusion equations}, J. Differential Equations, 223 (2006), 367-399. \end{thebibliography} \end{document}