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EXISTENCE OF SOLUTIONS TO THE RIEMANN PROBLEM
FOR A MODEL OF TWO-PHASE FLOWS

MAI DUC THANH, DAO HUY CUONG

Abstract. We study the existence of solutions of the Riemann problem for

a model of two-phase flows. The model has the form of a nonconservative
hyperbolic system of balance laws. Based on a phase decomposition approach,

we obtain all the wave curves. By developing an analytic method, we can

establish a system of nonlinear algebraic equations for each solution of the
Riemann problem. The system is under-determined and can be parameterized

by the volume fraction in one phase. Therefore, an argument relying on the
Implicit-Function Theorem leads us to the existence of solutions of the Rie-

mann problem for the model for sufficiently large initial data. Furthermore,

the structure of the Riemann solutions obtained by this method can also be
obtained.

1. Introduction

In this article we consider the existence and the structure of solutions of the
following Riemann problem for the model of two-phase flows,

∂t(αρ) + ∂x(αρu) = 0,

∂t(αρu) + ∂x(α(ρu2 + p)) = p∂xα,

∂t(βθ) + ∂x(βθv) = 0,

∂t(βθv) + ∂x(β(θv2 + q)) = −p∂xα,
∂tθ + ∂x(θv) = 0, x ∈ R, t > 0,

(1.1)

where α, ρ, u, p stand for the volume fraction, density, velocity, and pressure in the
first phase of the flow, called Phase I ; and β, θ, v, q stand for the volume fraction,
density, velocity, and pressure in the second phase of the flow, called Phase II. The
volume fractions satisfy

α+ β = 1. (1.2)
System (1.1) is obtained from the full model of two-phase flows, see [2, 4], by
assuming that the flow is isentropic in both phases. The first and the second
equations of (1.1) describe the balance of mass and momentum in Phase I, while the
third and the four equations of (1.1) describe the balance of mass and momentum
in Phase; the fifth equation of (1.1), called the compaction dynamics equation,
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represents the evolution of the volume fractions. Observe that the third and the
fifth equations of (1.1) yield

∂tβ + v∂xβ = 0. (1.3)

Note that the first version of the compaction dynamics equation (1.3) is used in
[2]. The current compaction dynamics equation ( the last equation of (1.1)) was
proposed in [4], and is suitable for our analysis as it is conservative.

System (1.1) has the form of nonconservative systems of balance laws, where the
weak solutions will be understood in the sense of nonconservative products, see [5].
It has been known that the system (1.1) is hyperbolic, but not strictly hyperbolic,
since the characteristic fields may coincide. Moreover, the fact that the dimension
of the unknown function U is large (five components) makes it hard to solve the
Riemann problem for large initial data. However, the system (1.1) possesses a very
interesting property: four characteristic fields involve quantities only in one phase.
This allows the waves associated with these characteristic fields to change only in
one phase and remain constants in the other.

In an earlier work, [24], a phase decomposition approach for studying the Rie-
mann problem for (1.1) was proposed. Then, based on a geometrical approach
where the positions of related various curves in a phase plane can be determined
and compared, the author established several results on the existence of solutions of
the Riemann problem for (1.1). In this work, we will rely on an analytical method,
instead, to establish existence results of Riemann solutions of (1.1). For this aim,
we will show that each Riemann solution, whose structure can be determined using
the phase decomposition method, corresponds to a set of nonlinear algebraic equa-
tions. Then, we will show that these equations can be parameterized as functions of
the volume fraction in one phase, says, Phase I. By applying an Implicit Function
Theorem, we can obtain the existence of Riemann solutions. It is worth to note
that the locality in applying Implicit Function Theorem here is constraint to only
the gas volume fractions, while all other quantities of the Riemann data (density,
pressure, temperature, velocity) can be taken relatively large. Moreover, we note
that since each solution of the Riemann problem is corresponding to a system of
nonlinear algebraic equations, computational methods can be developed for com-
puting the exact solutions. Consequently, this work can be useful for developing
numerical methods such as the Godunov method to approximate the initial-value
problem for the model under study.

Hyperbolic models in nonconservative forms have attracted the attention of many
authors. The earlier works concerning nonconservative systems were carried out
in [7, 10, 11, 15]. The Riemann problem for the model of a fluid in a nozzle with
discontinuous cross-section was considered in [12] for the isentropic case, and in [19]
for the non-isentropic case. The Riemann problem for for shallow water equations
with discontinuous topography were solved in [13, 14]. The Riemann problem for a
general system in nonconservative form was studied by [6]. The Riemann problem
for a model of two-phase flows was studied in [17, 24]. Two-fluid models of two-
phase flows were studied in [9, 18]. Numerical approximations for two-phase flows
were considered in [1, 3, 16, 20, 21, 22, 23]. See also the references therein.

The organization of this article is as follows. In Section 2 we recall basic proper-
ties of the system (1.1), and the jump relations by using the phase decomposition
approach. In Section 3 we establish the existence results of solutions of the Riemann
problem.
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2. Preliminaries

2.1. Characteristic fields. Throughout, we assume for simplicity that the fluid
in each phase is isentropic and ideal, where the equation of state is

p = p(ρ) = κργ , q = q(θ) = lθδ, κ, l > 0, γ, δ > 1.

The system (1.1) can be re-written as

∂tρ+ u∂xρ+ ρ∂xu+
ρ(u− v)

α
∂xα = 0,

∂tu+ h′(ρ)∂xρ+ u∂xu = 0,
∂tθ + v∂xθ + θ∂xv = 0,

∂tv + k′(θ)∂xθ + v∂xv +
p− q
βθ

∂xα = 0,

∂tα+ v∂xα = 0, x ∈ R, t > 0,

(2.1)

where

h′(ρ) =
p′(ρ)
ρ

, k′(θ) =
q′(θ)
θ

.

Thus, if we choose the unknown vector function to be of the form

U = (ρ, u, θ, v, α),

we can re-write the system (1.1) as a system of balance laws in nonconservative
form as

Ut +A(U)Ux = 0, (2.2)

where

A(U) =


u ρ 0 0 ρ(u−v)

α
h′(ρ) u 0 0 0

0 0 v θ 0
0 0 k′(θ) v p−q

βθ

0 0 0 0 v

 .

The characteristic equation of the matrix A(U) is

(v − λ)((u− λ)2 − p′)((v − λ)2 − q′) = 0,

which admits five roots as

λ1(ρ, u) = u−
√
p′(ρ), λ2(ρ, u) = u+

√
p′(ρ),

λ3(θ, v) = v −
√
q′(θ), λ4(θ, v) = v +

√
q′(θ), λ5(v) = v.

(2.3)
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The corresponding right eigenvectors can be chosen as

r1(ρ, u) = µ


−ρ√
p′(ρ)
0
0
0

 , r2(ρ, u) = µ


ρ√
p′(ρ)
0
0
0

 ,

r3(θ, v) = ν


0
0
−θ√
q′(θ)
0

 , r4(θ, v) = ν


0
0
θ√
q′(θ)
0

 ,

r5(U) =


−(u− v)2ρβq(θ)

(u− v)p′(ρ)q′(θ)β
(q(θ)− p(ρ))((u− v)2 − p′(ρ))α

0
((u− v)2 − p′(ρ))αβq′(θ)

 ,

(2.4)

where

µ =
2
√
p′(ρ)

p′′(ρ)ρ+ 2p′(ρ)
, ν =

2
√
q′(θ)

q′′(θ)θ + 2q′(θ)
.

It is not difficult to check that the eigenvectors ri, i = 1, 2, 3, 4, 5 are linearly inde-
pendent. Thus, the system is hyperbolic. Furthermore, it holds that

λ3 < λ5 < λ4.

It is interesting that the eigenvalues λ5 may coincide with either λ1 or λ2 on a
certain hyper-surface of the phase domain, called the sonic surface or resonant
surface. We call the supersonic region to be the one in which

|u− v| > c :=
√
p′(ρ), (2.5)

the subsonic region is the one in which |u − v| < c. To illustrate these regions,
we consider the projection of the hyper-plane v ≡ v0 of the phase domain, for an
arbitrarily fixed v0, in the (ρ, u)-plane, see Figure 1.

G1 = {(ρ, u)| u− v0 >
√
p′(ρ)},

G2 = {(ρ, u)| |u− v0| <
√
p′(ρ)},

G3 = {(ρ, u)| u− v0 < −
√
p′(ρ)},

C± = {(ρ, u)| u− v0 = ±
√
p′(ρ)},

C = C+ ∪ C−.

(2.6)

Then, the states U such that (ρ, u) ∈ G1, G3, belong to the supersonic region;
the states U such that (ρ, u) ∈ G2, belong to the subsonic region; and the states U
such that (ρ, u)C± belong to the sonic surface.

On the other hand, it is not difficult to verify that

Dλi(U) · ri(U) = 1, i = 1, 2, 3, 4,

Dλ5(U) · r5(U) = 0,
(2.7)
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Figure 1. Projection of the phase domain hyper-plane v ≡ v0

so that the first, second, third, fourth characteristic fields (λi(U), ri(U)), i =
1, 2, 3, 4, are genuinely nonlinear, while the fifth characteristic field (λ5(U), r5(U))
is linearly degenerate.

2.2. Rarefaction waves. Rarefaction waves of the system (2.2), and therefore of
(1.1), are the continuous piecewise-smooth self-similar solutions of (1.1) associated
with nonlinear characteristic fields, which have the form

U(x, t) = V (ξ), ξ =
x

t
, t > 0, x ∈ R.

Substituting this into (2.2), we can see that rarefaction waves are solutions of the
following initial-value problem for ordinary differential equations

dV (ξ)
dξ

= ri(V (ξ)), ξ ≥ λi(U0), i = 1, 2, 3, 4,

V (λi(U0)) = U0.

(2.8)

Thus, the integral curve of the first characteristic field is given by

dρ(ξ)
dξ

=
−2
√
p′(ρ)

p′′(ρ)ρ+ 2p′(ρ)
ρ(ξ) < 0,

du(ξ)
dξ

=
2
√
p′(ρ)

p′′(ρ)ρ+ 2p′(ρ)

√
p′(ξ) > 0,

dθ(ξ)
dξ

=
dv(ξ)
dξ

=
dα(ξ)
dξ

= 0.

(2.9)

This implies that θ, v, α are constant through 1-rarefaction waves, ρ is strictly de-
creasing with respect to ξ, and u is strictly increasing with respect to ξ. Moreover,
since ρ is strictly monotone though 1-rarefaction waves, we can use ρ as a parameter
of the integral curve

du

dρ
=
−
√
p′(ρ)
ρ

. (2.10)

The integral curve (2.10) determines the forward curve of 1-rarefaction waveR1(U0)
consisting of all right-hand states that can be connected to the left-hand state U0
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using 1-rarefaction waves

R1(U0) : u = ω1((ρ0, u0); ρ) := u0 −
∫ ρ

ρ0

√
p′(y)
y

dy, ρ ≤ ρ0, (2.11)

where ρ ≤ ρ0 follows from the condition that the characteristic speed must be
increasing through a rarefaction fan.

Similarly, θ, v, α are constant through 2-rarefaction waves. The backward curve
of 2-rarefaction wave R2(U0) consisting of all left-hand states that can be connected
to the right-hand state U0 using 2-rarefaction waves is given by

R2(U0) : u = ω2((ρ0, u0); ρ) := u0 +
∫ ρ

ρ0

√
p′(y)
y

dy, ρ ≤ ρ0. (2.12)

In the same way, ρ, u, α are constant through 3- and 4-rarefaction waves. The
forward curve of 3-rarefaction wave R3(U0) consisting of all right-hand states that
can be connected to the left-hand state U0 using 3-rarefaction waves is given by

R3(U0) : v = ω3((θ0, v0); θ) := v0 −
∫ θ

θ0

√
q′(y)
y

dy, θ ≤ θ0. (2.13)

The backward curve of 4-rarefaction wave R4(U0) consisting of all left-hand states
that can be connected to the right-hand state U0 using 4-rarefaction waves is given
by

R4(U0) : v = ω4((θ0, v0); θ) := v0 +
∫ θ

θ0

√
q′(y)
y

dy, θ ≤ θ0. (2.14)

2.3. Jump relations for shock waves. A discontinuity (shock or contact wave)
of (1.1) is a weak solution (in the sense of nonconservative products) and is of the
usual form

U(x, t) =

{
U−, for x < σt,

U+, for x > σt,
(2.15)

for some constant states U± and a constant shock speed σ. This discontinuity
satisfies the generalized Rankine-Hugoniot relations for a given family of Lipschitz
paths. The generalized Rankine-Hugoniot relations corresponding to any family of
Lipschitz path for the conservative equations in (1.1) must coincide with the usual
canonical ones. In particular, it holds that

−σ[βθ] + [βθv] = 0,

−σ[θ] + [θv] = 0,
(2.16)

where σ is the shock speed, [A] = A+−A−, and A± denote the values on the right
and left of the jump on the quantity A. This yields

θ(v − σ) = M = constant,

M [β] = 0.
(2.17)

The second equation of (2.17) implies that either M = 0 or [β] = 0. Since θ > 0,
one obtains the following conclusion: across any discontinuity (2.15) of (1.1)

either [β] = 0, or v = σ, a constant. (2.18)
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It is derived from (2.18) that if [β] = 0, then the volume fractions remain con-
stant across the discontinuity. The system (1.1) is therefore reduced to the two
independent sets of isentropic gas dynamics equations in both phases

∂tρ+ ∂x(ρu) = 0,

∂t(ρu) + ∂x(ρu2 + p) = 0,

∂tθ + ∂x(θv) = 0,

∂t(θv) + ∂x(θv2 + q) = 0, x ∈ R, t > 0.

(2.19)

This implies that θ, v, α are constant through 1- and 2-shock waves, while ρ, u, α
are constant through 3- and 4-shock waves.

Given a left-hand state U0, let us denote by Si(U0), i = 1, 3 the forward shock
curves consisting of all right-hand states U that can be connected to the left-hand
state U0 by an i-Lax shock, i = 1, 3, and by Sj(U0), j = 2, 4 the backward shock
curves consisting of all left-hand states U that can be connected to the right-hand
state U0 by a j-Lax shock, j = 2, 4. These curves are given by:

S1(U0) : u = ω1((ρ0, u0); ρ) := u0 −
( (p− p0)(ρ− ρ0)

ρ0ρ

)1/2

, ρ > ρ0,

S2(U0) : u = ω2((ρ0, u0); ρ) := u0 +
( (p− p0)(ρ− ρ0)

ρ0ρ

)1/2

, ρ > ρ0,

S3(U0) : v = ω3((θ0, v0); θ) := v0 −
( (q − q0)(θ − θ0)

θ0θ

)1/2

, θ > θ0,

S4(U0) : v = ω4((θ0, v0); θ) := v0 +
( (q − q0)(θ − θ0)

θ0θ

)1/2

, θ > θ0.

(2.20)

From (2.11)–(2.14) and (2.20), we can now define the forward wave curves issuing
from U0 as

W1(U0) = R1(U0) ∪ S1(U0),

W3(U0) = R3(U0) ∪ S3(U0),
(2.21)

and the backward wave curves issuing from U0 by
W2(U0) = R2(U0) ∪ S2(U0),

W4(U0) = R4(U0) ∪ S4(U0).
(2.22)

These curves are parameterized in such a way that the velocity is given as a function
of the density in each phase, under the form u = ωi(U0; ρ), ρ > 0, i = 1, 2, 3, 4. It is
not difficult to check that ω1, ω3 are strictly decreasing; and that ω2, ω4 are strictly
increasing. Summarizing the above argument, we get the following result.

Lemma 2.1. Through an i-wave (shock or rarefaction), i = 1, 2, the quantities
θ, v, α are constant. Through a j-wave (shock or rarefaction), j = 3, 4, the quanti-
ties ρ, u, α are constant. The wave curves Wi(U0), i = 1, 2, 3, 4, associated with the
genuinely nonlinear characteristic fields issuing from a given state U0 are given by
(2.21) and (2.22).

2.4. Jump relations for contact waves. Contact discontinuities correspond to
the second of (2.18) where [β] 6= 0. Any contact discontinuity associated with the
fifth characteristic field can be characterized as follows.

Theorem 2.2 ([24, Theorem 3.3]). Let U be a contact discontinuity of the form
(2.15) associated with the linearly degenerate characteristic field (λ5, r5); that is,
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[β] 6= 0 and U± belong to the same trajectory of the integral field of the 5fth charac-
teristic field. Then, U is a weak solution of (1.1) in the sense of nonconservative
products. Moreover, this contact discontinuity U satisfies the jump relations in the
usual form

v± = σ, [αρ(u− v)] = 0,

[(u− v)2 + 2h] = 0, [mu+ αp+ βq] = 0,
(2.23)

where m is the constant m = αρ(u− v).

Thus, whenever a state on one side of a contact discontinuity is fixed, the state
on the other side U that can be connected with U0 by a contact discontinuity must
satisfy the equations

αρ(u− v) = αg0ρ0(u0 − v) := m,

(u− v)2 + 2h = (u0 − v0)2 + 2hg0,
(2.24)

and

q =
β0q0 − [mu+ αp]

β
. (2.25)

So, we can define the fifth wave curve W5(U0) to be the curve of contact waves
issuing from U0. It is the set of states U that can be connected to U0 by a contact
discontinuity, where U can be defined by the equations (2.24) and (2.25).

3. Existence and structure of Riemann solutions

In this section, we will show that the Riemann problem for (1.1) possesses a
solution made up a finite number of waves (shocks, rarefaction waves, and con-
tacts) separated by constant states, only. The case where the solution containing
coinciding waves is much more complicated and it will be the topic for future de-
velopments.

Notation. In this section, we use the following notation:
(i) Wk(Ui, Uj) (Sk(Ui, Uj), Rk(Ui, Uj)) denotes a k-wave (k-shock, or k-rar-

efaction wave, respectively) connecting the left-hand state Ui to the right-
hand state Uj ;

(ii) Wm(Ui, Uj)⊕Wn(Uj , Uk) indicates that there is an m-wave from the left-
hand state Ui to the right-hand state Uj , followed by an n-wave from the
left-hand state Uj to the right-hand state Uk;

(iii) U± = (ρ±, u±) and V± = (θ±, v0) denote the left- and right-hand states of
the contact in Phase I and Phase II of a Riemann solution under consider-
ation, respectively.

3.1. Phase decomposition. We can see from the above that
• Through i-waves, i = 1, 2, the quantities in the phase II: V = (θ, v) and
α, β remain constant;
• Through j-waves, j = 3, 4, the quantities in the phase I: U = (ρ, u) and
α, β remain constant.

So, in any Riemann solution:
(i) Quantities in the phase I involve only in the 1st, 2nd and 5fth characteristic

fields;
(ii) Quantities in the phase II involve only in the 3rd, 4th and 5fth characteristic

fields.
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Only 5-contacts involve quantities in both phases. So, they can serve as a
“bridge” connecting the two phases. We can consider the wave structure in each
phase separately.

Components of Phase I in Riemann solutions. Quantities in Phase I involve
only waves from the 1st, 2nd, and and 5fth fields. However, although

λ1(U) < λ2(U),

λ5(U) can be in any order with λ1(U) and λ2(U). In our phase decomposition,
the contact waves play a key role for constructing Riemann solutions. Following
[12, 19, 7, 8], we also impose the following admissibility condition:

(AC) The contact wave must remain in the same subsonic or supersonic region.
This criterion means that the left-hand and right-hand states of the admissible
contact will remain in the same subsonic or supersonic region. Therefore, our
construction of Riemann solutions will rely on the location of the contact in the
supersonic or subsonic region as follows. Let U− be the state on the left, and U+

be the state on the right of the contact.
(A) The contact belongs to the supersonic region λ5 < λ1;
(B) The contact belongs to the subsonic region λ1 < λ5 < λ2;
(C) The contact belongs to the supersonic region λ5 > λ2.

In the next subsection, we build three classes of Riemann solutions, having different
configurations, for these three cases.

Components of Phase II in Riemann solutions. In Phase II, one has λ3 <
λ5 < λ4. The Riemann solutions in Phase II always have the form

W3(VL, V−)⊕W5(V−, V+)⊕W4(V+, VR),

see Figure 2.

Figure 2. Riemann solutions in the phase II

So, the quantities in Phase II involve only four constant states VL, V±, VR. Since

V− = (θ−, v0) ∈ W3(VL), V+ = (θ+, v0) ∈ W4(VR).

Therefore,
v0 = v± = ω3(VL; θ−) = ω4(VR; θ+), (3.1)

where ω3 and ω4 are defined by (2.13), (2.14), and (2.20).
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3.2. Construction of Solutions.

Case A: The contact belongs to the supersonic region λ1 > λ5. The solution
contains a 5-contact on the left of both waves in nonlinear families, see Figure 3
(left). As before, U±, V± denote the states on the left and right of the contact in
Phase I and Phase II, respectively. One has

U− = UL.

Let {U1} =W1(U+) ∩W2(UR).

Figure 3. Case A: Riemann solutions in the phase I

The solution begins with a liquid 3-wave from VL to V−, followed by a 5-contact
V+, then it continues separately in each phase. In Phase I, the solution does not
change across the 3-wave. It jumps by a 5-contact from UL to U+, followed by a
1-wave from U+ to U1, then arrives at UR by a 2-wave, see Figure 3 (right). In
phase II, the solution arrives at VR from V+ by a 4-wave. The whole Riemann
solution has the configuration as in Figure 4, where the 1-, 2-, and 4-waves may
interchange the order.

Figure 4. Case A: A whole Riemann solution where the contact
is in the supersonic region G1
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Theorem 3.1. Let V∗ = (θ∗, v∗) be the intersection point of W3(VL) and W4(VR).
Providing that the state (ρL, uL, v∗) is in the supersonic region

uL − v∗ >
√
p′(ρL),

or, λ1(UL) > λ5(v∗), there exists an interval I 3 αL such that whenever αR ∈ I,
the states on both sides of the contact U±, V±, U− = UL, are well-defined and can
be calculated. Let U1 be the intersection point of the curves W1(U+) and W2(UR),
and let UR be such that

σ1(U+, U1) ≥ v+, (3.2)

where σ1 is the 1-shock speed. Then, the Riemann problem has a solution made up
shocks, rarefaction waves, and a contact separated by states U+, U1 in phase I and
by V± in phase II. Precisely, the solution can be described by:

• Solution in Phase I:

W5(UL, U+)⊕W1(U+, U1)⊕W2(U1, UR).

• Solution in Phase II:

W3(VL, V−)⊕W5(V−, V+)⊕W4(V+, VR).

Proof. Whenever the states are well-defined, the construction is clear. We will
prove that these states exist. First, a strategy for computing these states can be
done as follows. The solution in Phase I gives v± = v0 and 2 equations in (3.1).
The jump relations across the 5-contact give us 3 equations

αRρ+(u+ − v0) = αLρL(uL − v0) := m,

(u+ − v0)2 + 2h(ρ+) = (uL − v0)2 + 2hL ,

βRq+ − βLq− +m(u+ − uL) + (αRp+ − αLpL) = 0 ,

(3.3)

where p+ = p(ρ+), q± = q(θ±) = lθδ± from the equation of state. The five equations
(3.1)-(3.3) enable us to calculate the five quantities: θ±, v0, ρ+, u+, and so give us
the states V±, U+. Then, since

{U1} =W1(U+) ∩W2(UR),

the state U1 is determined by the equations

u1 = ω1(U+; ρ1) = ω2(UR; ρ1),

where ω1 and ω2 are defined by (2.11), (2.12), and (2.20).
We now prove that these states must exist. Indeed, eliminating θ± from these five

equations yields three equations for αR, ρ+, u+, v0, as follows. Since the function
v = ω3(VL; θ) defined by (2.13) and (2.20) is decreasing as a function of θ, it has an
inverse function, denoted by θ = ω−1

3 (VL; v) := θ3(v), which is also decreasing in v.
Similarly, since the function v = ω4(VR; θ) defined by (2.14) and (2.20) is increasing
as a function of θ, it has an inverse function, denoted by θ = ω−1

4 (VR; v) := θ4(v),
which is also increasing in v. From (3.1), it holds that

θ− = ω−1
3 (VL; v0), θ+ = ω−1

4 (VR; v0). (3.4)
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Substituting (3.4) into (3.3) implies that α = αR, ρ = ρ+, u = u+, v = v0 satisfy

αρ(u− v)− αLρL(uL − v) = 0 ,

(u− v)2 + 2h(ρ)− (uL − v)2 − 2hL = 0 ,

(1− α)q+(VR; v)− βLq−(VL; v) + αLρL(uL − v)(u− uL)

+ (αp(ρ)− αLpL) = 0,

(3.5)

and so ρ+, u+, v0 can be found in terms of αR, where

q−(VL; v) = q(θ3(VL; v)), q+(VR; v) = q(θ4(VR; v)). (3.6)

Since q = q(θ) is increasing in θ > 0, and θ = θ3(v) is decreasing and θ = θ4(v) is
increasing, it holds that

dq−(VL; v)
dv

=
dq

dθ

dθ3
dv

< 0,

dq+(VR; v)
dv

=
dq

dθ

dθ4
dv

> 0,

which mean that q− is decreasing in v, while q+ is increasing in v.
Let ω3 meet ω4 at (θ∗, v∗). That is,

v∗ = ω3(VL; θ∗) = ω4(VR; θ∗). (3.7)

This yields q+(VR; v∗) = q−(VL; v∗). The three equations in (3.5) can be written as

F (X,Y ) = 0, where X = α, Y = (ρ, u, v). (3.8)

It holds that
F (a, b) = 0, a = αL, b = (ρL, uL, v∗).

To see whether the implicit equation (3.8) can define a curve Y = G(X) for X near
a = αL, we consider the matrix

(∂Fi(a, b)/∂Yj)i,j=1,3

=

αL(uL − v∗) αLρL 0
2h′(ρL) 2(uL − v∗) 0
αLp

′(ρL) αLρL(uL − v∗) (1− α)dq+dv (v∗)− βL dq−dv (v∗)

 .

As seen above, q+ is increasing in v, and q− is decreasing in v, which yields

dq+
dv

(v∗) > 0,
dq−
dv

(v∗) < 0.

Thus, the determinant

|(∂Fi(a, b)/∂yj)| = 2αL((1− α)
dq+
dv

(v∗)− βL
dq−
dv

(v∗))((uL − v∗)2 − h′(ρL)ρL)

has same sign as ((uL − v∗)2 − h′(ρL)ρL) = (uL − v∗)2 − p′(ρL) > 0 when UL is in
the supersonic region. So, the matrix (∂Fi(a, b)/∂Yj) is invertible. Applying the
Implicit Function Theorem, we can see that there exists an interval I containing
αL such that equation (3.8) determines a map Y = Y (α), α ∈ I. Thus, the states
U±, V± are well-defined for αR ∈ I. The inequality (3.2) implies that the contact
wave W5(UL, U+) can be followed by the 1-wave W1(U+, U1). This completes the
proof of Theorem 3.1. �
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Figure 5. Case B: Riemann solutions in the phase I

Case B: The contact belongs to the subsonic region λ1 < λ5 < λ2. In Phase
I, the solution begins with a 1-wave from UL to U−, followed by a 5-contact from
U− to U+, then it arrives at UR by a 2-wave. In Phase II, the solution begins with
a 3-wave from VL to V−, followed by a 5-contact from V− to V+, and then it arrives
at VR by a 4-wave. The 1- and 3-waves may interchange the order, and the 2- and
4-waves may interchange the order, see Figure 6.

Figure 6. Case B: A whole Riemann solution where the contact
is in the subsonic region

Theorem 3.2. Let U∗ = (ρ∗, u∗) be the intersection point of W1(UL) and W2(UR)
in the (ρ, u)-plane, and let V∗ = (θ∗, v∗) be the intersection point of W3(VL) and
W4(VR) in the (θ, v)-plane. Providing that (ρ∗, u∗, v∗) is in the subsonic region

(u∗ − v∗)2 < p′(ρ∗),

i.e., λ1(U∗) < λ5(v∗) < λ2(U∗), there exists an interval I 3 αL such that whenever
αR ∈ I, the Riemann problem has a solution made up shocks, rarefaction waves,
and a contact separated by states U± in phase I and by V± in phase II. Precisely,
the solution can be described by:
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• Solution in Phase I:

W1(UL, U−)⊕W5(U−, U+)⊕W2(U+, UR).

• Solution in Phase II:

W3(VL, V−)⊕W5(V−, V+)⊕W4(V+, VR).

Proof. Since U− ∈ W1(UL), and U+ ∈ W2(UR), it holds that

u− = ω1(UL; ρ−), u+ = ω2(UR; ρ+), (3.9)

where ω1 and ω2 are given by (2.11), (2.12) and (2.20). As before, the solution in
Phase I gives v± = v0 and 2 equations in (3.1). That is,

v0 = v± = ω3(VL; θ−) = ω4(VR; θ+),

where ω3 and ω4 are defined by (2.13), (2.14), and (2.20). The jump relations across
the 5-contact give us 3 equations

αRρ+(u+ − v0) = αLρ−(u− − v0) := m,

(u+ − v0)2 + 2h(ρ+) = (u− − v0)2 + 2h− ,

βRq+ − βLq− +m(u+ − u−) + (αRp+ − αLp−) = 0 ,

(3.10)

where p+ = p(ρ+), q± = q(θ±) = lθδ± from the equation of state. The seven equa-
tions (3.1), (3.9), and (3.10) enable us to calculate the seven quantities: U±, V± =
(θ±, v0).

We now prove that these states must exist. Indeed, eliminating u±, θ± from
these seven equations yields three equations for αR, ρ±, v0, as follows. As above,
the function v = ω3(VL; θ) is decreasing as a function of θ and so it has an inverse
function, denoted by θ = ω−1

3 (VL; v) := θ3(v), which is also decreasing in v. Sim-
ilarly, since the function v = ω4(VR; θ) is increasing as a function of θ, it has an
inverse function, denoted by θ = ω−1

4 (VR; v) := θ4(v), which is also increasing in v.
From (3.1), it holds that

θ− = ω−1
3 (VL; v0), θ+ = ω−1

4 (VR; v0). (3.11)

Substituting (3.9) and (3.11) into (3.10) implies that α = αR, ρ±, v = v0 satisfy

αρ+(ω2(UR; ρ+)− v)− αLρ−(ω1(UL; ρ−)− v) = 0,

(ω2(UR; ρ+)− v)2 + 2h(ρ+)− (ω1(UL; ρ−)− v)2 − 2h− = 0,

(1− α)q+(VR; v)− βLq−(VL; v) + αLρ−(ω1(UL; ρ−)− v)(ω2(UR; ρ+)

− ω1(UL; ρ−)) + (αp(ρ+)− αLp(ρ−)) = 0,

(3.12)

and therefore ρ±, v0 can be found in terms of αR, where

q−(VL; v) = q(θ3(VL; v)), q+(VR; v) = q(θ4(VR; v)). (3.13)

Since q = q(θ) is increasing in θ > 0, and θ = θ3(v) is decreasing and θ = θ4(v) is
increasing, it holds that

dq−(VL; v)
dv

=
dq

dθ

dθ3
dv

< 0,

dq+(VR; v)
dv

=
dq

dθ

dθ4
dv

> 0,

which means that q− is decreasing in v, while q+ is increasing in v.
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Now, let W1(UL) meet W2(UR) at (ρ∗, u∗). That is,

u∗ = ω1(UL; ρ∗) = ω2(UR; ρ∗). (3.14)

As above, let ω3 meet ω4 at (θ∗, v∗). That is,

v∗ = ω3(VL; θ∗) = ω4(VR; θ∗). (3.15)

This yields

q+(VR; v∗) = q−(VL; v∗).

For simplicity, we omit UL, UR, VL, VR in (3.12) in the sequel whenever this does
not cause any confusion. The three equations (3.12) have the form

F (X,Y ) = 0, where X = α, Y = (ρ−, ρ+, v). (3.16)

It holds that

F (a, b) = 0, a = αL, b = (ρ∗, ρ∗, v∗).

To see whether the implicit equation (3.8) can define a curve Y = G(X) for X near
a = αL, we consider the matrix (∂Fi(a, b)/∂Yj)i,j=1,3, which is equal to αL(u∗ − v∗ + ρ∗ω

′
2(ρ∗)) −αL(u∗ − v∗ + ρ∗ω

′
1(ρ∗)) 0

2(u∗ − v∗)ω′2(ρ∗) + 2h′(ρ∗) −2(u∗ − v∗)ω′1(ρ∗)− 2h′(ρ∗) 0
αLρ∗(u∗ − v∗)ω′2(ρ∗) + αLp

′(ρ∗) −αLρ∗(u∗ − v∗)ω′1(ρ∗) + αLp
′(ρ∗) q∗

 ,

where

q∗ = (1− αL)
dq+
dv

(v∗)− βL
dq−
dv

(v∗).

As argued above, the function q+ is increasing in v, and the function q− is decreasing
in v. So,

dq+
dv

(v∗) > 0,
dq−
dv

(v∗) < 0.

This yields q∗ > 0. Thus, the determinant

|(∂Fi(a, b)/∂yj)|

= q∗

∣∣∣∣ αL(u∗ − v∗ + ρ∗ω
′
2(ρ∗)) −αL(u∗ − v∗ + ρ∗ω

′
1(ρ∗))

2(u∗ − v∗)ω′2(ρ∗) + 2h′(ρ∗) −2(u∗ − v∗)ω′1(ρ∗)− 2h′(ρ∗)

∣∣∣∣
= q∗[αL(u∗ − v∗ + ρ∗ω

′
2(ρ∗))(−2(u∗ − v∗)ω′1(ρ∗)− 2h′(ρ∗))

+ αL(u∗ − v∗ + ρ∗ω
′
1(ρ∗))(2(u∗ − v∗)ω′2(ρ∗) + 2h′(ρ∗))]

= 2q∗αL(u∗ − v∗)2(ω′2(ρ∗)− ω′1(ρ∗)) + ρ∗h
′(ρ∗)(ω′1(ρ∗)− ω′2(ρ∗))

= (ω′2(ρ∗)− ω′1(ρ∗))((u∗ − v∗)2 − ρ∗h′(ρ∗))
= (ω′2(ρ∗)− ω′1(ρ∗))((u∗ − v∗)2 − p′(ρ∗)) < 0,

since ω′2(ρ∗) > 0, ω′1(ρ∗) < 0, and U∗ is in the subsonic region (u∗ − v∗)2 < p′(ρ∗).
Hence, the matrix (∂Fi(a, b)/∂Yj) is invertible. Applying the Implicit Function
Theorem, we deduce that there exists an interval I containing αL such that equation
(3.16) determines a map Y = Y (α), α ∈ I. Thus, the states U±, V± are well-defined
for αR ∈ I. This completes the proof. �
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Figure 7. Case C: Riemann solutions in the phase I

Figure 8. Case C: A whole Riemann solution where the contact
is in the supersonic region G3

Case C: The contact belongs to the supersonic region λ2 < λ5.

Theorem 3.3. Let V∗ = (θ∗, v∗) be the intersection point of W3(VL) and W4(VR).
Providing that the state (ρR, uR, v∗) is in the supersonic region

uR − v∗ < −
√
p′(ρR),

or, λ2(UR) < λ5(v∗), there exists an interval I 3 αR such that whenever αL ∈ I,
the states on both sides of the contact U±, V±, U+ = UR, are well-defined and can
be calculated. Let U1 be the intersection point of the curves W2(U−) and W1(UL),
and let UL be such that

σ2(U1, U−) ≤ v−, (3.17)

where σ2 is the 2-shock speed. Then, the Riemann problem has a solution made up
shocks, rarefaction waves, and a contact separated by states U+, U1 in phase I and
by V± in phase II. Precisely, the solution can be described by:

• Solution in Phase I:

W1(UL, U1)⊕W2(U1, U−)⊕W5(U−, UR).
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• Solution in Phase II:

W3(VL, V−)⊕W5(V−, V+)⊕W4(V+, VR).

See Figures 7 and 8.

The proof of above theorem is omitted, since it is similar to the one of Theorem
3.1.
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