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MATHEMATICAL MODEL FOR A MEMBRANE
BIOREACTOR PROCESS

MILED EL HAJJI, NEJMEDDINE CHORFI, MOHAMED JLELI

Abstract. In this article, we consider a simple mathematical model involv-

ing biomass growth on organic materials in a membrane bioreactor for a waste
water treatment. Details of qualitative analysis are provided. We proposed a

high gain observer that permits the reconstruction of the biomass concentra-

tion and the endegenous decay based on on-line measurements of the chemical
oxygen demand (CDO).

1. Introduction

Membrane bioreactors (MBRs) is a combination of a membrane process as mi-
crofiltration or ultrafiltration with a suspended growth bioreactor to treat waste
water where the main focus is to reduce the chemical oxygen demand (COD) in
the effluent discharged to natural waters. Membrane bioreactor process for the
sludge retention and separation from the liquid has been one of the alternatives to
the conventional activated sludge process (Figure 1). Two MBR configuration are
possible, the submerged MBR, where the membrane is placed in the reactionnal
medium, and the side stream MBR, where the membrane is out of the reactionnal
medium. The amount of organic pollutants found in surface water, determined by
COD measurements, gives us an idea on the water quality. The excess bacteria
grown in the system are removed as sludge and this causes high costs.

In this study, we used a submerged BRM configuration (Figure 1, center). As-
sume that soluble COD in mixed liquor is equal to the effluent COD because the
submerged membranes used in MBR don’t remove dissolved materials (used mem-
branes are mostly micro- or ultrafilters). Additionally, we assume that all organic
material in feed solution are soluble. We neglect fouling phenomenon during mem-
brane separation process.

The features of this article are the following:
• A simple mathematical model involving biomass growth on organic materials

in a membrane bioreactor for a waste water treatment is proposed. Details of
qualitative analysis are provided.
• A high gain observer is proposed that permits the reconstruction of the biomass

concentration and the endegenous decay based on on-line measurements of the
chemical oxygen demand (CDO).
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• Simulations are used to validate theoretical results provided above, and finally,
concluding remarks are given.
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Figure 1. Membrane Bio-Reactor : (a) Conventional activated
suldge process, (b) Submerged MBR configuration with integrated
membrane unit, (c) Side stream MBR configuration with external
membrane unit.

2. Mathematical model and results

Let S denote the soluble CDO and let X denote the total microorganisms present
in the bioreactor at time t. The following ordinary system of differential equations
describe the growth of total microorganisms on soluble CDO:

Ṡ = D(Sin − S)− µ(S)
Y

X ,

Ẋ = (µ(S)−m)X .

(2.1)

Sin denotes the effluent CDO in the feed, Y is the conversion factor of COD con-
verted to biomass, D denotes the dilution rate through the membrane and m is the
endogenous decay constant.

Note that equation which describes the biomass growth is similar to batch culture
[1] however the substrate equation is similar to classic continuous reactor [3]. It
appears reasonable to assume that the endogenous decay constant m is smaller that
the dilution rate D and that a priory bounds on parameter m are known. We use
the following assumptions:

(A1) There exists constants m− and m+ such that 0 < m− ≤ m ≤ m+ < D.
(A2) The growth function µ(·) is a smooth increasing function such that µ(0) = 0.

Let x = X
Y , s = S and sin = Sin. Then one obtains

ṡ = D(sin − s)− µ(s)x,

ẋ = µ(s)x−mx,
(2.2)

with positive initial condition
(
s(0), x(0)

)
∈ R+ × R+.

General properties.

Proposition 2.1. (1) For any initial condition in R+ × R+, the solution of (2.2)
is bounded and has positive components and thus is defined for all t > 0.

(2) System (2.2) admits a positive invariant attractor set of solution given by
Ω = {(s, x) ∈ R+ × R+ : s+ x ≤ D

msin}.
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Proof. (1) The positivity of the solution is guaranteed by the fact that If s = 0 then
ṡ = Dsin > 0 and if x = 0 then ẋ = 0. Next we have to prove the boundedness
of solutions of (2.2). By adding the two equations of system (2.2), one obtains, for
z = s+ x− D

msin, a single equation

ż ≤ −m
(
s+ x− D

m
sin
)

= −mz

then

0 ≤ s+ x ≤ D

m
sin +Ke−mt where K = z(0) = s(0) + x(0)− D

m
sin.

Since all terms of the sum are positive, then the solution is bounded
Part (2) is a direct consequence of the previous inequality. �

Stability. Let s∗ be a solution of µ(s) = m and x∗ = D
m (sin−s∗). The equilibrium

points of system (2.2) are

F0 = (sin, 0) and F ∗ = (s∗, x∗).

Note that the trivial equilibrium point F0 always exists and that F ∗ exists if and
only if µ(sin) > m.

Proposition 2.2. (1) There are no periodic orbits nor polycycles inside Ω.
(2) If µ(sin) > m, F0 is a saddle point and F ∗ is globally asymptotically stable.
(3) If µ(sin) < m, F0 is globally asymptotically stable.

Proof. (1) Consider a trajectory of system (2.2) belonging to Ω. Let us transform
the system (2.2) through the change of variables ξ1 = s and ξ2 = ln(x). Then one
obtains the system

ξ̇1 = h1(ξ1, ξ2) := D(sin − ξ1)− µ(ξ1)eξ2 ,

ξ̇2 = h2(ξ1, ξ2) := µ(ξ1)−m.
(2.3)

We have
∂h1

∂ξ1
+
∂h2

∂ξ2
= −D − µ′(ξ1) eξ2 < 0.

From Dulac criterion [3], we deduce that system (2.3) has no periodic trajectory.
Hence system (2.2) has no periodic orbit inside Ω.

(2) Assume that µ(sin) > m. The Jacobian matrix J∗ of system (2.2) at (s∗, x∗)
is

J∗ =
[
−D − µ′(s∗)x∗ −m

µ′(s∗)x∗ 0

]
.

One can easily verify that

tr(J∗) = −D − µ′(s∗)x∗ < 0, det(J∗) = mµ′(s∗)x∗ > 0,

from where F ∗ is a stable node. The Jacobian matrix J0 of system (2.2) at (sin, 0)
is

J0 =
[
−D 0

0 µ(sin)−m

]
One can easily verify that F0 is a saddle point since −D < 0 and µ(sin)−m > 0.
In this case Γ0 =]0,+∞[×{0} is the stable manifold of the saddle point F0.

Let s(0) ≥ 0 and x(0) > 0. System (2.2) has no periodic orbit inside Ω. Using the
Poincaré-Bendixon Theorem [3], F ∗ is a globally asymptotically stable equilibrium
point [5].
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(3) If µ(sin) < m, then (2.2) admits F0 as the only equilibrium point which
is locally stable. As the omega limit set of any trajectory have to be in the 2D
compact and positively invariant set Ω, and since F0 lies on the boundary of Ω, F0

must be globally asymptotically stable by the Poincaré-Bendixson Theorem [4]. �

Remark 2.3. s∗ is independent on the dilution rate D, contrarily to the classi-
cal continuous reactor (chemostat) [3]. Strict regulations regarding the maximum
chemical oxygen demand allowed in wastewater before they can be returned to the
environment are imposed by many governments. As COD at steady state (s∗) de-
pends on the endegenous decay (m) then it follows that the used bacteria must
have minimal decay constant.

In the following we assume that µ(sin) > m.

Observability. For the rest of this article, we shall use assumptions on the growth
function µ(·) and the yield coefficient Y of the classical Monod’s system.

(A3) µ(·) and Y are known.
Our aim is to estimate on-line both parameter m and unmeasured variable x,

based on the measurements of CDO (s). Our system is not observable if s = 0
and/or x = 0 that is why we proposed a set on which we are in the ideal situation
where the system is observable. We considering the set

Ω =
{

(s, x) ∈ R2
+ : s > 0, x > 0, s+ x <

D

m
sin
}

and deduced the following result.

Proposition 2.4. Dynamics (2.2) leaves the domain Ω positively invariant.

Letting (s(0), x(0)) ∈ Ω̄ and considering the state vector

ξ =
[
s ṡ s̈

]T =
[
ξ1 ξ2 ξ3

]T
,

one obtains the dynamics

ξ̇ = Aξ +

 0
0

ϕ(y, ξ)


y = Cξ

with

ϕ(y, ξ) =
(
ξ2 −D(sin − y)

)[(
µ′′(y)µ(y)− (µ′(y))2

) ξ22
µ2(y)

+
µ′(y)
µ(y)

ξ3 + µ′(y)ξ2
]

−Dξ3 +
(ξ3 +Dξ2)2

ξ2 −D(sin − y)
.

and the pair (A,C) in the Brunovsky’s canonical form

A =

0 1 0
0 0 1
0 0 0

 and C =
(
1 0 0

)
.

The unknown parameter m and the unknown state variable x are then made explicit
as functions of the state vector ξ:

m = lm(y, ξ) = µ(y) +
µ′(y)
µ(y)

ξ2 +
D ξ2 + ξ3

−ξ2 +D(sin − y)
,
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x = lx(y, ξ) =
−ξ2 +D(sin − y)

µ(y)
.

One can notice that functions ϕ(y, ·) and lm(y, ·) are not well defined on R3, but
using the fact that m− ≤ m ≤ m+, we can consider (globally) Lipschitz extension
of function lm(y, ·) (and then ϕ(y, ·)) away from the trajectories of the system, as
follows:

l̃m(y, ξ) = max
(
m−,min

(
m+, µ(y) +

µ′(y)
µ(y)

ξ2 +
Dξ2 + ξ3

−ξ2 +D(sin − y)

))
,

ϕ̃(y, ξ) =
(
ξ2 −D(sin − y)

)[(
µ′′(y)µ(y)− (µ′(y))2

) ξ22
µ2(y)

+
µ′(y)
µ(y)

ξ3 + µ′(y)ξ2
]

−Dξ3 +
(
ξ3 +Dξ2

)(
l̃m(y, ξ)− µ(y)− µ′(y)

µ(y)
ξ2

)
.

Then one obtains a construction of a high gain observer.

Proposition 2.5. There exist numbers a > 0 and b > 0 such that the observer

˙̂
ξ = Aξ̂ +

 0
0

ϕ̃(y, ξ̂)

−
 3θ

3θ2

θ3

 (ξ̂1 − y) ,

(m̂, x̂) =
(
l̃m(y, ξ̂)lx(y, ξ̂)

) (2.4)

guarantees the convergence

max
(
|m̂(t)−m|, |x̂(t)− x(t)|

)
≤ ae−bθt‖ξ̂(0)− ξ(0)‖ (2.5)

for any θ large enough and t ≥ 0.

Proof. Consider a trajectory of dynamics (2.2). Define Kθ = −
[
3θ 3θ2 θ3

]T .
One can check that Kθ = −P−1

θ CT , where Pθ is solution of the algebraic equation

θPθ +ATPθ + PθA = CTC.

Let e = ξ̂ − ξ be the error vector. One has

ė = (A+KθC)e+

 0
0

ϕ̃(y, ξ̂)− ϕ̃(y, ξ)


where ϕ̃(y, ·) is (globally) Lipschitz on R3. Using the result in [2], there exists two
constants α > 0 and β > 0 such that ‖e(t)‖ ≤ αe−βθt‖e(0)‖ for θ large enough.
Finally, functions l̃m(y, ·), lx(y, ·) being also (globally) Lipschitz on R3, one obtains
the inequality (2.5). �

3. Numerical examples

Consider a Monod’s growth function where µmax = 5 and ks = 1 then system
(2.2) becomes

ṡ = − 5s
1 + s

x+ 2(sin − s) ,

ẋ = (
5s

1 + s
−m) x .
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Figure 2. The s − x behaviour for sin = 1 (left) which satisfies
µ(sin) > m then E∗ is GAS and for sin = 0.1 (right) which satisfies
µ(sin) < m then E0 is GAS.

In a first step we suppose that m = 0.5, D = 2 and we validate the stability
results presented in Proposition 2.2 (see Figure 2).

In a second step, we suppose that parameter m is unknown and we used the
observer proposed in Proposition 2.4 to reconstruct parameter m and state variable
x. Considered initial conditions are s(0) = 1 and x(0) = 1 where sin = 5 and
D = 2. By assumption A1, parameter m is chosen, along with a priory bounds
m− = 0.1 ≤ m = 0.5 ≤ m+ = 1. We have chosen a gain parameter θ = 4 that
provides a small error on the estimation of the parameter m and the state variable
x (see Figure 3).
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Figure 3. Graph of observation y, estimation of parameter m and
state variable x in the case of noised measurements.

Conclusion. We considered a simple mathematical model involving biomass growth
on organic materials in a waste water treatment plants (membrane bioreactor pro-
cess). Details of qualitative analysis are given. A high gain observer is proposed
that permits the reconstruction of the biomass concentration and the endegenous
decay based on on-line measurements of the chemical oxygen demand (CDO).
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