\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2015 (2015), No. 306, pp. 1--12.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2015 Texas State University.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2015/306\hfil Euler-Bernoulli viscoelastic equation] {Blow-up for the Euler-Bernoulli viscoelastic equation with a nonlinear source} \author[Z. Yang, G. Fan \hfil EJDE-2015/306\hfilneg] {Zhifeng Yang, Guobing Fan} \address{Zhifeng Yang \newline College of Mathematics and Computer Science, Hunan Normal University, Changsha, Hunan, 410081, China.\newline College of Mathematics and Statistics, Hengyang Normal University, Hengyang, Hunan 421002, China} \email{zhifeng\_yang@126.com} \address{Guobing Fan (corresponding author) \newline Hunan University of Finance and Economics, Changsha, Hunan 410205, China} \email{fan\_guobing@126.com} \thanks{Submitted September 1, 2015. Published December 16, 2015.} \subjclass[2010]{35L35, 35G16} \keywords{Viscoelastic equation; blow-up; nonlinear source} \begin{abstract} In this article, we consider the Euler-Bernoulli viscoelastic equation $$ u_{tt}(x,t)+ \Delta^2 u(x,t)-\int_0^t g(t-s)\Delta^2 u(x,s)ds=|u|^{p-1}u $$ together with some suitable initial data and boundary conditions in $\Omega\times (0,+\infty)$. Some sufficient conditions on blow-up of solutions are obtained under different initial energy states. And from these results we can clearly understand the competitive relationship between the viscoelastic damping and source. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}[theorem]{Remark} \allowdisplaybreaks \section{Introduction} The Euler-Bernoulli equation \begin{equation}\label{eq1.1} u_{tt}(x,t)+ \Delta^2 u(x,t)+h(u_t)=f(u),\quad (x,t)\in \mathbb{R}^n \times(0,+\infty), \end{equation} describes the deflection $u(x,t)$ of a beam (when $n=1$) or a plate (when $n=2$). Where $$ \Delta^2 u:= \Delta (\Delta u)=\sum_{j=1}^n \Big(\sum_{i=1}^n u_{x_ix_i} \Big)_{x_jx_j}, $$ $h$ and $f$ represent the friction damping and the source respectively. The blow-up properties of this model have been extensively studied. For example, Messaoudi \cite{refSAM} studied the equation \begin{equation}\label{eq1.2} u_{tt}(x,t)+ \Delta^2 u(x,t)+a|u_t|^{m-2}u_t=b|u|^{p-2}u, \end{equation} where $a,b>0$ and $p,m>2$ and proved that the solution blows up in finite time with negative initial energy when $m0$. When $E(0)<0$ and $00$, we here solve \eqref{eq1.5} by introducing the so-called positive type function. \section{Preliminaries and statement of main results} Throughout this article, $C$ denotes a generic positive constant. It may be different from line to line. And we use the standard Lebesgue space $L^p(\Omega)$ with their usual norms $\|\cdot\|_p$. We first state the general assumptions on $g$ and $p$ as follows: \begin{itemize} \item[(A1)] $g\in C^1([0,\infty))$ is a non-negative and non-increasing function satisfying \begin{equation}\label{eq2.1} 00. $$ \item[(A3)] If the space dimension $n=1,2,3,4$, then $10$ small enough. \end{theorem} Now, we define the following two functionals: \begin{gather}\label{eq2.4} I(t):=I(u(t))=\|\Delta u\|_2^2-\|u\|_{p+1}^{p+1}, \\ \label{eq2.5} \begin{aligned} E(t):=E(u(t))&=\frac{1}{2}\|u_t\|_2^2+\frac{1}{2}\Big(1-\int_0^t g(s)ds\Big)\|\Delta u\|_2^2 \\ &\quad +\frac{1}{2}(g\circ \Delta u)(t) -\frac{1}{p+1}\|u\|_{p+1}^{p+1}. \end{aligned} \end{gather} By \eqref{eq2.2} and the assumption (A1), some direct computations yield \begin{equation}\label{eq2.6} E'(t)=\frac{1}{2}(g'\circ \Delta u)(t) -\frac{1}{2}g(t)\|\Delta u\|_{2}^{2}\leq 0. \end{equation} The following four lemmas are necessary to prove our main results. The first one is the Sobolev-Poincar\'{e} inequality \cite[Chapter 4]{refRAA-JFJ}. \begin{lemma} \label{lem2.3} Let $q$ be a number with $2\leq q<\infty(n=1,2,3,4)$ or $2\leq q \leq 2n/(n-4)(n\geq 5)$, then for $u\in H_0^2(\Omega)$ there exists a positive $C_*=C(\Omega,q)$ such that $\|u\|_q \leq C_* \|\Delta u\|_2$. \end{lemma} \begin{lemma} \label{lem2.4}. Assume that {\rm (A1)} holds. If $\|u_0\|_{p+1}> \lambda_0 \equiv B_0^{\frac{-2}{p-1}}$ and $E(0) \lambda_0$ and $\|\Delta u\|_2>B_0^{\frac{-(p+1)}{p-1}}$ for all $t\geq 0$, where $B_0=\frac{B}{\sqrt{1-k}}$ for $\|u\|_{p+1}\leq B \|\Delta u\|_2$. \end{lemma} \begin{proof} By \eqref{eq2.5}, we have \begin{equation}\label{eq2.7} \begin{aligned} E(t) &\geq \frac{1}{2}\Big(1-\int_0^t g(s)ds\Big)\|\Delta u\|_2^2 -\frac{1}{p+1}\|u\|_{p+1}^{p+1} \\ &\geq \frac{1-k}{2}\|\Delta u\|_{p+1}^2-\frac{1}{p+1}\|u\|_{p+1}^{p+1} \\ &\geq \frac{1}{2B_0^2}\|u\|_2^2-\frac{1}{p+1}\|u\|_{p+1}^{p+1}. \end{aligned} \end{equation} Denote \[ f(x)=\frac{1}{2B_0^2}x^2-\frac{1}{p+1}x^{p+1}, \quad x\geq 0. \] Then, we easily deduce that $f(x)$ takes its maximum value $E_0$ at $\lambda_0$. Since $E_0>E(0)\geq e(t)\geq f(\|u\|_{p+1})$ for all $t\geq 0$, there is no time $t^*$ such that $\|u(t^*)\|_{p+1}=\lambda_0$. By the continuity of the $\|u(t)\|_{p+1}$-norm with respect to the time variable, one has $\|u(t)\|_{p+1}>\lambda_0$ for all $t\geq 0$, and consequently, $$ \|\Delta u\|_2 \geq \frac{1}{\sqrt{1-k}B_0}\|u\|_{p+1} >\frac{1}{\sqrt{1-k}}B_0^{\frac{-(p+1)}{p-1}}>B_0^{\frac{-(p+1)}{p-1}}. $$ This completes the proof. \end{proof} \begin{lemma} \label{lem2.5} ~Assume that $g(t)$ satisfies {\rm (A1)} and {\rm (A2)}, and $u(t)$ is the corresponding solution of the problem \eqref{eq1.5}. Moreover, the function $\Phi(t)$ is twice continuously differentiable, satisfying \begin{equation} \label{eq2.8} \begin{gathered} \Phi''(t)+\Phi'(t)>\int_0^t g(t-s) \int_\Omega \Delta u(x,s)\Delta u(x,t)\,dx\,ds \\ \Phi(0)>0,\quad \Phi'(0)>0, \end{gathered} \end{equation} for every $t\in [0,T_0)$. Then $\Phi(t)$ is strictly increasing on $[0,T_0)$. \end{lemma} \begin{proof} We first consider the auxiliary ODE \begin{equation} \label{eq2.9} \begin{gathered} \varphi''(t)+\varphi'(t) =\int_0^t g(t-s)\int_\Omega \Delta u(x,s)\Delta u(x,t)\,dx\,ds \\ \varphi(0)=\Phi(0),\quad \varphi'(0)=0 \end{gathered} \end{equation} for every $t\in [0,T_0)$. The solution of the problem \eqref{eq2.9} is \begin{equation}\label{eq2.10} \varphi(t)=\varphi(0)+\int_0^t \frac{e^{-s}-e^{-t}}{e^{-s}} \int_0^s g(s-\tau)\int_\Omega \Delta u(x,s)\Delta u(x,\tau) \,dx\,d\tau ds, \end{equation} $t\in [0,T_0)$. Then, by (A2) we obtain \begin{equation}\label{eq2.11} \begin{aligned} &\varphi' (t)\\ &= \int_0^t e^{s-t}\int_0^s g(s-\tau)\int_\Omega \Delta u(x,s) \Delta u(x,\tau) \,dx\,d\tau ds \\ &= e^{-t} \int_\Omega \int_0^t \big( e^{s/2} \Delta u(x,s) \big) \int_0^s \left( e^{\frac{s-\tau}{2}}g(s-\tau) \right) \left(e^{\tau/2} \Delta u(x,\tau)\right) \,d\tau\,ds\,dx \\ &\geq 0, \quad \forall t\in [0,T_0). \end{aligned} \end{equation} Therefore, we have $\varphi(t)\geq \varphi(0)=\Phi(0)$. Note that $\Phi'(0)>\varphi'(0)$. We next show that \begin{equation}\label{eq2.12} \Phi'(t)>\varphi'(t),\quad \forall t\geq 0. \end{equation} Assume that \eqref{eq2.12} is not valid. This implies that there exists $t_0>0$ satisfying \begin{equation}\label{eq2.13} t_0=\min\{t\geq 0:\Phi'(t)=\varphi'(t)\}. \end{equation} Then we have the problem \begin{equation} \label{eq2.14} \begin{gathered} \Phi''(t)-\varphi''(t)+\Phi'(t)-\varphi'(t)>0 \\ \Phi(0)-\varphi(0)=0,\quad \Phi'(0)-\varphi'(0)>0 \end{gathered} \end{equation} for every $t\in [0,T_0)$. This problem can be solved as $$ \Phi'(t_0)-\varphi'(t_0)>e^{-t_0}(\Phi'(0)-\varphi'(0))>0 $$ which contradicts \eqref{eq2.13}. Thus, we see that $\Phi'(t)>0$, which implies our desired result. \end{proof} \begin{lemma} \label{lem2.6} Assume that $(u_0,u_1)\in (H_0^2(\Omega)\times H_0^1(\Omega))$ satisfies $\int_\Omega u_0(x)u_1(x)dx \geq 0$. If the solution $u(t)$ of \eqref{eq1.5} exists on $[0,T)$ and satisfies $I(u)<0$, then $\|u\|_2^2$ is strictly increasing on $[0,T)$. \end{lemma} \begin{proof} A direct computation yields \begin{equation}\label{eq2.15} \begin{aligned} &\frac{1}{2}\frac{d^2}{dt^2}\|u(t)\|_2^2\\ &= \int_\Omega \left(|u_t(t)|^2+uu_{tt}\right) \,dx \\ &= \|u_t\|_2^2+\|u\|_{p+1}^{p+1}- \|\Delta u\|_2^2 +\int_\Omega \Delta u(t) \int_0^t g(t-s)\Delta u(s) \,ds\, dx \\ &= \|u_t\|_2^2-I(u(t))+\int_\Omega \Delta u(t) \int_0^t g(t-s)\Delta u(s) \,ds\, dx \\ &> \int_\Omega \Delta u(t) \int_0^t g(t-s)\Delta u(s) \,ds\,dx \geq 0, \end{aligned} \end{equation} where the last inequality comes from Remark \ref{rmk2.1}. This implies \begin{equation}\label{eq2.16} \frac{d}{dt} \|u(t)\|_2^2 > 2\int_\Omega u_0(x)u_1(x)dx \geq 0.\end{equation} Thus, we obtain \begin{equation}\label{eq2.17} \frac{d^2}{dt^2}\|u(t)\|_2^2+\frac{d}{dt} \|u(t)\|_2^2 > \int_\Omega \Delta u(t) \int_0^t g(t-s)\Delta u(s) \,ds\,dx. \end{equation} Therefore, this lemma follows from Lemma \ref{lem2.5}. \end{proof} Our main results read as follows. \begin{theorem} \label{thm2.7} Assume that {\rm (A1)} and {\rm (A3)} hold. If $k<\frac{p^2-1}{p^2}$, then, for any initial data $u_0\in H_0^2(\Omega)$ and $u_1 \in H_0^1(\Omega)$ satisfying $E(0)<0$, the corresponding solution of the problem \eqref{eq1.5} blows up in finite time. \end{theorem} \begin{theorem} \label{thm2.8} Assume that {\rm (A1)} and {\rm (A3)} hold. If $k<\frac{p^2-1}{p^2}$, then, for any initial data $u_0\in H_0^2(\Omega)$ and $u_1 \in H_0^1(\Omega)$ satisfying $\|u_0\|_{p+1}>\lambda_0$ and $E(0)0$) \end{theorem} \begin{theorem} \label{thm2.9} Assume that {\rm (A1)--(A3)} hold. If $k<\frac{p-1}{p+1}$, then, for any initial data $u_0\in H_0^2(\Omega)$ and $u_1 \in H_0^1(\Omega)$ satisfying $E(0)>0$, $\int_\Omega u_0u_1dx>0$, $I(u_0)<0$ and \begin{equation}\label{eq2.18} \|u_0\|_2^2>\frac{4(p+1)C_*^2}{(p-1)-(p+1)k}E(0), \end{equation} where $C_*$ is the constant of Poincare inequality on $\Omega$, the corresponding solution of the problem \eqref{eq1.5} blows up in finite time. \end{theorem} \begin{remark} \label{rmk2.10} \rm From condition \eqref{eq2.18}, when the initial energy is in the high state, the solution of \eqref{eq1.5} also blows up in finite time if we can ensure that the initial value $u_0$ satisfy \eqref{eq2.18}. In other words, \eqref{eq2.18} is a restrictive condition to $u_0$, not to $E(0)$. \end{remark} \section{Proof of main results} The method of the proof of Theorem \ref{thm2.7} and Theorem \ref{thm2.8} is standard. And the idea comes from H. A. Levine etc.. For the convenience of readers, we here write out the process of the proof in detail. And the improved convexity method will be used to prove Theorem \ref{thm2.9}. Readers can refer to the relevant literatures \cite{refJMB,refVG-GT,refHAL,refHAL2,refHAL-GT,refGT,refYW,refYX} and the references therein. \vskip 0.1in \subsection{Proof of Theorem \ref{thm2.7}} Let \begin{equation}\label{eq3.1} L(t)=H^{1-\alpha}(t)+\varepsilon \int_\Omega u u_t dx. \end{equation} Here, $H(t)=-E(t)$, $0<\alpha \leq \frac{p-1}{2(p+1)}$ and $\varepsilon>0$ to be choose later. First, by \eqref{eq2.6}, we easily obtain $H'(t)\geq 0$ and $00 \end{aligned} \end{equation} Thus, by \eqref{eq3.2} and \eqref{eq3.3}, we obtain \begin{equation}\label{eq3.4} \begin{aligned} L'(t) & \geq \varepsilon \frac{p+3}{2} \|u_t\|_2^2 + \varepsilon (p+1)H(t)+ \varepsilon\left( \frac{p+1}{2}- \delta \right) (g \circ \Delta u)(t) \\ &\quad +\varepsilon\Big[\frac{p-1}{2} -\big(\frac{p-1}{2}+\frac{1}{4\delta}\big)\int_0^t g(s)ds \Big]\|\Delta u\|_2^2. \end{aligned} \end{equation} Now, choosing $0<\delta<\frac{p+1}{2}$ and according to the hypothesis $k<\frac{p^2-1}{p^2}$, we have $\frac{p+1}{2}- \delta>0$ and $\frac{p-1}{2}-\left(\frac{p-1}{2}+\frac{1}{4\delta}\right)\int_0^t g(s)ds>0$. So we can deduce that \begin{equation}\label{eq3.5} L'(t)\geq C\left(H(t)+\|u_t\|_2^2+\|\Delta u\|_2^2+(g \circ \Delta u)(t)\right). \end{equation} Next, thanks to H\"older and Young inequalities, we have \begin{equation}\label{eq3.6} \begin{aligned} \Big| \int_\Omega u u_t dx \Big|^{\frac{1}{1-\alpha}} & \leq \|u\|_2^{\frac{1}{1-\alpha}} \|u_t\|_2^{\frac{1}{1-\alpha}} \\ &\leq C\|u\|_{p+1}^{\frac{1}{1-\alpha}}\|u_t\|_2^{\frac{1}{1-\alpha}} \\ &\leq C \left( \|u\|_{p+1}^s + \|u_t\|_2^2 \right) \\ &\leq C \left( \|\Delta u\|_2^2 + \|u\|_{p+1}^{p+1} + \|u_t\|_2^2 \right) \\ &\leq C \left( \|\Delta u\|_2^2 + H(t) + (g \circ \Delta u)(t) + \|u_t\|_2^2 \right), \end{aligned} \end{equation} where $2\leq s=\frac{2}{1-2\alpha} \leq p+1$. Thus, we obtain \begin{equation}\label{eq3.7} \begin{aligned} L^{\frac{1}{1-\alpha}}(t) & = \Big(H^{1-\alpha}(t)+\varepsilon \int_\Omega u u_t dx \Big)^{\frac{1}{1-\alpha}} \\ &\leq 2^{\frac{1}{1-\alpha}} \Big( H(t)+\big| \int_\Omega u u_t dx \big|^{\frac{1}{1-\alpha}} \Big) \\ & \leq C \big( \|\Delta u\|_2^2 + H(t) + (g \circ \Delta u)(t) + \|u_t\|_2^2 \big), \end{aligned} \end{equation} which implies $$ L' (t)\geq \lambda L^{\frac{1}{1-\alpha}}(t), $$ where $\lambda$ is a positive constant depending on $C$ and $\varepsilon$. Therefore $$ L(t)=\Big(L^{\frac{\alpha}{\alpha-1}}(0)+\frac{\alpha}{\alpha-1}\lambda t \Big)^{\frac{\alpha-1}{\alpha}}. $$ So $L(t)$ approaches infinite as $t$ tends to $\frac{1-\alpha}{\alpha\lambda L^{\frac{\alpha}{1-\alpha}}(0)}$. And this completes the proof. \subsection{Proof of Theorem \ref{thm2.8}} Let $G(t)=E_0+H(t)$, then we have $G' (t)\geq 0$. By Lemma \ref{lem2.4} we have \begin{equation}\label{eq3.8} \begin{aligned} 00. \end{aligned} \end{equation} Next, similar to the proof of Theorem \ref{thm2.7}, we easily deduce that $$ F' (t)\geq \lambda F^{\frac{1}{1-\alpha}}(t) $$ which shows that $F(t)$ blows up in time $T^*\leq \frac{1-\alpha}{\alpha\lambda F^{\frac{\alpha}{1-\alpha}}(0)}$. \subsection{Proof of Theorem \ref{thm2.9}} We first claim that \begin{gather}\label{eq3.11} I(u(t))<0, \\ \label{eq3.12} \|u(t,\cdot)\|_2^2>\frac{4(p+1)C_*^2}{(p-1)-(p+1)k}E(0) \end{gather} for every $t\in [0,T)$. In fact, if \eqref{eq3.11} does not hold, then there exists a time $t_1$ such that \begin{equation}\label{eq3.13} t_1=\min\{t\in (0,T): I(u(t))=0\}>0. \end{equation} By the continuity of the solution $u(x,t)$ as a function of $t$, we deduce that $I(u(t))<0$, for all $t\in [0,t_1)$ and $I(u(t_1))=0$. Thus, by Lemma \ref{lem2.6} we obtain $$ \|u(t,\cdot)\|_2^2>\|u_0\|_2^2>\frac{4(p+1)C_*^2}{(p-1)-(p+1)k}E(0),\quad \forall t\in [0,t_1). $$ In addition, it is obvious that $\|u(t,\cdot)\|_2^2$ is continuous on $[0,t_1]$, which implies that \begin{equation}\label{eq3.14} \|u(t_1,\cdot)\|_2^2>\frac{4(p+1)C_*^2}{(p-1)-(p+1)k}E(0). \end{equation} On the other hand, it follows from \eqref{eq2.5}, \eqref{eq2.6} and \eqref{eq3.13} that \begin{equation}\label{eq3.15} \begin{aligned} &\Big(\frac{1-k}{2}-\frac{1}{p+1}\Big)\|\Delta u(t_1,\cdot)\|_2^2 \\ &< \frac{1}{2}\Big(1-\int_0^{t_1} g(s)ds\Big)\|\Delta u(t_1,\cdot)\|_2^2 -\frac{1}{p+1}\|u(t_1,\cdot)\|_{p+1}^{p+1} \leq E(0). \end{aligned} \end{equation} Thus, by Lemma \ref{lem2.3} and the hypothesis $k<\frac{p-1}{p+1}$, we deduce that \begin{equation}\label{eq3.16} \|u(t_1,\cdot)\|_2^2\leq \frac{2(p+1)C_*^2}{(p-1)-(p+1)k}E(0). \end{equation} Obviously, there is a contradiction between \eqref{eq3.14} and \eqref{eq3.16}. Thus, we have proved that \eqref{eq3.11} is true for every $t\in [0,T)$. Furthermore, by Lemma \ref{lem2.6} we see that \eqref{eq3.12} is also valid on $[0,T)$. Now, we prove that the solution of \eqref{eq1.5} blows up in a finite time. To this end, we define the following auxiliary function \begin{equation}\label{eq3.17} M(t)=\|u(t,\cdot)\|_2^2+\int_0^t \|u (s,\cdot)\|_2^2 ds+ (b-t)\|u_0 \|_2^2+a(c+t)^2, \end{equation} where $a$, $b$ and $c$ are positive constants which will be determined in the sequel. Direct computation yields \begin{gather}\label{eq3.18} M' (t)=2(u(t),u_t(t))+2\int_0^t (u(s),u_s(s))ds + 2a(c+t), \\ \label{eq3.19} M'' (t)= 2 \|u_t\|_2^2+2(u,u_{tt}) +2(u,u_t) + 2a. \end{gather} By \eqref{eq2.16} and \eqref{eq1.5}, we see that \begin{equation}\label{eq3.20} \begin{aligned} &M'' (t)\\ &\geq 2 \|u_t\|_2^2+2(u,u_{tt}) + 2a \\ &= 2 \|u_t\|_2^2+2(u,-\Delta^2 u+\int_0^t g(t-s)\Delta^2 u(s)ds+|u|^{p-1}u) + 2a \\ &= 2 \|u_t\|_2^2+2\|u\|_{p+1}^{p+1}-2\|\Delta u\|_2^2+2a + 2\int_0^t g(t-s)\int_\Omega |\Delta u(t)|^2\,dx\,ds \\ &\quad +2\int_0^t g(t-s)\int_\Omega \Delta u(t)(\Delta u(s)-\Delta u(t))ds. \end{aligned} \end{equation} Next, by using Young's inequality to estimate the last term in \eqref{eq3.20}, we have \begin{equation}\label{eq3.21} \int_0^t g(t-s)\int_\Omega \Delta u(t)(\Delta u(s)-\Delta u(t))ds\leq \frac{\int_0^t g(s)ds}{2\delta}\|\Delta u\|_2^2+\frac{\delta}{2}(g\circ \Delta u)(t), \end{equation} for all $\delta>0$. Now, we pick $\delta=\frac{2k}{(p-1)(1-k)}$. Since $k<\frac{p-1}{p+1}<\frac{p^2-1}{p^2+1}$, we have $p+1-\delta>0$. And we easily obtain \begin{equation}\label{eq3.22} \begin{aligned} &M'' (t)\\ &\geq (p+3)\|u_t\|_2^2+\Big[(p-1)\Big(1-\int_0^t g(s)ds\Big) -\frac{1}{\delta}\int_0^t g(s)ds\Big]\|\Delta u\|_2^2 \\ &\quad +(p+1-\delta)(g\circ \Delta u)(t)-2(p+1)E(t) + 2a \\ &\geq (p+3)\|u_t\|_2^2 +\Big[(p-1)\left(1-k\right)-\frac{k}{\delta}\Big] \|\Delta u\|_2^2+(p+1-\delta)(g\circ \Delta u)(t) \\ &\quad -2(p+1)E(0)+2(p+1)\int_0^t \|u_s (s,\cdot)\|_2^2 ds + 2a \\ &\geq (p+3)\|u_t\|_2^2+2(p+1)\int_0^t \|u_s (s,\cdot)\|_2^2 ds +2a \\ &\quad +\frac{(p-1)(1-k)}{2C_*^2}\|u_0\|_2^2-2(p+1)E(0), \end{aligned} \end{equation} where the last inequality follows from Lemma \ref{lem2.3} and Lemma \ref{lem2.6}. Noting the condition \eqref{eq2.18} and $k<\frac{p-1}{p+1}$, we see that $$ \frac{(p-1)(1-k)}{2C_*^2}\|u_0\|_2^2-2(p+1)E(0)>0. $$ Thus, we have $M'' (t)>0$ for every $t\in (0,T)$. Then, by $M'(0)> 0$, we see that $M(t)$ and $M'(t)$ are strictly increasing on $[0,T)$. Next, we select the positive constants $a$, $b$ and $c$ such that \begin{gather*} (p+1)a<\frac{(p-1)(1-k)}{2C_*^2}\|u_0\|_2^2-2(p+1)E(0),\\ b\geq \frac{p-1}{4}\frac{M(0)}{M'(0)}, \\ \frac{p-1}{2}\Big(\int_\Omega u_0u_1 dx + ac\Big)\geq \|u_0\|_2^2. \end{gather*} In addition, we denote \begin{gather*} P:=\|u(t,\cdot)\|_2^2+\int_0^t \|u (s,\cdot)\|_2^2 ds+a(c+t)^2,\\ Q:=\frac{M'(t)}{2},\quad R:=\|u_t(t,\cdot)\|_2^2+\int_0^t \|u_s(s,\cdot)\|_2^2 ds+a. \end{gather*} Thus, we have $M(t)\geq P$ and $M'' (t)\geq (p+3)R$ for every $t\in [0,b)$. It follows that \begin{equation}\label{eq3.23} M'' (t)M'(t)-\frac{p+3}{4}(M'(t))^2\geq (p+3)(PR-Q^2)\geq 0, \end{equation} where the last inequality comes from $ P\theta^2-2Q\theta+R\geq 0$ for every $\theta\in \textbf{R}$. Now, we pick $\beta=\frac{p-1}{4}>0$. Direct computation yields \begin{gather*} (M^{-\beta})'=-\beta M^{-\beta-1}M'(t)<0, \\ (M^{-\beta})''=-\beta M^{-\beta-2}\Big(M'' (t)M'(t) -\frac{p+3}{4}(M'(t))^2 \Big)<0. \end{gather*} This means that $M^{-\beta}$ is concave. Noting that $M(0)>0$, we see that the function $M^{-\beta}\to 0$ as $t\to T^{*-}$ and $T^*<\frac{(p-1)M(0)}{4M'(0)}$. Therefore, there exists a finite time $T^*>0$ such that $$ \lim_{t\to T^{*-}} \|u(t,\cdot)\|_2^2\to \infty. $$ Thus, the proof of Theorem \ref{thm2.9} is complete. \begin{remark} \label{rmk3.1} \rm A comparison of Theorems \ref{thm2.7}, \ref{thm2.8} and \ref{thm2.9} indicates that we must reduce the effect of viscoelastic damping, or increase the source, or both of them to ensure that the solution of the concerned system blows up in finite time when the initial energy state transitions from low to high. \end{remark} \subsection*{Acknowledgments} This research was supported by the Natural Science Foundation of Hunan Province, China (Grant No. 14JJ7070) and by the Key Built Disciplines of Hunan Province (No. [2011]76). The author would like to thank professor Qiuyi Dai for his useful suggestions and continuous encouragement. \begin{thebibliography}{00} \bibitem{refNEA} N. E. Amroun, A. Benaissa; Global existence and energy decay of solutions to a Petrovsky equation with general nonlinear dissipation and source term, \emph{Georgian Math. J.}, 2006, \textbf{13 (3)}: 397-410. \bibitem{refRAA-JFJ} R. A. Adams, J. F. John; \emph{Sobolev Spaces}, 2nd edition. Elsevier, Singapore, 2009. \bibitem{refJMB} J. M. Ball; Finite time blow-up in nonlinear problem, in: \emph{M.G. Grandall(Ed.), Nonlinear Evolution equations, Academic Press}, New York, 1978:189-205. \bibitem{refMMC} M. M. Cavalcanti, V. N. Domingos, J. A. Soriano; Exponential decay for the solution of semilinear viscoelastic wave equations with localized damping, \emph{Electron. J. Diff. Eq.}, \textbf{2002 (2002)}: 1-14. \bibitem{refWC-YZ} W. Chen, Y. Zhou; Global nonexistence for a semilinear Petrovsky equation, \emph{Nonlinear Analysis:TMA}, 2009, \textbf{70(9)}: 3203-3208. \bibitem{refMF-AM} M. Fabrizio, A. Morro; \emph{Mathematical problems in linear viscoelasticity}, SIAM Stud. Appl. Math., 1992, \textbf{12(1)}. \bibitem{refVG-GT} V. Georgiev, G. Todorova; Existence of a solution of the wave equation with nonlinear damping and source terms, \emph{J. Diff. Eq.}, 1994, \textbf{109}: 295-308. \bibitem{refKBH} K. B. Hannsgen; Indirect abelian theorems and a linear Volterra equation, \emph{Trans. Amer. Math. Soc.}, 1969, \textbf{142}: 539-555. \bibitem{refHAL} H. A. Levine; Instability and nonexistence of global solution of nonlinear wave equations of the form $Pu_t=-Au+F(u)$, \emph{Trans. Amer. Math. Soc.}, 1974, \textbf{192:}1-21. \bibitem{refHAL2} H. A. Levine; Some additional remarks on the nonexistence of global solutions to nonlinear wave equations, \emph{SIAM. J. Math. Anal.}, 1974, \textbf{5}: 138-146. \bibitem{refGL-YS-WL} G. Li, Y. Sun, W. Liu; On asymptotic behavior and blow-up of solutions for a nonlinear viscoelastic Petrovsky equation with positive initial energy, \emph{J. Function Spaces and Applications}, 2013, Article ID 905867, 7 pages,http://dx.doi.org/10.1155/2013/905867. \bibitem{refHAL-GT} H. A. Levine, G. Todorova; Blow-up of solutions of the Cauchy problem for a wave equation with nonlinear damping and source terms and positive initial energy, \emph{Proc. Amer. Math. Soc.}, 2000, \textbf{129}: 793-805. \bibitem{refSAM} S. A. Messaoudi; Global existence and nonexistence in s system of Petrovsky, \emph{J. Math. Anal. Appl.}, 2002, \textbf{265(2)}: 296-308. \bibitem{refSAM2} S. A. Messaoudi; Blow-up and global existence in a nonlinear viscoelastic wave equation, \emph{Math. Nachr.}, 2003, \textbf{260}: 58-66. \bibitem{refSAM3} S. A. Messaoudi; Blow-up of positive-initial-energy solutions of a nonlinear viscoelastic hyperbolic equation, \emph{J. Math. Anal. Appl.}, 2006, \textbf{320(2)}: 902-915. \bibitem{refTATAR} N.-e. Tatar; Arbitrary decay in linear viacoelasticity, \emph{J. Math. Phy.}, 2011, \textbf{52(1)}: 01350201-01350212. \bibitem{refGT} G. Todorova; Cauchy problm for a nonlinear wave equation with nonlinear damping and source terms, \emph{Nonlinear Analysis}, 2000, \textbf{41}: 891-905. \bibitem{refFT-AP} F. Tahamtani and A. Pyravi, Global existence, uniform decay and exponential growth of solutions for a system of viscoelastic Petrovsky equations, \emph{Turkish J. Math.}, 2014, \textbf{38(1)}: 87-109. \bibitem{refYW} Y. Wang; A sufficient condition for finite time blow-up of the nonlinear Klein-Gordon equations with arbitrarily positive initial energy, \emph{Proc. Amer. Math. Soc.}, 2008, \textbf{136}: 3477-3482. \bibitem{refYX} Y. Xiong; Blow-up and polynomial decay of solutions for a viscoelastic equation with a nonlinear source, \emph{J. Anal. Appl.}, 2012, \textbf{31:}251-266. \end{thebibliography} \end{document}