\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2015 (2015), No. 298, pp. 1--12.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2015 Texas State University.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2015/298\hfil Asymptotic behavior of solutions] {Asymptotic behavior of solutions to a degenerate quasilinear parabolic equation with a gradient term} \author[H. Li, X. Wang, Y. Nie, H. He \hfil EJDE-2015/298\hfilneg] {Huilai Li, Xinyue Wang, Yuanyuan Nie, Hong He} \address{Huilai Li \newline School of Mathematics, Jilin University, Changchun 130012, China} \email{lihuilai@jlu.edu.cn} \address{Xinyue Wang \newline Experimental School of the Affiliated Middle School to the Jilin University, Changchun 130021, China} \email{xinyuewang0000@163.com} \address{Yuanyuan Nie (corresponding author)\newline School of Mathematics, Jilin University, Changchun 130012, China} \email{nieyuanyuan@live.cn} \address{Hong He \newline School of Mathematics, Jilin University, Changchun 130012, China} \email{honghemath@163.com} \thanks{Submitted October 27, 2015. Published December 3, 2015.} \subjclass[2010]{35K65, 35K59, 35B33} \keywords{Critical Fujita exponent; degenerate; quasilinear; gradient term} \begin{abstract} This article concerns the asymptotic behavior of solutions to the Cauchy problem of a degenerate quasilinear parabolic equations with a gradient term. A blow-up theorem of Fujita type is established and the critical Fujita exponent is formulated by the spacial dimension and the behavior of the coefficient of the gradient term at $\infty$. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}[theorem]{Remark} \newtheorem{definition}[theorem]{Definition} \allowdisplaybreaks \section{Introduction} In this article, we study the asymptotic behavior of solutions to the Cauchy problem \begin{gather}\label{eq} \frac{\partial u}{\partial t}=\Delta u^m +b(|x|)x\cdot\nabla u^m+u^p, \quad x\in\mathbb{R}^n,\;t>0,\\ \label{initial} u(x,0)=u_0(x),\quad x\in\mathbb{R}^n, \end{gather} where $p>m>1$, $b\in C^{0,1}([0,+\infty))$ and $0\le u_0\in L^\infty(\mathbb{R}^n)$. The equation \eqref{eq} is a typical quasilinear parabolic equaton which is called the Newtonian filtration equation. It is noted that \eqref{eq} is degenerate at the points where $u=0$. In the semilinear case $m=1$, \eqref{eq} is the heat equation. The studies on asymptotic behavior of solutions to diffusion equations with nonlinear reaction began in 1966 by Fujita \cite{fujita}. There it was proved that for \eqref{eq}-\eqref{initial} with $m=1$ and $b\equiv0$, there does not exist a nontrivial nonnegative global solution if $1p_c$, there exist both nontrivial nonnegative global and blow-up solutions. This result shows that the exponent $p$ of the nonlinear reaction affects the properties of solutions directly. We call $p_c$ the critical Fujita exponent and such a result a blow-up theorem of Fujita type. The elegant work of Fujita revealed a new phenomenon of nonlinear evolution equations. There have been a number of extensions of Fujita's results in several directions since then, including similar results for numerous of quasilinear parabolic equations and systems in various of geometries (whole spaces, cones and exterior domains) with nonlinear reactions or nonhomogeneous boundary conditions, and even degenerate equations in domains with non-compact boundary \cite{andr2,andr}. We refer to the survey papers \cite{deng,levine} and the references therein, and more recent works \cite{fira,zhang1,qi,semi2,wang,winkler,zhang2,zheng2,zheng,Nie}. Among those extensions, it is Galaktionov \cite{gala1,gala2} who first investigated the blow-up theorem of Fujita type for \eqref{eq}-\eqref{initial} with $b\equiv0$ and obtained that $p_c=m+2/n$. As to nonlinear evolution equations with gradient terms, there are some studies for the semilinear case. In 1990, Meier \cite{meier} studied the critical Fujita exponent for the Cauchy problem of \begin{equation} \label{newin-1} \frac{\partial u}{\partial t}=\Delta u+\vec b(x)\cdot\nabla u+u^p,\quad x\in\mathbb{R}^n,\;t>0, \end{equation} where $\vec b\in L^\infty(\mathbb{R}^n;\mathbb{R}^n)$. It was proved that $$ p_c=1+\frac1{\lambda^*}, $$ where $\lambda^*$ is the maximal decay rate for solutions to \begin{equation} \label{newin-2} \frac{\partial w}{\partial t}=\Delta w+\vec b(x)\cdot\nabla w,\quad x\in\mathbb{R}^n,\;t>0, \end{equation} i.e. \begin{align*} \lambda^*=\sup\big\{&\lambda\in\mathbb{R}: \text{ there exists a nontrivial solution $w$ of \eqref{newin-2}}\\ &\text{such that } \limsup_{t\to+\infty} t^\lambda\|w(\cdot,t)\|_{L^\infty(\mathbb{R})}<+\infty\big\}. \end{align*} If $\vec b$ is constant, it is clear that $\lambda^*={n}/2$ and $p_c=1+2/n$. However, for nonconstant $\vec b\in L^\infty(\mathbb{R}^n;\mathbb{R}^n)$, $\lambda^*$ and $p_c$ are unknown generally. In 1993, Aguirre and Escobedo \cite{ag} considered the Cauchy problem of \[ \frac{\partial u}{\partial t}=\Delta u+\vec b_0\cdot\nabla u^q+u^p, \quad x\in\mathbb{R}^n,\;t>0, \quad(0\neq \vec b_0\in \mathbb{R}^n,\,q>1) \] and proved that $$ p_c=\min\big\{1+\frac{2}{n},1+\frac{2q}{n+1}\big\}. $$ In \cite{Nie}, the semilinear problem \eqref{eq}-\eqref{initial} with $m=1$ was studied and it was shown that if $b$ satisfies \begin{gather} \label{b1} \lim_{s\to+\infty}s^2b(s)=\kappa,\quad(-\infty\le\kappa\le+\infty),\\ \label{b2} \inf\{s^2b(s):s>0\}>-n\text{ in the case } -n<\kappa\le+\infty, \end{gather} then the critical Fujita exponent is \[ p_c=\begin{cases} 1, &\kappa=+\infty, \\ 1+2/(n+\kappa),&-n<\kappa<+\infty,\\ +\infty,&-\infty\le\kappa\le-n. \end{cases} \] As to the quasilinear parabolic equations with gradient terms, Suzuki \cite{suzuki} in 1998 considered the Cauchy problem of \[ \frac{\partial u}{\partial t}=\Delta u^m+\vec b_0\cdot\nabla u^q+u^p, \quad x\in\mathbb{R}^n,\;t>0, \quad(m\ge1,\,0\neq \vec b_0\in \mathbb{R}^n,\,p,q>1) \] and proved that if $q>m-1$ and $\max\{m,q\}\le p<\min\{m+2/n,m+2(q-m+1)/(n+1)\}$, then there does not exist any nontrivial nonnegative global solutions. In \cite{zheng}, the case $$ b(s)=\frac{\kappa}{s^2},\quad s>0,\quad(-\infty<\kappa<+\infty) $$ was studied. Since such a function is singular at $0$ when $\kappa\neq 0$, the authors considered the Neumann exterior problem \begin{gather*} \frac{\partial u}{\partial t}=\Delta u^m+\frac{\kappa}{|x|^2}x\cdot\nabla u^m+u^p, \quad x\in\mathbb{R}^n\setminus B_1,\;t>0, \\ \frac{\partial u^m}{\partial\nu}(x,t)=0,\quad x\in\partial B_1,\;t>0, \\ u(x,0)=u_0(x),\quad x\in\mathbb{R}^n\setminus\overline B_1 \end{gather*} and showed that its critical Fujita exponent is \[ p_c=\begin{cases} m+2/(n+\kappa), &-n<\kappa<+\infty,\\ +\infty, &-\infty<\kappa\le-n, \end{cases} \] where $B_1$ is the unit ball in $\mathbb{R}^n$ and $\nu$ is the unit inner normal vector to $\partial B_1$. Also they considered a special case for the Dirichlet exterior problem. In this article, we study the asymptotic behavior of solutions to the Cauchy problem \eqref{eq}-\eqref{initial}, where $b$ satisfies \eqref{b1} and \eqref{b2}. It is proved that the critical Fujita exponent to \eqref{eq}-\eqref{initial} can be formulated as \begin{equation} p_c=\begin{cases} m,&\kappa=+\infty, \\ m+2/(n+\kappa),&-n<\kappa<+\infty,\\ +\infty,&-\infty\le\kappa\le-n. \end{cases} \label{pc} \end{equation} That is to say, if $mp_c$, there exist both nontrivial nonnegative global and blow-up solutions to \eqref{eq}-\eqref{initial}. It is shown from \eqref{pc} that the behavior of the coefficient of the gradient term at $\infty$, together with the spacial dimension, determines precisely the critical Fujita exponent to \eqref{eq}-\eqref{initial}. The technique used in this paper is mainly inspired by \cite{semi1,semi2,zheng,Nie}. To prove the blow-up of solutions, we determine the interactions among the diffusion, the gradient and the reaction by a precise energy integral estimate instead of pointwise comparisons. The key is to choose a suitable weight for the energy integral. For the existence of global nontrivial solutions, we construct a global nontrivial supersolution. Noting that \eqref{eq} does not possess a self-similar construct, we have to seek a complicated supersolution and do some precise calculations. By the way, \eqref{b2} is used only for constructing a global nontrivial supersolution and it seems necessary when one constructs such a supersolution. This article is organized as follows. We give some preliminaries in \S 2, such as the well-posedness of \eqref{eq}-\eqref{initial} and some auxiliary lemmas. The blow-up theorems of Fujita type for \eqref{eq}-\eqref{initial} are obtained in \S 3. \section{Preliminaries} Equation \eqref{eq} is degenerate at the points where $u=0$. So, weak solutions are considered at those points in this paper. \begin{definition} \label{ddef1} \rm Let $00$, $\delta>1$ and $M_0>0$ depending only on $n$ and $b$, such that for each $R>R_0$, \begin{equation} \label{Nle1} \begin{aligned} \frac{d}{dt}\int_{\mathbb{R}^n}u(x,t)\psi_R(|x|) dx &\ge-M_0R^{-2}\int_{B_{\delta R}\setminus B_R} u^m(x,t)\psi_R(|x|) dx\\ &\quad +\int_{\mathbb{R}^n}u^p(x,t)\psi_R(|x|)dx, \end{aligned} \end{equation} for $t>0$, where $$ \psi_R(r)=\begin{cases} h(r),&0\le r\le R,\\ \frac12h(r)\Big(1+\cos\frac{(r-R)\pi}{(\delta-1)R}\Big),\quad&R0$, $\delta>1$ and $M_0>0$ depending only on $n$ and $b$, such that for each $R>R_0$, \begin{equation} \label{new-4} \Delta\psi_R(|x|)-\operatorname{div}(b(|x|)\psi_R(|x|)x) \ge-M_0R^{-2}\psi_R(|x|),\quad |x|>0. \end{equation} Substituting \eqref{new-4} into \eqref{Nle1-1} leads to \eqref{Nle1}. \end{proof} \begin{remark} \label{remark1} \rm Lemma \ref{lemma1} still holds if \eqref{b1} is replaced by $$ \limsup_{s\to+\infty} s^2b(s)=\kappa. $$ \end{remark} \begin{remark} \label{remark1-1} \rm The proof of Lemma \ref{lemma1} is invalid if $\kappa=+\infty$. In this case, \eqref{Nle1} holds for each fixed $R>0$, but $\delta>1$ and $M_0$ depend also on $R$. \end{remark} Next, we study self-similar supersolutions of \eqref{eq} of the form \begin{equation} \label{self} u(x,t)={(t+T)^{-\alpha}}v((t+T)^{-\beta}|x|),\quad x\in\mathbb{R}^n,\, t\ge0, \end{equation} where $$ \alpha=\frac{1}{p-1},\quad\beta=\frac{p-m}{2(p-1)}, $$ $T\ge1$ will be determined. If $v\in C^{0,1}([0,+\infty))$ with $v^m\in C^{1,1}([0,+\infty))$ solves \begin{equation} \label{ode} \begin{aligned} &(v^m)''(r)+\frac{n-1}{r}(v^m)'(r)+ (t+T)^{2\beta}b((t+T)^{\beta}r)r(v^m)'(r)\\ &+\beta rv'(r)+\alpha v(r)+v^p(r)\le0,\quad r>0 \end{aligned} \end{equation} for each $t>0$, then $u$ given by \eqref{self} is a supersolution to \eqref{eq}. \begin{lemma} \label{lemma3} Assume that $b\in C^{0,1}([0,+\infty))$ satisfies \eqref{b1} and \eqref{b2} with $-n<\kappa\le+\infty$, and $p>p_c$. Choose $-n<\kappa_1<\kappa_2<\kappa$ such that \begin{equation} \label{ww0} \inf\{s^2b(s):s>0\}>\kappa_1,\quad \kappa_2>\frac1{p-m}-n. \end{equation} Let $T=\eta^{-(m+2)/\beta}$ and \begin{equation} \label{vm1} v(r)=(\eta-A(r))_+^{1/(m-1)},\quad r\ge 0, \end{equation} where $s_+=\max\{0,s\}$, $0<\eta<1$ will be determined, while $A\in C^{1,1}([0,+\infty))$ satisfies $A(0)=0$ and \[ A'(r)=\begin{cases} A_1r, &0\le r\le \eta^{m+1},\\ A_2r+(A_1-A_2)\frac{\eta^{(m+1)(n+\kappa_2)}}{r^{n+\kappa_2-1}}, & \eta^{m+1}0,\;t>0. \end{equation} Therefore, for each $0<\eta<\eta_0$, it follows from \eqref{ww1} and \eqref{ww12} that \begin{align*} &(v^m)''(r)+\frac{n-1}{r}(v^m)'(r)+ (t+T)^{2\beta}b((t+T)^{\beta}r)r(v^m)'(r)\\ &+\beta rv'(r)+\alpha v(r)+v^p(r) \\ &\le\frac{m}{(m-1)^2}(A'(r))^2v^{2-m}(r) +\Big(\alpha-\frac{m}{m-1}A''(r)-\frac{m(n+\kappa_1-1)}{m-1}\frac{A'(r)}{r}\Big)v(r)\\ &\quad +v^p(r) \\ &=\frac{A_1^2m}{(m-1)^2}r^2v^{2-m}(r) +\Big(\alpha-\frac{A_1m(n+\kappa_1)}{m-1}\Big)v(r)+v^p(r) \\ &\leq \Big(\frac{A_1^2m}{(m-1)^2} \eta^{2m-1}(1-\eta^{m-1})^{-1} +\Big(\alpha-\frac{A_1m(n+\kappa_1)}{m-1}\Big) +\eta^{(p-1)/(m-1)}\Big)v(r), \end{align*} for $00$. The choice of $A_1$ implies $$ \alpha<\frac{A_1m(n+\kappa_1)}{m-1}. $$ Thus, there exists $0<\eta_1<\eta_0$ such that for each $0<\eta<\eta_1$, \begin{equation} \label{ww2} \begin{gathered} \begin{aligned} &(v^m)''(r)+\frac{n-1}{r}(v^m)'(r)+ (t+T)^{2\beta}b((t+T)^{\beta}r)r(v^m)'(r)\\ &+\beta rv'(r)+\alpha v(r)+v^p(r) \le0, \end{aligned}\\ 00. \end{gathered} \end{equation} By \eqref{b1} and $\kappa_2<\kappa$, there exists $0<\eta_2<\eta_0$ such that \begin{align*} s^2b(s)\ge\kappa_2,\quad s>\frac{1}{\eta_2}, \end{align*} which, together with the choice of $T$, implies that for each $0<\eta<\eta_2$, \begin{equation} \label{ww3} (t+T)^{2\beta}b((t+T)^{\beta}r)r\ge\frac{\kappa_2}{r},\quad r>\eta^{m+1},\;t>0. \end{equation} For each $0<\eta<\eta_2$, it follows from \eqref{ww3} and \eqref{ww1} that \begin{align*} &(v^m)''(r)+\frac{n-1}{r}(v^m)'(r)+ (t+T)^{2\beta}b((t+T)^{\beta}r)r(v^m)'(r)\\ &+\beta rv'(r)+\alpha v(r)+v^p(r) \\ &\leq \frac{m}{(m-1)^2}(A'(r))^2v^{2-m}(r) +\Big(\alpha-\frac{m}{m-1}A''(r)-\frac{m(n+\kappa_2-1)}{m-1}\frac{A'(r)}{r}\Big)v(r)\\ &\quad +v^p(r) \\ &= \frac{m}{(m-1)^2}\Big(A_2+(A_1-A_2)\frac{\eta^{(m+1) (n+\kappa_2)}}{r^{n+\kappa_2}}\Big)^2r^2v^{2-m}(r) \\ &\quad +\Big(\alpha-\frac{A_2m(n+\kappa_2)}{m-1}\Big)v(r)+v^p(r) \\ &\leq \Big(\frac{mA_1^2}{(m-1)^2} \eta^{2m-1}(1-\eta^{m-1})^{-1} +\Big(\alpha-\frac{A_2m(n+\kappa_2)}{m-1}\Big) +\eta^{(p-1)/(m-1)}\Big)v(r), \end{align*} for $\eta^{m+1}0$. The choice of $A_2$ implies $$ \alpha<\frac{A_2m(n+\kappa_2)}{m-1}. $$ Thus, there exists $0<\eta_3<\eta_2$ such that for each $0<\eta<\eta_3$, \begin{equation} \label{ww4} \begin{aligned} &(v^m)''(r)+\frac{n-1}{r}(v^m)'(r)+ (t+T)^{2\beta}b((t+T)^{\beta}r)r(v^m)'(r)\\ &+\beta rv'(r)+\alpha v(r)+v^p(r) \leq 0, \quad \eta^{m+1}0. \end{aligned} \end{equation} For each $0<\eta<\eta_0$, \eqref{ww1} yields $A^{-1}(\eta)>\eta$. Thus, for each $0<\eta<\eta_2$, it follows from \eqref{ww3} that \begin{align*} &(v^m)''(r)+\frac{n-1}{r}(v^m)'(r)+ (t+T)^{2\beta}b((t+T)^{\beta}r)r(v^m)'(r)\\ &+\beta rv'(r)+\alpha v(r)+v^p(r) \\ &\leq \frac{1}{m-1}rA'(r)\Big(\frac{m}{m-1}\frac{A'(r)}{r}-\beta\Big)v^{2-m}(r)\\ &\quad +\Big(\alpha-\frac{m}{m-1}A''(r)-\frac{m(n+\kappa_2-1)}{m-1} \frac{A'(r)}{r}\Big)v(r)+v^p(r) \\ &= \frac{A_2}{m-1}r^2\Big(\frac{mA_2}{m-1}-\beta\Big)v^{2-m}(r) +\Big(\alpha-\frac{A_2m(n+\kappa_2)}{m-1}\Big)v(r)+v^p(r), \end{align*} for $\eta^{m}0$. The choice of $A_2$ implies $$ \frac{mA_2}{m-1}<\beta,\quad \alpha<\frac{A_2m(n+\kappa_2)}{m-1}. $$ Thus, there exists $0<\eta_4<\eta_2$ such that for each $0<\eta<\eta_4$, \begin{equation} \label{ww5} \begin{aligned} &(v^m)''(r)+\frac{n-1}{r}(v^m)'(r)+ (t+T)^{2\beta}b((t+T)^{\beta}r)r(v^m)'(r)\\ &+\beta rv'(r)+\alpha v(r)+v^p(r) \leq 0, \quad \eta^{m}0. \end{aligned} \end{equation} Summing up, from \eqref{ww2}, \eqref{ww4} and \eqref{ww5}, for $0<\eta<\min\{\eta_1,\eta_3,\eta_4\}$, the function $u$ given by \eqref{self} and \eqref{vm1} is a supersolution of \eqref{eq}. \end{proof} \begin{remark} \label{remark1-2} \rm Lemma \ref{lemma3} still holds if \eqref{b1} is replaced by $$ \liminf_{s\to+\infty} s^2b(s)=\kappa. $$ \end{remark} \begin{remark} \rm In Lemma \ref{lemma3}, \eqref{b2} is necessary to get a supersolution to \eqref{eq} of the form \eqref{self} and \eqref{vm1}. But, it is not clear at this moment whether \eqref{eq} admits a global supersolution of other form if \eqref{b2} is invalid. \end{remark} \section{Blow-up theorem of Fujita type} In this section, we establish the blow-up theorem of Fujita type for the problem \eqref{eq}, \eqref{initial} by using Lemmas \ref{lemma1} and \ref{lemma3}. First consider the case $m0$ such that \begin{align*} s^2b(s)<\tilde\kappa,\quad s>R_1. \end{align*} For each $R>R_1$, one obtain \begin{equation} \label{nn1} \begin{aligned} \int_{\mathbb{R}^n}\psi_R(|x|) dx &\leq n\omega_n\int_0^{\delta R}r^{n-1}h(r)dr \\ &\leq \omega_n(\delta R)^n\exp \Big\{\int_0^{\delta R} sb(s)ds\Big\} \\ &\leq {\omega_n}(\delta R)^n\exp \Big\{\int_0^{R_1} sb(s)ds\Big\} \exp \Big\{\tilde\kappa\int_{R_1}^{\delta R}\frac1s ds\Big\} \\ &= M_1R^{n+\tilde\kappa}, \end{aligned} \end{equation} where $\omega_n$ is the volume of the unit ball in $\mathbb{R}^n$, while $M_1>0$ depends only on $n$, $b$, $R_1$, $\delta$ and $\tilde\kappa$. Let $u$ be the solution to the problem \eqref{eq}, \eqref{initial}. Denote $$ w_R(t)=\int_{\mathbb{R}^n}u(x,t)\psi_R(|x|) dx,\quad t\ge0. $$ For each $R>\max\{R_0,R_1\}$, it follows from Lemma \ref{lemma1} that \begin{equation} \label{th1-2-1} \frac{d}{dt}w_R(t) \ge -M_0R^{-2}\int_{\mathbb{R}^n} u^m(x,t)\psi_R(|x|) dx +\int_{\mathbb{R}^n}u^p(x,t)\psi_R(|x|)dx, \end{equation} for $t>0$. The H\"older inequality and \eqref{nn1} yield \begin{equation} \label{th1-2-2} \begin{aligned} &\int_{\mathbb{R}^n} u^m(x,t)\psi_R(|x|) dx \\ &\leq \Big(\int_{\mathbb{R}^n}\psi_R(|x|)dx\Big)^{(p-m)/p} \Big(\int_{\mathbb{R}^n}u^p(x,t)\psi_R(|x|)dx\Big)^{m/p} \\ &\leq M_1^{(p-m)/p}R^{(p-m)(n+\tilde\kappa)/p} \Big(\int_{\mathbb{R}^n}u^p(x,t)\psi_R(|x|)dx\Big)^{m/p},\quad t>0. \end{aligned} \end{equation} Substitute \eqref{th1-2-2} into \eqref{th1-2-1} to obtain \begin{equation} \label{th1-2-3} \begin{aligned} \frac{d}{dt}w_R(t) &\geq \Big(\int_{\mathbb{R}^n}u^p(x,t)\psi_R(|x|)dx\Big)^{m/p} \Big(-M_0M_1^{(p-m)/p}R^{-2+(p-m)(n+\tilde\kappa)/p} \\ &\quad+\Big(\int_{\mathbb{R}^n}u^p(x,t)\psi_R(|x|)dx\Big)^{(p-m)/p}\Big),\quad t>0. \end{aligned} \end{equation} It follows from the H\"older inequality and \eqref{nn1} that \begin{align*} \int_{\mathbb{R}^n} u(x,t)\psi_R(|x|) dx &\leq \Big(\int_{\mathbb{R}^n}\psi_R(|x|)dx\Big)^{(p-1)/p} \Big(\int_{\mathbb{R}^n}u^p(x,t)\psi_R(|x|)dx\Big)^{1/p} \\ &\leq M_1^{(p-1)/p}R^{(p-1)(n+\tilde\kappa)/p} \Big(\int_{\mathbb{R}^n}u^p(x,t)\psi_R(|x|)dx\Big)^{1/p}, \end{align*} for $t>0$, which implies \begin{equation} \label{th1-2-4} \int_{\mathbb{R}^n}u^p(x,t)\psi_R(|x|)dx \ge M_1^{-(p-1)}R^{-(p-1)(n+\tilde\kappa)}w_R^p(t),\quad t>0. \end{equation} Substituting \eqref{th1-2-4} into \eqref{th1-2-3}, one gets that for each $R>\max\{R_0,R_1\}$, \begin{equation} \label{th1-2} \begin{aligned} \frac{d}{dt}w_R(t) &\geq M_1^{-m(p-1)/p}R^{-m(p-1)(n+\tilde\kappa)/p}w_R^m(t) \\ &\quad\times \Big(-M_0M_1^{(p-m)/p}R^{-2+(p-m)(n+\tilde\kappa)/p} \\ &\quad+M_1^{-(p-1)(p-m)/p}R^{-(p-1)(p-m)(n+\tilde\kappa)/p}w_R^{(p-m)}(t)\Big), \quad t>0. \end{aligned} \end{equation} Note that \eqref{nn0} implies $2>(p-m)(n+\tilde\kappa)$, while $w_R(0)$ is nondecreasing with respect to $R\in(0,+\infty)$ and $$ \sup\{w_R(0):R>0\}>0. $$ Therefore, there exists $R_2>0$ such that for each $R>R_2$, \begin{equation} \label{th1-3} \begin{aligned} &M_0M_1^{(p-m)/p}R^{-2+(p-m)(n+\tilde\kappa)/p}\\ &\le\frac12M_1^{-(p-1)(p-m)/p}R^{-(p-1)(p-m)(n+\tilde\kappa)/p}w_R^{(p-m)}(0). \end{aligned} \end{equation} Fix $R>\max\{R_0,R_1,R_2\}$. Then, \eqref{th1-2} and \eqref{th1-3} yield \[ \frac{d}{dt}w_R(t) \geq \frac12M_1^{-p(p-1)/p}R^{-p(p-1)(n+\tilde\kappa)/p}w_R^{p}(t),\quad t>0. \] Since $p>m>1$, there exists $T>0$ such that $$ w_R(t)=\int_{\mathbb{R}^n} u(x,t)\psi_R(|x|) dx \to+\infty\quad\text{as } t\to T^-. $$ Noting that $\operatorname{supp}\psi_R(|x|)$ is bounded, one gets $$ \|u(\cdot,t)\|_{L^\infty(\mathbb{R}^n)}\to+\infty\quad\text{as } t\to T^-. $$ That is to say, $u$ blows up in a finite time. \end{proof} Turn to the case $p>p_c$ with $-n<\kappa\le+\infty$. \begin{theorem} \label{theorem2} Assume that $b\in C^{0,1}([0,+\infty))$ satisfies \eqref{b1} and \eqref{b2} with $-n<\kappa\le+\infty$. Let $p>p_c$. Then there exist both nontrivial nonnegative global and blow-up solutions of problem \eqref{eq}-\eqref{initial}. \end{theorem} \begin{proof} The comparison principle and Lemma \ref{lemma3} yield that problem \eqref{eq}-\eqref{initial} admits a global nontrivial solution. Let us show there also exists a blow-up solutions to \eqref{eq}-\eqref{initial}. Fix $R>R_0$. Assume that $u$ is a solution to \eqref{eq}-\eqref{initial}. It follows from Lemma \ref{lemma1} (the case $-n<\kappa<+\infty$), Remark \ref{remark1-1} (the case $\kappa=+\infty$) that there exist a nontrivial function $0\le \psi\in C^{1,1}_0(\mathbb{R}^n)$, with $\|\psi\|_{L^1(\mathbb{R}^n)}\leq 1$, and a constant $M>0$, both depending only on $n$, $R$ and $b$, such that \begin{equation} \label{N1} \frac{d}{dt}w(t) \ge-M\int_{\mathbb{R}^n} u^m(x,t)\psi(x) dx +\int_{\mathbb{R}^n}u^p(x,t)\psi(x)dx,\quad t>0, \end{equation} where $$ w(t)=\int_{\mathbb{R}^n}u(x,t)\psi(x) dx,\quad t\ge0. $$ The H\"older inequality yields \begin{equation} \label{N2} \int_{\mathbb{R}^n} u^m(x,t)\psi(x) dx \le\Big(\int_{\mathbb{R}^n}\psi(x)dx\Big)^{(p-m)/p} \Big(\int_{\mathbb{R}^n}u^p(x,t)\psi(x)dx\Big)^{m/p}, \end{equation} for $t>0$. Substitute \eqref{N2} into \eqref{N1} to get \begin{equation} \label{N3} \frac{d}{dt}w(t) \ge\Big(\int_{\mathbb{R}^n}u^p(x,t)\psi(x)dx\Big)^{m/p} \Big(-M+\Big(\int_{\mathbb{R}^n}u^p(x,t)\psi(x)dx\Big)^{(p-m)/p}\Big), \end{equation} for $t>0$. It follows from the H\"older inequality that \begin{align*} \int_{\mathbb{R}^n} u(x,t)\psi(x) dx &\leq \Big(\int_{\mathbb{R}^n}\psi(x)dx\Big)^{(p-1)/p} \Big(\int_{\mathbb{R}^n}u^p(x,t)\psi(x)dx\Big)^{1/p},\quad t>0, \end{align*} which implies \begin{equation} \label{N4} \int_{\mathbb{R}^n}u^p(x,t)\psi(x)dx \ge\Big(\int_{\mathbb{R}^n}\psi(x)dx\Big)^{-(p-1)}w^p(t),\quad t>0. \end{equation} Substituting \eqref{N4} into \eqref{N3}, one gets that \begin{equation} \label{N5} \begin{aligned} \frac{d}{dt}w(t) &\ge\Big(\int_{\mathbb{R}^n}\psi(x)dx\Big)^{-m(p-1)/p}w^m(t) \Big(-M\\ &\quad +\Big(\int_{\mathbb{R}^n}\psi(x)dx\Big)^{-(p-m)(p-1)/p}w^{p-m}(t)\Big),\quad t>0. \end{aligned} \end{equation} If $u_0$ is so large that \[ w(0)=\int_{\mathbb{R}^n}u_0(x)\psi(x)dx \ge (2M)^{1/{(p-m)}}\Big(\int_{\mathbb{R}^n}\psi(x)dx\Big)^{(p-1)/p}. \] Then, \eqref{N5} leads to \begin{align*} \frac{d}{dt}w(t) \ge\frac12\Big(\int_{\mathbb{R}^n}\psi(x)dx\Big)^{-p(p-1)/p}w^p(t),\quad t>0. \end{align*} By the same argument as in the end of the proof of Theorem \ref{theorem1}, $u$ must blow up in a finite time. \end{proof} \begin{remark} \label{remark2-2} \rm In Theorem \ref{theorem1}, $b$ need not to satisfy \eqref{b2} even if $-n<\kappa<+\infty$. However, \eqref{b2} is needed in the proof of Lemma \ref{lemma3} and thus in the proof of Theorem \ref{theorem2}. \end{remark} According to Remarks \ref{remark1} and \ref{remark1-2}, one gets the following statement. \begin{remark} \label{remark2-1-1} Theorem \ref{theorem1} still holds if \eqref{b1} is replaced by $$ \limsup_{s\to+\infty} s^2b(s)=\kappa, $$ while Theorem \ref{theorem2} still holds if \eqref{b1} is replaced by $$ \liminf_{s\to+\infty} s^2b(s)=\kappa. $$ \end{remark} From Theorems \ref{theorem1} and \ref{theorem2} we have the following statement. \begin{remark} \label{remark2-3} \rm For problem \eqref{eq}-\eqref{initial}, $p_c=m$ if $\lim_{s\to+\infty}s^2b(s)=+\infty$, while $p_c=+\infty$ if $\limsup_{s\to+\infty} s^2b(s)\le-n$. In particular, $p_c=m$ for the Cauchy problems of \[ \frac{\partial u}{\partial t}=\Delta u^m+x\cdot\nabla u^m+u^p,\quad x\in\mathbb{R}^n,\;t>0 \] and \[ \frac{\partial u}{\partial t}=\Delta u^m+\frac{x}{|x|+1}\cdot\nabla u^m+u^p,\quad x\in\mathbb{R}^n,\;t>0, \] while $p_c=+\infty$ for the Cauchy problems of \[ \frac{\partial u}{\partial t}=\Delta u^m-x\cdot\nabla u^m+u^p,\quad x\in\mathbb{R}^n,\; t>0 \] and \[ \frac{\partial u}{\partial t}=\Delta u^m-\frac{x}{|x|+1}\cdot\nabla u^m+u^p,\quad x\in\mathbb{R}^n,\;t>0. \] \end{remark} \subsection*{Acknowledgments} This research was supported by the National Natural Science Foundation of China (No. 11271154). \begin{thebibliography}{99} \bibitem{andr2} D. Andreucci, G. R. Cirmi, S. Leonardi, A. F. Tedeev; Large time behavior of solutions to the Neumann problem for a quasilinear second order degenerate parabolic equation in domains with noncompact boundary, J. Differential Equations, 174 (2001), 253--288. \bibitem{andr} D. Andreucci, A. F. Tedeev; A Fujita type result for a degenerate Neumann problem in domains with noncompact boundary, J. Math. Anal. Appl., 231 (1999), 543--567. \bibitem{ag} J. Aguirre, M. Escobedo; On the blow-up of solutions of a convective reaction diffusion equation, Proc. Roy. Soc. Edinburgh Sect. A, 123 (3) (1993), 433--460. \bibitem{deng} K. Deng, H. A. Levine; The role of critical exponents in blow-up theorems: the sequel, J. Math. Anal. Appl., 243 (1) (2000), 85--126. \bibitem{fira} M. Fira, B. Kawohl; Large time behavior of solutions to a quasilinear parabolic equation with a nonlinear boundary condition, Adv. Math. Sci. Appl., 11 (1) (2001), 113--126. \bibitem{fujita} H. Fujita; On the blowing up of solutions of the Cauchy problem for $\frac{\partial u}{\partial t} =\Delta u+u^{1+\alpha}$, J. Fac. Sci. Univ. Tokyo Sect. I, 13 (1966), 109--124. \bibitem{gala1} V. A. Galaktionov; Blow-up for quasilinear heat equations with critical Fujita's exponents, Proc. Roy. Soc. Edinburgh Sect. A, 124 (3) (1994), 517--525. \bibitem{gala2} V. A. Galaktionov, S. P. Kurdjumov, A. P. Mikhailov, A. A. Samarskiii; On unbounded solutions of the Cauchy problem for the parabolic equation $\frac{\partial u}{\partial t}=\nabla(u^{\sigma}\nabla u)+u^{\beta}$, Dokl. Akad. Nauk SSSR, 252 (1980), 1362--1364 (in Russian); English translation Sov. Phys. Dokl., 25 (1980), 458--459. \bibitem{kala} A. S. Kalashnikov; Some problems of the qualitative theory of second-order nonlinear degenerate parabolic equations, Russian Math. Surveys, 42 (2) (1987), 169--222. \bibitem{lady} O. A. Lady\v{z}enskaja, V. A. Solonnikov, N. N. Ural'ceva; Linear and quasilinear equations of parabolic type, Transl. Math. Mono., 23, AMS. Providence RI, 1968. \bibitem{levine} H. A. Levine; The role of critical exponents in blow-up theorems, SIAM Rev., 32 (2) (1990), 262--288. \bibitem{zhang1} H. A. Levine, Q. S. Zhang; The critical Fujita number for a semilinear heat equation in exterior domains with homogeneous Neumann boundary values, Proc. Roy. Soc. Edinburgh Sect. A, 130 (3) (2000), 591--602. \bibitem{meier} P. Meier; On the critical exponent for reaction-diffusion equations, Arch. Rational Mech. Anal., 109 (1) (1990), 63--71. \bibitem{semi1} Y. W. Qi; The critical exponents of parabolic equations and blow-up in $\mathbb{R}^n$, Proc. Roy. Soc. Edinburgh Sect. A, 128 (1) (1998), 123--136. \bibitem{qi} Y. W. Qi, M. X. Wang; Critical exponents of quasilinear parabolic equations, J. Math. Anal. Appl., 267 (2002), 264--280. \bibitem{suzuki} R. Suzuki; Existence and nonexistence of global solutions to quasilinear parabolic equations with convection, Hokkaido Math. J., 27 (1) (1998), 147--196. \bibitem{semi2} C. P. Wang, S. N. Zheng; Critical Fujita exponents of degenerate and singular parabolic equations, Proc. Roy. Soc. Edinburgh Sect. A, 136 (2) (2006), 415--430. \bibitem{wang} C. P. Wang, S. N. Zheng, Z. J. Wang; Critical Fujita exponents for a class of quasilinear equations with homogeneous Neumann boundary data, Nonlinearity, 20 (6) (2007), 1343--1359. \bibitem{winkler} M. Winkler; A critical exponent in a degenerate parabolic equation, Math. Methods Appl. Sci., 25 (2002), 911--925. \bibitem{wu} Z. Wu, J. Zhao, J. Yin, H. Li; Nonlinear diffusion equations, World Scientific Publishing Co., Inc., 2001, River Edge, NJ. \bibitem{zhang2} Q. S. Zhang; A general blow-up result on nonlinear boundary-value problems on exterior domains, Proc. Roy. Soc. Edinburgh Sect. A, 131 (2) (2001), 451--475. \bibitem{zheng2} S. N. Zheng, X. F. Song, Z. X. Jiang; Critical Fujita exponents for degenerate parabolic equations coupled via nonlinear boundary flux, J. Math. Anal. Appl., 298 (2004), 308--324. \bibitem{zheng} S. N. Zheng, C. P. Wang; Large time behaviour of solutions to a class of quasilinear parabolic equations with convection terms, Nonlinearity, 21 (9) (2008), 2179--2200. \bibitem{Nie} Q. Zhou, Y. Y. Nie, X. Y. Han; Large time behavior of solutions to semilinear parabolic equations with gradient, Journal of Dynamical and Control Systems, DOI:10.1007/s10883-015-9294-3. \end{thebibliography} \end{document}