\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2015 (2015), No. 293, pp. 1--8.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2015 Texas State University.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2015/293\hfil Existence of solutions] {Existence of solutions for quasilinear elliptic equations involving a nonlocal term} \author[M. F\u{a}rc\u{a}\c{s}eanu, D. Stancu-Dumitru \hfil EJDE-2015/??\hfilneg] {Maria F\u{a}rc\u{a}\c{s}eanu, Denisa Stancu-Dumitru} \address{Maria F\u{a}rc\u{a}\c{s}eanu \newline Department of Mathematics, University of Craiova, 200585 Craiova, Romania.\newline Research group of the project PN-II-ID-PCE-2012-4-0021, ``Simion Stoilow" Institute of Mathematics of the Romanian Academy, P.O. Box 1-764, 010702 Bucharest, Romania} \email{farcaseanu.maria@yahoo.com} \address{Denisa Stancu-Dumitru \newline Research group of the project PN-II-ID-PCE-2011-3-0075, ``Simion Stoilow" Institute of Mathematics of the Romanian Academy, P.O. Box 1-764, 010702 Bucharest, Romania} \email{denisa.stancu@yahoo.com} \thanks{Submitted April 15, 2015. Published November 30, 2015.} \subjclass[2010]{35J60, 35J70, 35D30, 47J30, 58E05} \keywords{Quasilinear elliptic equation; nonlocal term; weak solution; \hfill\break\indent Schauder's fixed point theorem; critical point} \begin{abstract} This article establishes the existence of solutions for a partial differential equation involving a quasilinear elliptic operator and a nonlocal term. The proofs of the main results are based on Schauder's fixed point theorem combined with variational arguments. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}[theorem]{Remark} \newtheorem{definition}[theorem]{Definition} \allowdisplaybreaks \section{Introduction}\label{sectia1} Let $\Omega\subset \mathbb{R}^N$ denote a bounded domain with smooth boundary $\partial \Omega$, and $\nu$ denote the outward unit normal to $\partial\Omega$. We consider the problem \begin{equation}\label{pb1} \begin{gathered} -a\Big(\int_{\Omega} u(x)\,dx \Big)\operatorname{div}(a(u(x))\nabla u(x))+u(x)=0, \quad x\in \Omega,\\ a(u(x))\frac{\partial u}{\partial \nu}(x)=g(x),\quad x\in \partial\Omega, \end{gathered} \end{equation} where $a:\mathbb{R}\to\mathbb{R}$ is a continuous function for which there exist two constants $a_1,a_2\in(0,\infty)$ such that \begin{equation}\label{CondA} 00$, which does not depend on $\mu$ or $v$, such that \begin{equation}\label{Ineq1} \int_{\Omega} |\nabla T(v)|^2\,dx+\int_{\Omega} |T(v)|^2\,dx\leq \mathcal{C},\quad \forall v\in L^2(\Omega). \end{equation} \end{lemma} \begin{proof} Since $T(v)$ is a weak solution of \eqref{pb4}, taking $\varphi=T(v)$ in \eqref{WS3} we find that $$ a(\mu)\int_{\Omega} a(v(x)) |\nabla T(v)|^2\,dx +\int_{\Omega} |T(v)|^2\,dx =a(\mu)\int_{\partial\Omega} g T(v)\,d\sigma(x). $$ Using relation \eqref{CondA}, H\"older's inequality and the fact that $H^1(\Omega)$ is continuously embedded in $L^2(\partial\Omega)$ we deduce \begin{align*} \min\left\{\frac{a_1^2}{2},\frac{1}{2}\right\} \|T(v)\|^2_{H^1(\Omega)} &= \min\big\{\frac{a_1^2}{2},\frac{1}{2}\big\} \Big(\int_{\Omega} |\nabla T(v)|^2\,dx+\int_{\Omega} |T(v)|^2\,dx\Big)\\ &\leq a_2 \|g\|_{L^2(\partial\Omega)} \|T(v)\|_{L^2(\partial\Omega)}\\ &\leq a_2 D \|g\|_{L^2(\partial\Omega)} \|T(v)\|_{H^1(\Omega)}, \end{align*} where $D$ is a positive constant. Leting \[ \mathcal{C}:=\Big(\frac{ D a_2\|g\|_{L^2(\partial\Omega)}} {\min\{\frac{a_1^2}{2},\frac{1}{2}\}}\Big)^2 \] we obtain inequality \eqref{Ineq1}. The proof is complete. \end{proof} \begin{lemma}\label{L3} The mapping $T:L^2(\Omega)\to H^1(\Omega)$ is continuous. \end{lemma} \begin{proof} Let $\{v_n\}\subset L^2(\Omega)$ and $v\in L^2(\Omega)$ such that $\{v_n\}$ converges strongly to $v$ in $L^2(\Omega)$. Set $u_n:=T(v_n)$ for any positive integer $n$. By Lemma \ref{L2} we infer that $$ \int_{\Omega} \left(|\nabla u_n|^2+u^2_n\right)\,dx =\int_{\Omega} \left(|\nabla T(v_n)|^2+ |T(v_n)|^2\right)\,dx \leq \mathcal{C},\quad \forall n; $$ that is, the sequence $\{u_n\}$ is bounded in $H^1(\Omega)$. It follows that there exists $u\in H^1(\Omega)$ such that, up to a subsequence still denoted by $\{u_n\}$, converges weakly to $u$ in $H^1(\Omega)$ and by Rellich-Kondrachov theorem (see, e.g. \cite[Theorem 5.5.2]{ABM}) we deduce that $\{u_n\}$ converges strongly to $u$ in $L^2(\Omega)$. On the other hand, we have $u_n$ is a weak solution of problem \eqref{pb4} and thus by \eqref{WS3} we obtain \begin{equation}\label{rCdenisa} a(\mu) \int_{\Omega} a(v_n) \nabla u_n \nabla \varphi\,dx +\int_{\Omega} u_n \varphi\,dx=a(\mu)\int_{\partial\Omega} g \varphi\,d\sigma(x), \end{equation} for all $\varphi\in H^1(\Omega)$ and all $n$. Since $\{v_n\}$ converges strongly to $v$ in $L^2(\Omega)$, it follows that $v_n(x)\to v(x)$ a.e. $x\in \Omega$, too. Combining that fact with the one that function $a$ is continuous a.e. on $\mathbb{R}$, we find \begin{equation}\label{Cv} a(v_n(x))\to a(v(x))\quad\text{for a.e. } x\in \Omega. \end{equation} Moreover, since $\{u_n\}$ converges weakly to $u$ in $H^1(\Omega)$ we deduce that \begin{equation}\label{Wconv} \{\nabla u_n\}\text{ converges weakly to $\nabla u$ in } (L^2(\Omega))^N. \end{equation} Lebesgue's dominated convergence theorem (see, e.g. \cite[Theorem 4.2]{B}) and \eqref{Cv} imply that \begin{equation} \{a(v_n)\nabla \varphi\}\text{ converges strongly to $a(v)\nabla \varphi$ in } (L^2(\Omega))^N, \; \forall \varphi\in H^1(\Omega). \end{equation} Thus, we deduce that $$ \int_{\Omega} a(v_n) \nabla u_n\nabla \varphi\,dx\to \int_{\Omega} a(v) \nabla u\nabla \varphi\,dx,\quad \forall \varphi\in H^1(\Omega). $$ In particular, for $\varphi=u$ we have \begin{equation}\label{Conv} \int_{\Omega} a(v_n) \nabla u_n \nabla u\,dx\to \int_{\Omega} a(v) |\nabla u|^2\,dx. \end{equation} Taking $\varphi=u_n-u$ in \eqref{rCdenisa} and taking into account the above pieces of information we also find that \begin{equation} \int_{\Omega} a(v_n) \nabla u_n (\nabla u_n-\nabla u)\,dx=o(1) \end{equation} and consequently, \begin{equation}\label{Eq1} \int_{\Omega} [a(v_n)-a(v)] \nabla u_n (\nabla u_n-\nabla u)\,dx +\int_{\Omega} a(v) \nabla u_n (\nabla u_n-\nabla u)\,dx=o(1). \end{equation} By \eqref{Cv} and the fact that $\{|\nabla u_n|^2\}$ is a bounded sequence in $L^1(\Omega)$ we obtain by H\"older's inequality that \begin{equation}\label{Eq2} \big|\int_{\Omega} [a(v_n)-a(v)] |\nabla u_n|^2\,dx\big| \leq \|a(v_n)-a(v)\|_{L^{\infty}(\Omega)} \|\nabla u_n\|^2_{L^2(\Omega)} \to 0 \end{equation} as $ n\to\infty$. Then \eqref{Wconv}, \eqref{Conv} and \eqref{Eq2} yield \begin{equation}\label{Eq3} \int_{\Omega} [a(v_n)-a(v)] \nabla u_n (\nabla u_n-\nabla u)\,dx=o(1). \end{equation} By \eqref{Eq1} and \eqref{Eq3} we find \begin{equation}\label{Eq4} \int_{\Omega} a(v)\; \nabla u_n (\nabla u_n-\nabla u)\,dx=o(1). \end{equation} We deduce that \begin{equation}\label{Equality} \begin{aligned} &\int_{\Omega} a(v) |\nabla u_n-\nabla u|^2\,dx\\ &=\int_{\Omega} a(v) |\nabla u_n|^2\,dx -2\int_{\Omega} a(v) \nabla u_n\nabla u\,dx +\int_{\Omega} a(v) |\nabla u|^2\,dx. \end{aligned} \end{equation} By \eqref{Eq4} we infer that \[ \lim_{n\to \infty} \int_{\Omega} a(v) |\nabla u_n|^2\,dx = \lim_{n\to \infty} \int_{\Omega}a(v) \nabla u_n\nabla u\,dx =\int_{\Omega} a(v) |\nabla u|^2\,dx \] and using \eqref{Equality} we finally obtain $$ \int_{\Omega} a(v) |\nabla (u_n-u)|^2\,dx=o(1) $$ which implies that $$ \int_{\Omega} |\nabla (u_n-u)|^2\,dx=o(1). $$ Moreover, taking into account that $\{u_n\}$ converges strongly to $u$ in $L^2(\Omega)$ we conclude that $\{u_n\}$ converges strongly to $u$ in $H^1(\Omega)$, that means application $T$ is continuous. The proof is complete. \end{proof} \begin{remark} \label{R4} \rm Since $H^1(\Omega)$ is compactly embedded in $L^2(\Omega)$, that is the inclusion operator $i:H^1(\Omega)\to L^2(\Omega)$ is compact, it follows by Lemma \ref{L3} that the operator $S:L^2(\Omega)\to L^2(\Omega)$ defined by $S=i\circ T$ is compact. \end{remark} \begin{proof}[Proof of Theorem \ref{th2}] Let $\mathcal{C}$ be the positive constant given by Lemma \ref{L2}. We have $$ \int_{\Omega} |\nabla S(v)|^2\,dx+\int_{\Omega} |S(v)|^2\,dx \leq \mathcal{C},\;\; \forall \; v\in L^2(\Omega). $$ In particular, $$ \int_{\Omega} |S(v)|^2\,dx\leq \mathcal{C},\quad \forall v\in L^2(\Omega). $$ In $L^2(\Omega)$, define the set $$ B_{\mathcal{C}}(0):=\big\{v\in L^2(\Omega): \int_{\Omega} |v(x)|^2\,dx\leq \mathcal{C}\big\}. $$ Clearly, $B_{\mathcal{C}}(0)$ is a convex, closed subset of $L^2(\Omega)$ and $S(B_{\mathcal{C}}(0))\subset B_{\mathcal{C}}(0)$. By Remark \ref{R4} it follows that $S(B_{\mathcal{C}}(0))$ is relatively compact in $L^2(\Omega)$. Finally, by Lemma \ref{L3} and Remark \ref{R4}, we deduce that $S:S(B_{\mathcal{C}}(0))\to S(B_{\mathcal{C}}(0))$ is a continuous map. Hence, we can apply the Schauder's fixed point theorem (Theorem \ref{thm3.1}) to obtain that $S$ possesses a fixed point. This gives us a weak solution of problem \eqref{pb3} and thus the proof of Theorem \ref{th2} is finally complete. \end{proof} \subsection*{Acknowledgments} M. F\u{a}rc\u{a}\c{s}eanu was partially supported by CNCS-UEFISCDI Grant No. PN-II-ID-PCE-2012-4-0021 ``Variable Exponent Analysis: Partial Differential Equations and Calculus of Variations". D. Stancu-Dumitru was partially supported by grant CNCSIS-UEFISCSU PN-II-ID-PCE-2011-3-0075 ``Analysis, Control and Numerical Approximations of Partial Differential Equations". \begin{thebibliography}{99} \bibitem{ambrosetti} Ambrosetti, A.; Malchiodi, A.; \emph{Nonlinear Analysis and Semilinear Elliptic Problems}, Cambridge University Press, Cambridge, 2007. \bibitem{AB} Arcoya, D.; Boccardo, L.; Critical points for multiple integrals of the calculus of variations, \emph{Arch. Rational Mech. Anal.} \textbf{134} (1996), 249--274. \bibitem{ABM} Attouch, H.; Buttazzo, G.; Michaille, G.; \emph{Varitional Analysis in Sobolev and BV Spaces. Applications to PDEs and Optimization}, MPS-SIAM Series on Optimization, 2006. \bibitem{B} Brezis, H.; \emph{Functional Analysis, Sobolev Spaces and Partial Differential Equations}, Springer, 2011. \bibitem{C1} Chipot, M.; \emph{Elements of Nonlinear Analysis}, Birh\"auser, 2000. \bibitem{C2} Chipot, M.; \emph{Elliptic Equations: An Introductory Course}, Birh\"auser, 2009. \bibitem{F1} Filippucci, R.; Existence of global solutions of elliptic systems, \emph{J. Math. Anal. Appl.} \textbf{293} (2004), 677--692. \bibitem{F2} Filippucci, R.; Entire radial solutions of elliptic systems and inequalities of the mean curvature type, \emph{J. Math. Anal. Appl.} \textbf{334} (2007), 604--620. \bibitem{MR1} Molica Bisci, G.; R\u{a}dulescu, V.; Applications of Local Linking to Nonlocal Neumann Problems, \emph{Commun. Contemp. Math.} \textbf{17} (1) (2015), 17 pages, ID 1450001. \bibitem{MR2} Molica Bisci, G.; Repov\v{s}, D.; On doubly nonlocal fractional elliptic equations, \emph{Rend. Lincei Mat. Appl.} \textbf{26} (2015), 161--176. \bibitem{S} Struwe, M.; \emph{Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems}, Springer, Heidelberg, 1996. \end{thebibliography} \end{document}