\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2015 (2015), No. 291, pp. 1--10.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2015 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2015/291\hfil Multiple positive solutions] {Multiple positive solutions for a \\ Kirchhoff type problem} \author[Wenli Zhang\hfil EJDE-2015/291\hfilneg] {Wenli Zhang} \address{Wenli Zhang \newline Department of Mathematics, Changzhi University, Shanxi 046011, China} \email{ywl6133@126.com} \thanks{Submitted September 2, 2014. Published November 23, 2015.} \subjclass[2010]{35J50} \keywords{Positive solutions; Kirchhoff type equation; Morse theory; \hfill\break\indent Ljusternik-Schnirelmann category} \begin{abstract} In this article, we study the existence and multiplicity of positive solutions of a Kirchhoff type equation on a smooth bounded domain $\Omega\subset \mathbb{R}^3$, and we show that the number of positive solutions of the equation depends on the topological properties of the domain. The technique is based on Ljusternik-Schnirelmann category and Morse theory. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{remark}[theorem]{Remark} \newtheorem{definition}[theorem]{Definition} \allowdisplaybreaks \section{Introduction} This article concerns the multiplicity of positive solutions to the elliptic problem \begin{equation} \begin{gathered} -\Big(\varepsilon^2a+\varepsilon b\int_{\Omega}|\nabla u|^2\Big) \Delta u+u=|u|^{p-1}u,\quad x\in \Omega \\ u=0,\quad x\in \partial\Omega \end{gathered} \label{ePe} \end{equation} where $\Omega$ is a smooth bounded domain of $\mathbb{R}^3$, $\varepsilon>0$, $a,b>0$ are constants, $30$ sufficiently small, the problem \eqref{ePe} has at least $\operatorname{cat}(\Omega)$ positive solutions. \end{theorem} \begin{theorem} \label{thm1.2} Let $30$ sufficiently small all the solutions of the problem \eqref{ePe} are nondegenerate. Then there are at least $2P_1(\Omega)-1$ positive solutions, \end{theorem} \section{Notation and preliminary results} Throughout this article, we use the following norms for $u\in H_0^1(\Omega)$: \begin{gather*} \|u\|_\varepsilon=\Big(\frac{1}{\varepsilon^3} \int_\Omega \varepsilon^2|\nabla u|^2dx\Big)^{1/2}, \quad |u|_{\varepsilon,p}=\Big(\frac{1}{\varepsilon^3}\int |u|^pdx\Big)^{1/p}, \\ \|u\|=\Big(\int_{\mathbb{R}^3}|\nabla u|^2dx\Big)^{1/2},\quad |u|_p=\Big(\int_{\mathbb{R}^3}|u|^pdx\Big)^{1/p} \end{gather*} and we denote by $H_\varepsilon$ the Hilbert space $H_0^1(\Omega)$ endowed with $\|\cdot\|_\varepsilon$ norm. Following the work by He and Zou \cite{He2}, we let $U(x)$ be the positive ground state solution of \begin{equation} \begin{gathered} -\Big(a+b\int_{\mathbb{R}^3}|\nabla u|^2\Big)\Delta u+u=|u|^{p-1}u, \quad x\in \mathbb{R}^3 \\ u\in H^1(\mathbb{R}^3),u(x)>0, \quad x\in \mathbb{R}^3 \end{gathered} \label{ePi} \end{equation} and $I_\infty(U)=m_\infty=\inf_{u\in M_\infty} I_\infty(u)$, where \begin{gather*} I_\infty(u)=\frac{a}{2}\|u\|^2+\frac{1}{2}|u|_2^2+\frac{b}{4}\|u\|^4 -\frac{1}{p+1}|u^+|_{p+1}^{p+1}. \\ M_\infty=\{u\in H^1(\mathbb{R}^3)\backslash \{0\}:G_\infty(u) =\langle I'_\infty(u),u\rangle=0\} \end{gather*} For $\varepsilon>0$ we set $U_\varepsilon(x)=U(x/\varepsilon)$. Obviously $U_\varepsilon(x)$ is the solution of the problem \begin{gather*} -\Big(\varepsilon^2a+\varepsilon b\int_{\Omega}|\nabla u|^2\Big)\Delta u+u =|u|^{p-1}u,\quad x\in \Omega \\ u\in H^1_0(\Omega),\quad u>0, \quad x\in \Omega \end{gather*} Now we shall recall some topological tools. \begin{definition}[\cite{Lj}] \label{def2.1} \rm Let $X$ a topological space and consider a closed subset $A\subset X$. We say that $A$ has category $k$ relative to $X(\operatorname{cat}_X(A)=k)$ if $A$ is covered by $k$ closed sets $A_i,i=1,2,\dots,k$, which are contractible in $X$, and $k$ is the minimum integer with this property. We simply denote $\operatorname{cat}(X)=\operatorname{cat}_X(X)$. \end{definition} \begin{remark}[\cite{Be3}] \label{rmk2.2} \rm Let $X_1$ and $X_2$ be topological space. If $g_1:X_1\to X_2$ and $g_2:X_2\to X_1$ are continuous operators such that $g_2\circ g_1$ is homotopic to the identity on $X_1$, then $\operatorname{cat}(X_1)\leq \operatorname{cat}(X_2)$. \end{remark} \begin{definition} \label{def2.3} \rm Let $X$ is a topological space and let $H_k(X)$ denotes its $k$-th homology group with coefficients in $Q$. The Poincar\'e polynomial $P_t(X)$ of $X$ is defined as the following power series in $t$, $$ P_t(X)=\sum_{k\geq 0}(\dim H_k(X))t^k\,. $$ If $X$ is a compact space, we have that $\dim H_k(X)<\infty$ and this series is finite. In the case $P_t(X)$ is a polynomial and not a formal series. \end{definition} \begin{remark}[\cite{Be2}] \label{rmk2.4} \rm Let $X$ and $Y$ be topological spaces. If $f:X\to Y$ and $g:Y\to X$ are continuous operators such that $g\circ f$ is homotopic to the identity on $X$, then $P_t(Y)=P_t(X)+Z(t)$ where $Z(t)$ is a polynomial with nonnegative coefficients. \end{remark} \section{Proof of main results} To prove our main results, we consider the functional $I_\varepsilon\in C^2(H_\varepsilon,R)$, defined by $$ I_\varepsilon (u)=\frac{a}{2}\|u\|_\varepsilon^2 +\frac{1}{2}|u|_{\varepsilon,2}^2+\frac{b}{4}\|u\|_\varepsilon^4 -\frac{1}{p+1}|u^+|_{\varepsilon,p+1}^{p+1} $$ Obviously, there exists a one to one correspondence between the nontrivial solutions of problem \eqref{ePe} and the nonzero critical points of $I_\varepsilon$ on $H_\varepsilon$. As the functional $I_\varepsilon$ is not bounded below on $H_\varepsilon$, we introduce the manifold $$ M_\varepsilon=\{u\in H_\varepsilon\backslash\{0\}:G_\varepsilon(u) =\langle I'_\varepsilon(u),u\rangle=0\} $$ Next, we present some properties of $I_\varepsilon$ and $M_\varepsilon$. \begin{lemma} \label{lem3.1} (1) For any $u\in H_\varepsilon\backslash\{0\}$, there is a unique $t_\varepsilon>0$ such that $u_{t_\varepsilon}(x)=t_\varepsilon u(x) \in M_\varepsilon$. (2) For any $\varepsilon>0$, $M_\varepsilon$ is a $C^1$ submanifold of $H_\varepsilon$, and there exists $\sigma_\varepsilon>0$ and $K_\varepsilon>0$ such that for any $u\in M_\varepsilon$ $$ \|u\|_\varepsilon\geq \sigma_\varepsilon,\quad I_\varepsilon(u)\geq K_\varepsilon. $$ (3) It holds $(PS)$ condition for the functional $I_\varepsilon$ on $M_\varepsilon$. \end{lemma} \begin{proof} (1) For any $u\in H_\varepsilon\backslash\{0\}$ and $t>0$, set $u_t(x)=tu(x)$. Consider $$ \Upsilon_\varepsilon(t)=I_\varepsilon(u_t)=\frac{a}{2}t^2\|u\|_\varepsilon^2 +\frac{1}{2}t^2|u|_{\varepsilon,2}^2 +\frac{b}{4}t^4\|u\|_\varepsilon^4-\frac{1}{p+1}t^{p+1}|u^+|_{\varepsilon,p+1}^{p+1}. $$ By computing, we known that $\Upsilon_\varepsilon$ has a unique critical point $t_\varepsilon>0$ corresponding to its maximum. Then $\Upsilon_\varepsilon(t_\varepsilon)=\max_{t>0}\Upsilon_\varepsilon(t)$ and $\Upsilon_\varepsilon'(t_\varepsilon)=0$. So $G_\varepsilon(u_{t_\varepsilon})=0$ and $u_{t_\varepsilon}\in M_\varepsilon$. (2) By lemma \ref{lem3.1} (1), $M_\varepsilon\neq \emptyset$. If $u\in M_\varepsilon$, using that $G_\varepsilon(u)=0$ and $30)$, $u_n\rightharpoonup u$ in $H_\varepsilon$, $u_n\to u$ in $L^s(\Omega)$ $(1\leq s<6)$. Obviously, we have $$ \rho_\varepsilon(u)=a\|u\|_\varepsilon^2+|u|_{\varepsilon,2}^2 +bA\|u\|_\varepsilon^2-|u^+|_{\varepsilon,p+1}^{p+1}=0. $$ Set $\omega_n=u_n-u$. By Br\'ezis-Lieb Lemma, we have $\|\omega_n\|_\varepsilon^2=\|u_n\|_\varepsilon^2-\|u\|_\varepsilon^2+o_n(1)$. Since $\langle I'_\varepsilon(u_n),u_n\rangle=o_n(1)$, we obtain $$ (a+bA)\|\omega_n\|_\varepsilon^2+\rho_\varepsilon(u)=o_n(1). $$ This concludes the proof. \end{proof} By Lemma \ref{lem3.1} (2), we obtain $I_\varepsilon|_{M_\varepsilon}$ is bounded from below. By using Lagrange multiplier method, we known that $M_\varepsilon$ contains every nonzero solution of problem \eqref{ePe}, and define the minimax $m_\varepsilon$ as $$ m_\varepsilon=\inf_{u\in M_\varepsilon}I_\varepsilon(u) $$ \begin{proof}[Proof of Theorem \ref{thm1.1}] Since the functional $I_\varepsilon\in C^2$ is bounded below and satisfies the (PS) condition on the complete manifold $M_\varepsilon$, we have, by the classical Ljusternik-Schnirelmann category result \cite{Be5}, that $I_\varepsilon$ has at least $cat I_\varepsilon^d$ critical points in the sublevel $$ I_\varepsilon^d=\{u\in H_\varepsilon:I_\varepsilon(u)\leq d\} $$ In the following, we will prove that, for $\varepsilon$ and $\delta$ sufficiently small, it holds $$ \operatorname{cat}(\Omega) \leq \operatorname{cat} (M_\varepsilon\cap I_\varepsilon^{m_\infty+\delta}) $$ To prove this, we build two continuous functions \begin{gather} \Phi_\varepsilon:\Omega^-\to M_\varepsilon \cap I_\varepsilon^{m_\infty+\delta}, \label{e3.1} \\ \beta:M_\varepsilon\cap I_\varepsilon^{m_\infty+\delta}\to \Omega^+, \label{e3.2} \end{gather} where $$ \Omega^-=\{x\in \Omega:d(x,\partial\Omega)0$ small enough so that $\operatorname{cat}(\Omega^-)=\operatorname{cat}(\Omega^+) =\operatorname{cat}(\Omega)$. Following the idea in \cite{Be4}, we can find two functions $\Phi_\varepsilon$ and $\beta$ such that $\beta\circ\Phi_\varepsilon:\Omega^-\to \Omega^+$ is homotopic to the immersion $i:\Omega^-\to \Omega^+$. By Remark \ref{rmk2.2} we obtain the inequality which completes the proof. \end{proof} \begin{proof}[Proof of Theorem \ref{thm1.2}] By Remark \ref{rmk2.4}, \eqref{e3.1} and \eqref{e3.2}, we have $$ P_t(M_\varepsilon\cap I_\varepsilon^{m_\infty+\delta}) =P_t(\Omega)+Z(t) $$ where $Z(t)$ is a polynomial with nonnegative coefficients. Since $\inf_\varepsilon m_\varepsilon=c>0$, we have \begin{gather} \label{e3.3} P_t(I_\varepsilon^{m_\infty+\delta},I_\varepsilon^{\frac{c}{2}}) =tP_t(M_\varepsilon\cap I_\varepsilon^{m_\infty+\delta}), \\ P_t(H_\varepsilon,I_\varepsilon^{m_\infty+\delta}) =t(P_t(I_\varepsilon^{m_\infty+\delta},I_\varepsilon^{\frac{c}{2}})-t)\,. \label{e3.4} \end{gather} By Morse theory we have \begin{equation} \sum_{u\in \mathcal{K}_\varepsilon}t^{\mu(u)} =P_t(H_\varepsilon,I_\varepsilon^{m_\infty+\delta}) +P_t(I_\varepsilon^{m_\infty+\delta},I_\varepsilon^{\frac{c}{2}}) +(1+t)Q_\varepsilon(t)\label{e3.5} \end{equation} where $\mathcal{K}_\varepsilon$ be the set of critical points of $I_\varepsilon$, $\mu(u)$ is the Morse index of $u$, $Q_\varepsilon(t)$ is a polynomial with nonnegative coefficients. Using this relation with \eqref{e3.3}--\eqref{e3.5}, we obtain \begin{equation} \sum_{u\in \mathcal{K}_\varepsilon}t^{\mu(u)} =tP_t(\Omega)+t^2(P_t(\Omega)-1)+t(1+t)Q_\varepsilon(t)\label{e3.6} \end{equation} Theorem \ref{thm1.2} easily follows by evaluating the power series \eqref{e3.6} for $t=1$. \end{proof} \section{The function $\Phi_\varepsilon$} For $\xi\in \Omega^-$ we define the function \begin{equation} \omega_{\xi,\varepsilon}(x)=U_\varepsilon(x-\xi)\chi_r(|x-\xi|)\label{e4.1} \end{equation} where $\chi_r$ is a smooth cut off function $\chi_r\equiv 1$ for $t\in[0,\frac{r}{2})$, $\chi_r\equiv 0$ for $t>r$ and $|\chi_r'(t)|\leq 2/r$. We define $\Phi_\varepsilon:\Omega^-\to M_\varepsilon$ by $$ \Phi_\varepsilon(\xi)=t_\varepsilon(\omega_{\xi,\varepsilon}) \omega_{\xi,\varepsilon}(x) $$ \begin{remark} \label{rmk4.1} \rm We have that the following limits hold uniformly with respect to $\xi\in\Omega^-$, $$ \|\omega_{\xi,\varepsilon}\|_\varepsilon\to \|U\|,\quad |\omega_{\xi,\varepsilon}|_{\varepsilon,p}\to |U|_p\,. $$ \end{remark} \begin{proposition} \label{prop4.2} For any $\varepsilon>0$ the map $\Phi_\varepsilon$ is continuous. Moreover for any $\delta>0$ there exists $\varepsilon_0>0$ such that if $\varepsilon<\varepsilon_0$ then $I_\varepsilon(\Phi_\varepsilon(\xi))0$, a finite partition $P_\varepsilon=\{P_j^\varepsilon\}_{j\in \Lambda_\varepsilon}$ is called a ``good'' partition if: for any $j\in \Lambda_\varepsilon$ the set $P_j^\varepsilon$ is closed; $P_i^\varepsilon\cap P_j^\varepsilon\subseteq\partial P_i^\varepsilon \cap\partial P_j^\varepsilon$ for $i\neq j$; there exist $r_1(\varepsilon), r_2(\varepsilon)>0$ such that, for any $j$, there exists a point $q_j^\varepsilon\in P_j^\varepsilon$ such that \[ B(q_j^\varepsilon,\varepsilon)\subset P_j^\varepsilon \subset B(q_j^\varepsilon,r_2(\varepsilon)) \subset B(q_j^\varepsilon,r_1(\varepsilon)), \] with $r_1(\varepsilon)\geq r_2(\varepsilon)\geq C\varepsilon$ for some positive constant $C$; lastly, there exists a finite number $\iota\in N$ such that every $x\in \Omega$ is contained in at most $\iota$ balls $B(q_j^\varepsilon,r_1(\varepsilon))$, where $\iota$ does not depends on $\varepsilon$. \begin{lemma} \label{lem5.1} There exists $\gamma>0$ such that, for any $\delta>0$ and any $\varepsilon\in (0,\varepsilon_0(\delta))$ where $\varepsilon_0(\delta)$ is as in Proposition \ref{prop4.2}, given any ``good'' partition $P_\varepsilon$ of the domain $\Omega$ and for any $u\in M_\varepsilon\cap I_\varepsilon^{m_\infty+\delta}$ there exists a set $P_j^\varepsilon$ such that $$ \frac{1}{\varepsilon^3}\int_{P_j^\varepsilon}|u^+|^{p+1}dx\geq \gamma $$ \end{lemma} \begin{proof} Taking into account that $G_\varepsilon(u)=0$ we have \begin{align*} a\|u\|_\varepsilon^2 &\leq |u^+|_{\varepsilon,p+1}^{p+1} =\sum_j\frac{1}{\varepsilon^3}\int_{P_j^\varepsilon}|u^+|^{p+1}dx\\ &\leq \sum_j|u_j^+|_{\varepsilon,p+1}^{p+1} =\sum_j|u_j^+|_{\varepsilon,p+1}^{p-1}|u_j^+|_{\varepsilon,p+1}^2\\ &\leq \max_j\{|u_j^+|_{\varepsilon,p+1}^{p-1}\}\sum_j|u_j^+|_{\varepsilon,p+1}^2 \end{align*} where $u_j^+$ is the restriction of the function $u^+$ on the set $P_j^\varepsilon$. Arguing as in \cite{Be1}, we prove that there exists a constant $C>0$ such that $$ \sum_j|u_j^+|_{\varepsilon,p+1}^2\leq C\iota\|u^+\|_\varepsilon^2, $$ thus $$ \max_j\{|u_j^+|_{\varepsilon,p+1}^{p-1}\}\geq\frac{a}{C\iota} $$ that concludes the proof. \end{proof} \begin{proposition} \label{prop5.2} For any $\eta\in(0,1)$ there exists $\delta_0>0$ such that for any $\delta\in(0,\delta_0)$ and any $\varepsilon\in (0,\varepsilon_0(\delta))$ as in Proposition \ref{prop4.2}, for any $u\in M_\varepsilon\cap I_\varepsilon^{m_\infty+\delta}$ there exists a point $q=q(u)\in \Omega$ such that $$ \frac{1}{\varepsilon^3}\int_{B(q,\frac{r}{2})}|u^+|^{p+1}dx >(1-\eta)\frac{2(p+1)}{p-1}\Big(4m_\infty+\frac{2a^2-2a\sqrt{a^2+3bm_\infty}}{b}\Big) $$ \end{proposition} \begin{proof} We prove only the proposition for any $u\in M_\varepsilon\cap I_\varepsilon^{m_\varepsilon+2\delta}$. Indeed, by this result and by Remark \ref{rmk4.3} we get $$ \lim_{\varepsilon\to 0}m_\varepsilon=m_\infty $$ Hence it holds $I_\varepsilon^{m_\infty+\delta}\subset I_\varepsilon^{m_\varepsilon+2\delta}$ for $\delta,\varepsilon$ small enough. So the thesis holds. We argue by contradiction. Suppose that there exists $\eta\in (0,1)$ such that we can find vanishing sequences $\{\delta_k\}$, $\{\varepsilon_k\}$ and a sequence $\{u_k\}\subset M_{\varepsilon_k}\cap I_\varepsilon^{m_{\varepsilon_k}+2\delta_k}$ such that \begin{equation} \begin{aligned} m_{\varepsilon_k} &\leq I_{\varepsilon_k}(u_k)\\ &=(\frac{1}{2}-\frac{1}{p+1})a\|u_k\|_{\varepsilon_k}^2 +(\frac{1}{2}-\frac{1}{p+1})|u_k|_{\varepsilon_k,2}^2 +(\frac{1}{4}-\frac{1}{p+1})b\|u_k\|_{\varepsilon_k}^4 \\ &\leq m_{\varepsilon_k}+2\delta_k \leq m_\infty+3\delta_k. \end{aligned}\label{e5.1} \end{equation} for $k$ large enough, and for any $q\in \Omega$, \begin{equation} \frac{1}{\varepsilon_k^3}\int_{B(q,\frac{r}{2})}|u_k^+|^{p+1}dx \leq(1-\eta)\frac{2(p+1)}{p-1}(4m_\infty +\frac{2a^2-2a\sqrt{a^2+3bm_\infty}}{b}). \label{e5.2} \end{equation} By Ekeland variational principle and by definition of $M_{\varepsilon_k}$ we can assume that \begin{equation} I'_{\varepsilon_k}(u_k)\to 0.\label{e5.3} \end{equation} By Lemma \ref{lem5.1}, there exists a set $P_k^{\varepsilon_k}\in P_{\varepsilon_k}$ such that \begin{equation} \frac{1}{\varepsilon^3}\int_{P_k^{\varepsilon_k}}|u_k^+|^{p+1}dx \geq\gamma.\label{e5.4} \end{equation} So we can choose a point $q_k\in \overset{\circ}{{P_k^{\varepsilon_k}}}$, and define, for $z\in \Omega_{\varepsilon_k}=\frac{1}{\varepsilon_k}(\Omega-q_k)$, $$ \omega_k(z)=u_k(\varepsilon_kz+q_k)=u_k(x), $$ where $x\in \Omega$. We obtain that $\omega_k\in H_0^1(\Omega_{\varepsilon_k})$. By \eqref{e5.1}, we have $$ \|\omega_k\|_{H_0^1(\Omega_{\varepsilon_k})}^2\leq C. $$ So we obtain $\omega_k\rightharpoonup \omega$ in $H_{loc}^1(\mathbb{R}^3)$, $\omega_k\to \omega$ in $L_{loc}^{s}(\mathbb{R}^3)(2\leq s<6)$ and $\|\omega_k\|^2\to A_1$. Thus we prove that $\omega\not\equiv 0$ and $A_1>0$ by \eqref{e5.4}. Next we claim \begin{equation} \lim_{k\to\infty}\frac{dist(q_k,\partial\Omega)}{\varepsilon_k} =\infty.\label{e5.5} \end{equation} We argue by contradiction. Suppose that $$ \lim_{k\to\infty}\frac{dist(q_k,\partial\Omega)}{\varepsilon_k}=d<\infty. $$ It is easy to verify that $\omega$ is a solution of \begin{equation} \begin{gathered} -(a+bA_1)\Delta u+u=|u|^{p-1}u,\quad x\in \mathbb{R}^3_+ \\ u(x)=0, \quad x\in \partial \mathbb{R}^3_+ \end{gathered} \label{ePpi} \end{equation} where $\mathbb{R}^3_+$ is a half space. We know that \eqref{ePpi} has no nontrivial solution from the work by \cite{Ai,Es}. So $\omega\equiv 0$, this contradicts with $\omega\not\equiv 0$. This concludes the claim. By \eqref{e5.5}, $\Omega_{\varepsilon_k}$ converges to the whole space $\mathbb{R}^3$ as $k\to \infty$. Using \eqref{e5.1} \eqref{e5.3} and computing, we have \begin{equation} I_\infty(\omega_k)\to m_\infty,\quad I'_\infty(\omega_k)\to0.\label{e5.6} \end{equation} This implies $\{\omega_k\}\subset M_\infty$ is a minimizing sequences for $m_\infty$. Arguing as in \cite{He2}, we have $\omega_k\to \omega$, $\omega\in M_\infty$, $I_\infty(\omega)=m_\infty$ and $I'_\infty(\omega)=0$. By using \eqref{e5.6} and Pohozaev identity, we have \begin{gather*} \frac{a}{2}\|\omega_k\|^2+\frac{1}{2}|\omega_k|_2^2+\frac{b}{4}\|\omega_k\|^4 -\frac{1}{p+1}|\omega_k|_{p+1}^{p+1}=m_\infty+o_k(1), \\ a\|\omega_k\|^2+|\omega_k|_2^2+b\|\omega_k\|^4-|\omega_k|_{p+1}^{p+1}=o_k(1) \\ \frac{a}{2}\|\omega_k\|^2+\frac{3}{2}|\omega_k|_2^2 +\frac{b}{2}\|\omega_k\|^4-\frac{3}{p+1}|\omega_k|_{p+1}^{p+1}=o_k(1) \end{gather*} Thus, we obtain that $$ |\omega_k|_{p+1}^{p+1}\to \frac{2(p+1)}{p-1} \Big(4m_\infty+\frac{2a^2-2a\sqrt{a^2+3bm_\infty}}{b}\Big) $$ So by $\omega_k\to \omega$, for $T$ and $k$ large enough, we have $$ \int_{B(0,T)}|\omega_k^+|^{p+1}dz >(1-\eta)\frac{2(p+1)}{p-1}\Big(4m_\infty+\frac{2a^2-2a\sqrt{a^2+3bm_\infty}}{b}\Big) $$ On the other hand by \eqref{e5.2} and the definition of $\omega_k$, for any $T>0$ we have, for $k$ large enough, \begin{align*} \int_{B(0,T)}|\omega_k^+|^{p+1}dz &\leq\frac{1}{\varepsilon_k^3}\int_{B(q_k,\varepsilon_kT)}|u_k|^{p+1}dx\\ &\leq \frac{1}{\varepsilon_k^3}\int_{B(q_k,\frac{r}{2})}|u_k|^{p+1}dx\\ &\leq (1-\eta)\frac{2(p+1)}{p-1}(4m_\infty+\frac{2a^2-2a\sqrt{a^2+3bm_\infty}}{b}). \end{align*} This leads to a contradiction. \end{proof} \begin{proposition} \label{prop5.3} There exists $\delta_0>0$ such that for any $\delta\in (0,\delta_0)$ and any $\varepsilon\in (0,\varepsilon(\delta_0))$ as in Proposition \ref{prop5.2}, for any $u\in M_\varepsilon\cap I_\varepsilon^{m_\infty+\delta}$ it holds $\beta(u)\in \Omega^+$. Moreover the composition $$ \beta\circ\Phi_\varepsilon:\Omega^-\to \Omega^+ $$ is homotopic to the immersion $i:\Omega^-\to \Omega^+$. \end{proposition} \begin{proof} Arguing by contradiction, we suppose that there exist sequences $\{\delta_k\},\{\varepsilon_k\}\subset R$ and $\{u_k\}\subset M_{\varepsilon_k}\cap I_\varepsilon^{m_\infty+\delta_k}$ such that $\delta_k,\varepsilon_k \to 0^+$, as $k\to \infty$, and $\beta(u_k)\not\in \Omega^+$ for all $k$. By Ekeland variational principle and by definition of $M_{\varepsilon_k}$ we can assume that $I'_{\varepsilon_k}(u_k)\to 0$. So by Proposition \ref{prop5.2} we can find $q_k\in \Omega$ such that $$ \frac{\frac{1}{\varepsilon_k^3}\int_{B(q_k,\frac{r}{2})}|u_k|^{p+1}dx}{\frac{1}{\varepsilon_k^3}\int_\Omega|u_k|^{p+1}dx} >\frac{(1-\eta)\frac{2(p+1)}{p-1} \big(4m_\infty+\frac{2a^2-2a\sqrt{a^2+3bm_\infty}}{b}\big)} {\frac{2(p+1)}{p-1}\big(4(m_\infty+\delta_k) +\frac{2a^2-2a\sqrt{a^2+3b(m_\infty+\delta_k)}}{b}\big)} $$ Finally, \begin{align*} &|\beta(u_k)-q_k|\\ &\leq \frac{|\frac{1}{\varepsilon_k^3} \int_{\Omega}(x-q_k)|u_k|^{p+1}dx|}{\frac{1}{\varepsilon_k^3} \int_\Omega|u_k|^{p+1}dx}\\ &\leq \frac{|\frac{1}{\varepsilon_k^3}\int_{B(q_k,\frac{r}{2})} (x-q_k)|u_k|^{p+1}dx|}{\frac{1}{\varepsilon_k^3}\int_\Omega|u_k|^{p+1}dx} +\frac{|\frac{1}{\varepsilon_k^3}\int_{\Omega \backslash B(q_k,\frac{r}{2})}(x-q_k)|u_k|^{p+1}dx|} {\frac{1}{\varepsilon_k^3}\int_\Omega|u_k|^{p+1}dx}\\ &\leq \frac{r}{2}+2\operatorname{diam}(\Omega) \Big(1-\frac{(1-\eta)\frac{2(p+1)}{p-1}(4m_\infty+\frac{2a^2 -2a\sqrt{a^2+3bm_\infty}}{b})}{\frac{2(p+1)}{p-1} (4(m_\infty+\delta_k)+\frac{2a^2-2a\sqrt{a^2 +3b(m_\infty+\delta_k)}}{b})}\Big) \end{align*} The above expression implies that $\beta(u_k)\in \Omega^+$, which contradicts $\beta(u_k)\not\in \Omega^+$. \end{proof} \subsection*{Acknowledgments} This work was supported by the Shanxi University Technology research and development (project 2013158). \begin{thebibliography}{00} \bibitem{Ai} J. Ai, X. P. Zhu; \emph{Positive solutions of inhomogeneous elliptic boundary value problems in the half space}, Comm. Partial Differential Equations 15 (1990), 1421--1446. \bibitem{Al} C. O. Alves, F. J. S. A. Corr\^ea, T. F. Ma; \emph{Positive solutions for a quasilinear elliptic equation of Kirchhoff type}, Comput. Math. Appl. 49 (2005), 85-93. \bibitem{Be1} V. Benci, C. Bonanno, A. M. Micheletti; \emph{On the multiplicity of a nonlinear elliptic problem on Riemannian manifolds}, J. Funct. Anal. 252 (2007), 464-489. \bibitem{Be2} V. Benci, G. Cerami; \emph{Multiple positive solutions of some elliptic problems via the Morse theory and the domain topology}, Calc. Var. Partial Differential Equations 2 (1994), 29-48. \bibitem{Be3} V. Benci, G. Cerami; \emph{The effect of the domain topology on the number of positive solutions of nonlinear elliptic problems}, Arch. Ration. Mech. Anal. 114 (1991) 79-93. \bibitem{Be4} V. Benci, G. Cerami; \emph{The effect of the domain topology on the number of positive solutions of nonlinear elliptic problems}, Arch. Rationa. Mech. Anal. 114(1991) 79-93. \bibitem{Be5} V. Benci, G. Cerami, D. Passaseo; \emph{On the number of the positive solutions of some nonlinear elliptic problems}, in ``Nonlinear Analysis, A tribute in Honour of G Prodi'', Quaderno Scuola Norm Sup, Pisa, 1991, pp 93-107. \bibitem{Ca} A. Candela, M. Lazzo; \emph{Positive solutions for a mixed boundary problem}, Nonlinear Anal. 24 (1995), 1109-1117. \bibitem{Ch1} C. Chen, Y. Kuo, T. Wu; \emph{The Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions}, J. Diff. Equs. 250 (2011), 1876--1908. \bibitem{Ch2} B. Cheng, X. Wu; \emph{Existence results of positive solutions of Kirchhoff type problems}, Nonlinear Anal. Theory Methods Appl. 71 (2009), 4883-4892. \bibitem{Es} M. J. Esteban, P. L. Lions; \emph{Existence and nonexistence results for semilinear elliptic problems in unbounded domains}, Proc. Roy. Soc. Edim. 93 (1982), 1-14. \bibitem{Gh1} M. Ghimenti, A. M. Micheletti; \emph{The role of the scalar curvature in some singularly perturbed coupled elliptic systems on Riemannian manifolds}, Discrete Contin. Dynam. Systems 34 (2014), 2535-2560. \bibitem{Gh2} M. Ghimenti, A. M. Micheletti; \emph{Positive solutions for singularly perturbed nonlinear elliptic problem on mainifolds via Morse theory}, arXiv: 1012.5672 (2010). \bibitem{He1} X. He, W. Zou; \emph{Multiplicity of solutions for a class of Kirchhoff type problems}, Acta Math. Appl. Sin. Engl. Ser. 26 (2010), 387--394. \bibitem{He2} X. He, W. Zou; \emph{Existence and concentration behavior of positive solutions for a Kirchhoff equations in $\mathbb{R}^3$}, J. Diff. Equs. 252 (2012), 1813--1834. \bibitem{Lj} L. Ljusternik, L. Schnirelmann; \emph{M\'ethodes topologiques dans les probl\`emes variationelles}, Actualit\'es Sci. Indust. 188 (1934). \bibitem{Ma} A. Mao, Z. Zhang; \emph{Sign-changing and multiple solutions of Kirchhoff type problems without the (PS) condition}, Nonlinear Anal. 70 (2009), 1275--1287. \bibitem{Pe} K. Perera, Z. Zhang; \emph{Nontrivial solutions of Kirchhoff-type problems via the Yang index}, J. Diff. Equs. 221 (2006), 246--255. \bibitem{Ya} Y. Yang, J. Zhang; \emph{Nontrivial solutions of a class of nonlocal problems via local linking theory}, Appl. Math. Lett. 23 (2010), 377--380. \bibitem{Zh} Z. Zhang, K. Perera; \emph{Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow}, J. Math. Anal. Appl. 317 (2006), 456--463. \end{thebibliography} \end{document}