\documentclass[reqno]{amsart}
\usepackage{hyperref}
\AtBeginDocument{{\noindent\small
\emph{Electronic Journal of Differential Equations},
Vol. 2015 (2015), No. 291, pp. 1--10.\newline
ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu
\newline ftp ejde.math.txstate.edu}
\thanks{\copyright 2015 Texas State University - San Marcos.}
\vspace{9mm}}
\begin{document}
\title[\hfilneg EJDE-2015/291\hfil Multiple positive solutions]
{Multiple positive solutions for a \\ Kirchhoff type problem}
\author[Wenli Zhang\hfil EJDE-2015/291\hfilneg]
{Wenli Zhang}
\address{Wenli Zhang \newline
Department of Mathematics,
Changzhi University, Shanxi 046011, China}
\email{ywl6133@126.com}
\thanks{Submitted September 2, 2014. Published November 23, 2015.}
\subjclass[2010]{35J50}
\keywords{Positive solutions; Kirchhoff type equation; Morse theory;
\hfill\break\indent Ljusternik-Schnirelmann category}
\begin{abstract}
In this article, we study the existence and multiplicity of positive
solutions of a Kirchhoff type equation on a smooth bounded domain
$\Omega\subset \mathbb{R}^3$, and we show that the number of positive
solutions of the equation depends on the topological properties of
the domain. The technique is based on Ljusternik-Schnirelmann category
and Morse theory.
\end{abstract}
\maketitle
\numberwithin{equation}{section}
\newtheorem{theorem}{Theorem}[section]
\newtheorem{lemma}[theorem]{Lemma}
\newtheorem{proposition}[theorem]{Proposition}
\newtheorem{remark}[theorem]{Remark}
\newtheorem{definition}[theorem]{Definition}
\allowdisplaybreaks
\section{Introduction}
This article concerns the multiplicity of positive solutions to the
elliptic problem
\begin{equation}
\begin{gathered}
-\Big(\varepsilon^2a+\varepsilon b\int_{\Omega}|\nabla u|^2\Big)
\Delta u+u=|u|^{p-1}u,\quad x\in \Omega \\
u=0,\quad x\in \partial\Omega
\end{gathered} \label{ePe}
\end{equation}
where $\Omega$ is a smooth bounded domain of $\mathbb{R}^3$, $\varepsilon>0$,
$a,b>0$ are constants, $3
0$ sufficiently small, the problem \eqref{ePe}
has at least $\operatorname{cat}(\Omega)$ positive solutions.
\end{theorem}
\begin{theorem} \label{thm1.2}
Let $3
0$ sufficiently small all the
solutions of the problem \eqref{ePe} are nondegenerate.
Then there are at least $2P_1(\Omega)-1$ positive solutions,
\end{theorem}
\section{Notation and preliminary results}
Throughout this article, we use the following norms for $u\in H_0^1(\Omega)$:
\begin{gather*}
\|u\|_\varepsilon=\Big(\frac{1}{\varepsilon^3}
\int_\Omega \varepsilon^2|\nabla u|^2dx\Big)^{1/2}, \quad
|u|_{\varepsilon,p}=\Big(\frac{1}{\varepsilon^3}\int |u|^pdx\Big)^{1/p}, \\
\|u\|=\Big(\int_{\mathbb{R}^3}|\nabla u|^2dx\Big)^{1/2},\quad
|u|_p=\Big(\int_{\mathbb{R}^3}|u|^pdx\Big)^{1/p}
\end{gather*}
and we denote by $H_\varepsilon$ the Hilbert space $H_0^1(\Omega)$
endowed with $\|\cdot\|_\varepsilon$ norm.
Following the work by He and Zou \cite{He2}, we let $U(x)$ be the positive
ground state solution of
\begin{equation}
\begin{gathered}
-\Big(a+b\int_{\mathbb{R}^3}|\nabla u|^2\Big)\Delta u+u=|u|^{p-1}u,
\quad x\in \mathbb{R}^3 \\
u\in H^1(\mathbb{R}^3),u(x)>0, \quad x\in \mathbb{R}^3
\end{gathered} \label{ePi}
\end{equation}
and $I_\infty(U)=m_\infty=\inf_{u\in M_\infty} I_\infty(u)$, where
\begin{gather*}
I_\infty(u)=\frac{a}{2}\|u\|^2+\frac{1}{2}|u|_2^2+\frac{b}{4}\|u\|^4
-\frac{1}{p+1}|u^+|_{p+1}^{p+1}.
\\
M_\infty=\{u\in H^1(\mathbb{R}^3)\backslash \{0\}:G_\infty(u)
=\langle I'_\infty(u),u\rangle=0\}
\end{gather*}
For $\varepsilon>0$ we set $U_\varepsilon(x)=U(x/\varepsilon)$.
Obviously $U_\varepsilon(x)$ is the solution of the problem
\begin{gather*}
-\Big(\varepsilon^2a+\varepsilon b\int_{\Omega}|\nabla u|^2\Big)\Delta u+u
=|u|^{p-1}u,\quad x\in \Omega \\
u\in H^1_0(\Omega),\quad u>0, \quad x\in \Omega
\end{gather*}
Now we shall recall some topological tools.
\begin{definition}[\cite{Lj}] \label{def2.1} \rm
Let $X$ a topological space and consider a closed subset $A\subset X$.
We say that $A$ has category $k$ relative to $X(\operatorname{cat}_X(A)=k)$
if $A$ is covered by $k$ closed sets $A_i,i=1,2,\dots,k$, which are contractible
in $X$, and $k$ is the minimum integer with this property.
We simply denote $\operatorname{cat}(X)=\operatorname{cat}_X(X)$.
\end{definition}
\begin{remark}[\cite{Be3}] \label{rmk2.2} \rm
Let $X_1$ and $X_2$ be topological space. If $g_1:X_1\to X_2$ and
$g_2:X_2\to X_1$ are continuous operators such that $g_2\circ g_1$ is
homotopic to the identity on $X_1$, then
$\operatorname{cat}(X_1)\leq \operatorname{cat}(X_2)$.
\end{remark}
\begin{definition} \label{def2.3} \rm
Let $X$ is a topological space and let $H_k(X)$ denotes its $k$-th
homology group with coefficients in $Q$. The Poincar\'e polynomial
$P_t(X)$ of $X$ is defined as the following power series in $t$,
$$
P_t(X)=\sum_{k\geq 0}(\dim H_k(X))t^k\,.
$$
If $X$ is a compact space, we have that $\dim H_k(X)<\infty$
and this series is finite. In the case $P_t(X)$ is a polynomial and not
a formal series.
\end{definition}
\begin{remark}[\cite{Be2}] \label{rmk2.4} \rm
Let $X$ and $Y$ be topological spaces. If $f:X\to Y$ and $g:Y\to X$
are continuous operators such that $g\circ f$ is homotopic to the identity
on $X$, then $P_t(Y)=P_t(X)+Z(t)$ where $Z(t)$ is a polynomial with
nonnegative coefficients.
\end{remark}
\section{Proof of main results}
To prove our main results, we consider the functional
$I_\varepsilon\in C^2(H_\varepsilon,R)$, defined by
$$
I_\varepsilon (u)=\frac{a}{2}\|u\|_\varepsilon^2
+\frac{1}{2}|u|_{\varepsilon,2}^2+\frac{b}{4}\|u\|_\varepsilon^4
-\frac{1}{p+1}|u^+|_{\varepsilon,p+1}^{p+1}
$$
Obviously, there exists a one to one correspondence between the nontrivial
solutions of problem \eqref{ePe} and the nonzero critical points of
$I_\varepsilon$ on $H_\varepsilon$.
As the functional $I_\varepsilon$ is not bounded below on $H_\varepsilon$,
we introduce the manifold
$$
M_\varepsilon=\{u\in H_\varepsilon\backslash\{0\}:G_\varepsilon(u)
=\langle I'_\varepsilon(u),u\rangle=0\}
$$
Next, we present some properties of $I_\varepsilon$ and $M_\varepsilon$.
\begin{lemma} \label{lem3.1}
(1) For any $u\in H_\varepsilon\backslash\{0\}$, there is a unique
$t_\varepsilon>0$ such that $u_{t_\varepsilon}(x)=t_\varepsilon u(x)
\in M_\varepsilon$.
(2) For any $\varepsilon>0$, $M_\varepsilon$ is a $C^1$ submanifold of
$H_\varepsilon$, and there exists $\sigma_\varepsilon>0$ and $K_\varepsilon>0$
such that for any $u\in M_\varepsilon$
$$
\|u\|_\varepsilon\geq \sigma_\varepsilon,\quad I_\varepsilon(u)\geq K_\varepsilon.
$$
(3) It holds $(PS)$ condition for the functional $I_\varepsilon$ on $M_\varepsilon$.
\end{lemma}
\begin{proof}
(1) For any $u\in H_\varepsilon\backslash\{0\}$ and $t>0$, set $u_t(x)=tu(x)$.
Consider
$$
\Upsilon_\varepsilon(t)=I_\varepsilon(u_t)=\frac{a}{2}t^2\|u\|_\varepsilon^2
+\frac{1}{2}t^2|u|_{\varepsilon,2}^2
+\frac{b}{4}t^4\|u\|_\varepsilon^4-\frac{1}{p+1}t^{p+1}|u^+|_{\varepsilon,p+1}^{p+1}.
$$
By computing, we known that $\Upsilon_\varepsilon$ has a unique critical point
$t_\varepsilon>0$ corresponding to its maximum.
Then $\Upsilon_\varepsilon(t_\varepsilon)=\max_{t>0}\Upsilon_\varepsilon(t)$ and
$\Upsilon_\varepsilon'(t_\varepsilon)=0$. So
$G_\varepsilon(u_{t_\varepsilon})=0$ and $u_{t_\varepsilon}\in M_\varepsilon$.
(2) By lemma \ref{lem3.1} (1), $M_\varepsilon\neq \emptyset$.
If $u\in M_\varepsilon$, using that $G_\varepsilon(u)=0$ and $3
0)$,
$u_n\rightharpoonup u$ in $H_\varepsilon$,
$u_n\to u$ in $L^s(\Omega)$ $(1\leq s<6)$.
Obviously, we have
$$
\rho_\varepsilon(u)=a\|u\|_\varepsilon^2+|u|_{\varepsilon,2}^2
+bA\|u\|_\varepsilon^2-|u^+|_{\varepsilon,p+1}^{p+1}=0.
$$
Set $\omega_n=u_n-u$. By Br\'ezis-Lieb Lemma, we have
$\|\omega_n\|_\varepsilon^2=\|u_n\|_\varepsilon^2-\|u\|_\varepsilon^2+o_n(1)$.
Since $\langle I'_\varepsilon(u_n),u_n\rangle=o_n(1)$, we obtain
$$
(a+bA)\|\omega_n\|_\varepsilon^2+\rho_\varepsilon(u)=o_n(1).
$$
This concludes the proof.
\end{proof}
By Lemma \ref{lem3.1} (2), we obtain $I_\varepsilon|_{M_\varepsilon}$
is bounded from below. By using Lagrange multiplier method, we known
that $M_\varepsilon$ contains every nonzero solution of problem \eqref{ePe},
and define the minimax $m_\varepsilon$ as
$$
m_\varepsilon=\inf_{u\in M_\varepsilon}I_\varepsilon(u)
$$
\begin{proof}[Proof of Theorem \ref{thm1.1}]
Since the functional $I_\varepsilon\in C^2$ is bounded below and satisfies the
(PS) condition on the complete manifold $M_\varepsilon$, we have,
by the classical Ljusternik-Schnirelmann category result \cite{Be5},
that $I_\varepsilon$ has at least $cat I_\varepsilon^d$ critical points
in the sublevel
$$
I_\varepsilon^d=\{u\in H_\varepsilon:I_\varepsilon(u)\leq d\}
$$
In the following, we will prove that, for $\varepsilon$ and $\delta$ sufficiently
small, it holds
$$
\operatorname{cat}(\Omega)
\leq \operatorname{cat} (M_\varepsilon\cap I_\varepsilon^{m_\infty+\delta})
$$
To prove this, we build two continuous functions
\begin{gather}
\Phi_\varepsilon:\Omega^-\to M_\varepsilon
\cap I_\varepsilon^{m_\infty+\delta}, \label{e3.1} \\
\beta:M_\varepsilon\cap I_\varepsilon^{m_\infty+\delta}\to \Omega^+, \label{e3.2}
\end{gather}
where
$$
\Omega^-=\{x\in \Omega:d(x,\partial\Omega)0$ small enough so that
$\operatorname{cat}(\Omega^-)=\operatorname{cat}(\Omega^+)
=\operatorname{cat}(\Omega)$.
Following the idea in \cite{Be4}, we can find two functions
$\Phi_\varepsilon$ and $\beta$ such that
$\beta\circ\Phi_\varepsilon:\Omega^-\to \Omega^+$
is homotopic to the immersion $i:\Omega^-\to \Omega^+$.
By Remark \ref{rmk2.2} we obtain the inequality which completes
the proof.
\end{proof}
\begin{proof}[Proof of Theorem \ref{thm1.2}]
By Remark \ref{rmk2.4}, \eqref{e3.1} and \eqref{e3.2}, we have
$$
P_t(M_\varepsilon\cap I_\varepsilon^{m_\infty+\delta})
=P_t(\Omega)+Z(t)
$$
where $Z(t)$ is a polynomial with nonnegative coefficients.
Since $\inf_\varepsilon m_\varepsilon=c>0$, we have
\begin{gather} \label{e3.3}
P_t(I_\varepsilon^{m_\infty+\delta},I_\varepsilon^{\frac{c}{2}})
=tP_t(M_\varepsilon\cap I_\varepsilon^{m_\infty+\delta}),
\\
P_t(H_\varepsilon,I_\varepsilon^{m_\infty+\delta})
=t(P_t(I_\varepsilon^{m_\infty+\delta},I_\varepsilon^{\frac{c}{2}})-t)\,.
\label{e3.4}
\end{gather}
By Morse theory we have
\begin{equation}
\sum_{u\in \mathcal{K}_\varepsilon}t^{\mu(u)}
=P_t(H_\varepsilon,I_\varepsilon^{m_\infty+\delta})
+P_t(I_\varepsilon^{m_\infty+\delta},I_\varepsilon^{\frac{c}{2}})
+(1+t)Q_\varepsilon(t)\label{e3.5}
\end{equation}
where $\mathcal{K}_\varepsilon$ be the set of critical points of
$I_\varepsilon$, $\mu(u)$ is the Morse index of $u$, $Q_\varepsilon(t)$
is a polynomial with nonnegative coefficients.
Using this relation with \eqref{e3.3}--\eqref{e3.5}, we obtain
\begin{equation}
\sum_{u\in \mathcal{K}_\varepsilon}t^{\mu(u)}
=tP_t(\Omega)+t^2(P_t(\Omega)-1)+t(1+t)Q_\varepsilon(t)\label{e3.6}
\end{equation}
Theorem \ref{thm1.2} easily follows by evaluating the power series \eqref{e3.6} for $t=1$.
\end{proof}
\section{The function $\Phi_\varepsilon$}
For $\xi\in \Omega^-$ we define the function
\begin{equation}
\omega_{\xi,\varepsilon}(x)=U_\varepsilon(x-\xi)\chi_r(|x-\xi|)\label{e4.1}
\end{equation}
where $\chi_r$ is a smooth cut off function $\chi_r\equiv 1$ for
$t\in[0,\frac{r}{2})$, $\chi_r\equiv 0$ for $t>r$ and
$|\chi_r'(t)|\leq 2/r$.
We define $\Phi_\varepsilon:\Omega^-\to M_\varepsilon$ by
$$
\Phi_\varepsilon(\xi)=t_\varepsilon(\omega_{\xi,\varepsilon})
\omega_{\xi,\varepsilon}(x)
$$
\begin{remark} \label{rmk4.1} \rm
We have that the following limits hold uniformly with respect to $\xi\in\Omega^-$,
$$
\|\omega_{\xi,\varepsilon}\|_\varepsilon\to \|U\|,\quad
|\omega_{\xi,\varepsilon}|_{\varepsilon,p}\to |U|_p\,.
$$
\end{remark}
\begin{proposition} \label{prop4.2}
For any $\varepsilon>0$ the map $\Phi_\varepsilon$ is continuous.
Moreover for any $\delta>0$
there exists $\varepsilon_0>0$ such that if $\varepsilon<\varepsilon_0$
then $I_\varepsilon(\Phi_\varepsilon(\xi))0$, a finite partition
$P_\varepsilon=\{P_j^\varepsilon\}_{j\in \Lambda_\varepsilon}$ is called a ``good''
partition if: for any $j\in \Lambda_\varepsilon$ the set
$P_j^\varepsilon$ is closed;
$P_i^\varepsilon\cap P_j^\varepsilon\subseteq\partial P_i^\varepsilon
\cap\partial P_j^\varepsilon$ for $i\neq j$; there exist
$r_1(\varepsilon), r_2(\varepsilon)>0$ such that, for any $j$, there exists
a point $q_j^\varepsilon\in P_j^\varepsilon$ such that
\[
B(q_j^\varepsilon,\varepsilon)\subset P_j^\varepsilon
\subset B(q_j^\varepsilon,r_2(\varepsilon))
\subset B(q_j^\varepsilon,r_1(\varepsilon)),
\]
with $r_1(\varepsilon)\geq r_2(\varepsilon)\geq C\varepsilon$ for some
positive constant $C$; lastly, there exists a finite number $\iota\in N$
such that every $x\in \Omega$ is contained in at most $\iota$
balls $B(q_j^\varepsilon,r_1(\varepsilon))$, where $\iota$ does not
depends on $\varepsilon$.
\begin{lemma} \label{lem5.1}
There exists $\gamma>0$ such that, for any $\delta>0$ and any
$\varepsilon\in (0,\varepsilon_0(\delta))$ where
$\varepsilon_0(\delta)$ is as in Proposition \ref{prop4.2}, given any ``good''
partition $P_\varepsilon$ of the domain $\Omega$ and for any
$u\in M_\varepsilon\cap I_\varepsilon^{m_\infty+\delta}$ there exists a
set $P_j^\varepsilon$ such that
$$
\frac{1}{\varepsilon^3}\int_{P_j^\varepsilon}|u^+|^{p+1}dx\geq \gamma
$$
\end{lemma}
\begin{proof}
Taking into account that $G_\varepsilon(u)=0$ we have
\begin{align*}
a\|u\|_\varepsilon^2
&\leq |u^+|_{\varepsilon,p+1}^{p+1}
=\sum_j\frac{1}{\varepsilon^3}\int_{P_j^\varepsilon}|u^+|^{p+1}dx\\
&\leq \sum_j|u_j^+|_{\varepsilon,p+1}^{p+1}
=\sum_j|u_j^+|_{\varepsilon,p+1}^{p-1}|u_j^+|_{\varepsilon,p+1}^2\\
&\leq \max_j\{|u_j^+|_{\varepsilon,p+1}^{p-1}\}\sum_j|u_j^+|_{\varepsilon,p+1}^2
\end{align*}
where $u_j^+$ is the restriction of the function $u^+$ on the set $P_j^\varepsilon$.
Arguing as in \cite{Be1}, we prove that there exists a constant $C>0$ such that
$$
\sum_j|u_j^+|_{\varepsilon,p+1}^2\leq C\iota\|u^+\|_\varepsilon^2,
$$
thus
$$
\max_j\{|u_j^+|_{\varepsilon,p+1}^{p-1}\}\geq\frac{a}{C\iota}
$$
that concludes the proof.
\end{proof}
\begin{proposition} \label{prop5.2}
For any $\eta\in(0,1)$ there exists $\delta_0>0$ such that for any
$\delta\in(0,\delta_0)$ and any $\varepsilon\in (0,\varepsilon_0(\delta))$
as in Proposition \ref{prop4.2}, for any
$u\in M_\varepsilon\cap I_\varepsilon^{m_\infty+\delta}$
there exists a point $q=q(u)\in \Omega$ such that
$$
\frac{1}{\varepsilon^3}\int_{B(q,\frac{r}{2})}|u^+|^{p+1}dx
>(1-\eta)\frac{2(p+1)}{p-1}\Big(4m_\infty+\frac{2a^2-2a\sqrt{a^2+3bm_\infty}}{b}\Big)
$$
\end{proposition}
\begin{proof}
We prove only the proposition for any
$u\in M_\varepsilon\cap I_\varepsilon^{m_\varepsilon+2\delta}$.
Indeed, by this result and by Remark \ref{rmk4.3} we get
$$
\lim_{\varepsilon\to 0}m_\varepsilon=m_\infty
$$
Hence it holds
$I_\varepsilon^{m_\infty+\delta}\subset I_\varepsilon^{m_\varepsilon+2\delta}$
for $\delta,\varepsilon$ small enough. So the thesis holds.
We argue by contradiction. Suppose that there exists $\eta\in (0,1)$
such that we can find vanishing sequences $\{\delta_k\}$,
$\{\varepsilon_k\}$ and a sequence
$\{u_k\}\subset M_{\varepsilon_k}\cap I_\varepsilon^{m_{\varepsilon_k}+2\delta_k}$
such that
\begin{equation}
\begin{aligned}
m_{\varepsilon_k}
&\leq I_{\varepsilon_k}(u_k)\\
&=(\frac{1}{2}-\frac{1}{p+1})a\|u_k\|_{\varepsilon_k}^2
+(\frac{1}{2}-\frac{1}{p+1})|u_k|_{\varepsilon_k,2}^2
+(\frac{1}{4}-\frac{1}{p+1})b\|u_k\|_{\varepsilon_k}^4 \\
&\leq m_{\varepsilon_k}+2\delta_k
\leq m_\infty+3\delta_k.
\end{aligned}\label{e5.1}
\end{equation}
for $k$ large enough, and for any $q\in \Omega$,
\begin{equation}
\frac{1}{\varepsilon_k^3}\int_{B(q,\frac{r}{2})}|u_k^+|^{p+1}dx
\leq(1-\eta)\frac{2(p+1)}{p-1}(4m_\infty
+\frac{2a^2-2a\sqrt{a^2+3bm_\infty}}{b}). \label{e5.2}
\end{equation}
By Ekeland variational principle and by definition of $M_{\varepsilon_k}$
we can assume that
\begin{equation}
I'_{\varepsilon_k}(u_k)\to 0.\label{e5.3}
\end{equation}
By Lemma \ref{lem5.1}, there exists a set $P_k^{\varepsilon_k}\in P_{\varepsilon_k}$
such that
\begin{equation}
\frac{1}{\varepsilon^3}\int_{P_k^{\varepsilon_k}}|u_k^+|^{p+1}dx
\geq\gamma.\label{e5.4}
\end{equation}
So we can choose a point $q_k\in \overset{\circ}{{P_k^{\varepsilon_k}}}$,
and define, for $z\in \Omega_{\varepsilon_k}=\frac{1}{\varepsilon_k}(\Omega-q_k)$,
$$
\omega_k(z)=u_k(\varepsilon_kz+q_k)=u_k(x),
$$
where $x\in \Omega$. We obtain that $\omega_k\in H_0^1(\Omega_{\varepsilon_k})$.
By \eqref{e5.1}, we have
$$
\|\omega_k\|_{H_0^1(\Omega_{\varepsilon_k})}^2\leq C.
$$
So we obtain $\omega_k\rightharpoonup \omega$ in $H_{loc}^1(\mathbb{R}^3)$,
$\omega_k\to \omega$ in $L_{loc}^{s}(\mathbb{R}^3)(2\leq s<6)$ and
$\|\omega_k\|^2\to A_1$. Thus we prove that $\omega\not\equiv 0$
and $A_1>0$ by \eqref{e5.4}.
Next we claim
\begin{equation}
\lim_{k\to\infty}\frac{dist(q_k,\partial\Omega)}{\varepsilon_k}
=\infty.\label{e5.5}
\end{equation}
We argue by contradiction. Suppose that
$$
\lim_{k\to\infty}\frac{dist(q_k,\partial\Omega)}{\varepsilon_k}=d<\infty.
$$
It is easy to verify that $\omega$ is a solution of
\begin{equation}
\begin{gathered}
-(a+bA_1)\Delta u+u=|u|^{p-1}u,\quad x\in \mathbb{R}^3_+ \\
u(x)=0, \quad x\in \partial \mathbb{R}^3_+
\end{gathered} \label{ePpi}
\end{equation}
where $\mathbb{R}^3_+$ is a half space. We know that \eqref{ePpi}
has no nontrivial solution from the work by \cite{Ai,Es}.
So $\omega\equiv 0$, this contradicts with $\omega\not\equiv 0$.
This concludes the claim.
By \eqref{e5.5}, $\Omega_{\varepsilon_k}$ converges to the whole space
$\mathbb{R}^3$ as $k\to \infty$. Using \eqref{e5.1} \eqref{e5.3}
and computing, we have
\begin{equation}
I_\infty(\omega_k)\to m_\infty,\quad
I'_\infty(\omega_k)\to0.\label{e5.6}
\end{equation}
This implies $\{\omega_k\}\subset M_\infty$ is a minimizing sequences
for $m_\infty$. Arguing as in \cite{He2}, we have $\omega_k\to \omega$,
$\omega\in M_\infty$, $I_\infty(\omega)=m_\infty$ and $I'_\infty(\omega)=0$.
By using \eqref{e5.6} and Pohozaev identity, we have
\begin{gather*}
\frac{a}{2}\|\omega_k\|^2+\frac{1}{2}|\omega_k|_2^2+\frac{b}{4}\|\omega_k\|^4
-\frac{1}{p+1}|\omega_k|_{p+1}^{p+1}=m_\infty+o_k(1),
\\
a\|\omega_k\|^2+|\omega_k|_2^2+b\|\omega_k\|^4-|\omega_k|_{p+1}^{p+1}=o_k(1)
\\
\frac{a}{2}\|\omega_k\|^2+\frac{3}{2}|\omega_k|_2^2
+\frac{b}{2}\|\omega_k\|^4-\frac{3}{p+1}|\omega_k|_{p+1}^{p+1}=o_k(1)
\end{gather*}
Thus, we obtain that
$$
|\omega_k|_{p+1}^{p+1}\to \frac{2(p+1)}{p-1}
\Big(4m_\infty+\frac{2a^2-2a\sqrt{a^2+3bm_\infty}}{b}\Big)
$$
So by $\omega_k\to \omega$, for $T$ and $k$ large enough, we have
$$
\int_{B(0,T)}|\omega_k^+|^{p+1}dz
>(1-\eta)\frac{2(p+1)}{p-1}\Big(4m_\infty+\frac{2a^2-2a\sqrt{a^2+3bm_\infty}}{b}\Big)
$$
On the other hand by \eqref{e5.2} and the definition of $\omega_k$,
for any $T>0$ we have, for $k$ large enough,
\begin{align*}
\int_{B(0,T)}|\omega_k^+|^{p+1}dz
&\leq\frac{1}{\varepsilon_k^3}\int_{B(q_k,\varepsilon_kT)}|u_k|^{p+1}dx\\
&\leq \frac{1}{\varepsilon_k^3}\int_{B(q_k,\frac{r}{2})}|u_k|^{p+1}dx\\
&\leq (1-\eta)\frac{2(p+1)}{p-1}(4m_\infty+\frac{2a^2-2a\sqrt{a^2+3bm_\infty}}{b}).
\end{align*}
This leads to a contradiction.
\end{proof}
\begin{proposition} \label{prop5.3}
There exists $\delta_0>0$ such that for any $\delta\in (0,\delta_0)$
and any $\varepsilon\in (0,\varepsilon(\delta_0))$ as in Proposition \ref{prop5.2},
for any $u\in M_\varepsilon\cap I_\varepsilon^{m_\infty+\delta}$ it holds
$\beta(u)\in \Omega^+$. Moreover the composition
$$
\beta\circ\Phi_\varepsilon:\Omega^-\to \Omega^+
$$
is homotopic to the immersion $i:\Omega^-\to \Omega^+$.
\end{proposition}
\begin{proof}
Arguing by contradiction, we suppose that there exist sequences
$\{\delta_k\},\{\varepsilon_k\}\subset R$ and
$\{u_k\}\subset M_{\varepsilon_k}\cap I_\varepsilon^{m_\infty+\delta_k}$
such that $\delta_k,\varepsilon_k \to 0^+$, as
$k\to \infty$, and $\beta(u_k)\not\in \Omega^+$ for all $k$.
By Ekeland variational principle and by definition of $M_{\varepsilon_k}$
we can assume that $I'_{\varepsilon_k}(u_k)\to 0$.
So by Proposition \ref{prop5.2} we can find $q_k\in \Omega$ such that
$$
\frac{\frac{1}{\varepsilon_k^3}\int_{B(q_k,\frac{r}{2})}|u_k|^{p+1}dx}{\frac{1}{\varepsilon_k^3}\int_\Omega|u_k|^{p+1}dx}
>\frac{(1-\eta)\frac{2(p+1)}{p-1}
\big(4m_\infty+\frac{2a^2-2a\sqrt{a^2+3bm_\infty}}{b}\big)}
{\frac{2(p+1)}{p-1}\big(4(m_\infty+\delta_k)
+\frac{2a^2-2a\sqrt{a^2+3b(m_\infty+\delta_k)}}{b}\big)}
$$
Finally,
\begin{align*}
&|\beta(u_k)-q_k|\\
&\leq \frac{|\frac{1}{\varepsilon_k^3}
\int_{\Omega}(x-q_k)|u_k|^{p+1}dx|}{\frac{1}{\varepsilon_k^3}
\int_\Omega|u_k|^{p+1}dx}\\
&\leq \frac{|\frac{1}{\varepsilon_k^3}\int_{B(q_k,\frac{r}{2})}
(x-q_k)|u_k|^{p+1}dx|}{\frac{1}{\varepsilon_k^3}\int_\Omega|u_k|^{p+1}dx}
+\frac{|\frac{1}{\varepsilon_k^3}\int_{\Omega
\backslash B(q_k,\frac{r}{2})}(x-q_k)|u_k|^{p+1}dx|}
{\frac{1}{\varepsilon_k^3}\int_\Omega|u_k|^{p+1}dx}\\
&\leq \frac{r}{2}+2\operatorname{diam}(\Omega)
\Big(1-\frac{(1-\eta)\frac{2(p+1)}{p-1}(4m_\infty+\frac{2a^2
-2a\sqrt{a^2+3bm_\infty}}{b})}{\frac{2(p+1)}{p-1}
(4(m_\infty+\delta_k)+\frac{2a^2-2a\sqrt{a^2
+3b(m_\infty+\delta_k)}}{b})}\Big)
\end{align*}
The above expression implies that $\beta(u_k)\in \Omega^+$,
which contradicts $\beta(u_k)\not\in \Omega^+$.
\end{proof}
\subsection*{Acknowledgments}
This work was supported by the Shanxi University Technology research
and development (project 2013158).
\begin{thebibliography}{00}
\bibitem{Ai} J. Ai, X. P. Zhu;
\emph{Positive solutions of inhomogeneous elliptic boundary value problems
in the half space}, Comm. Partial Differential Equations 15 (1990), 1421--1446.
\bibitem{Al} C. O. Alves, F. J. S. A. Corr\^ea, T. F. Ma;
\emph{Positive solutions for a quasilinear elliptic equation of Kirchhoff type},
Comput. Math. Appl. 49 (2005), 85-93.
\bibitem{Be1} V. Benci, C. Bonanno, A. M. Micheletti;
\emph{On the multiplicity of a nonlinear elliptic problem on Riemannian manifolds},
J. Funct. Anal. 252 (2007), 464-489.
\bibitem{Be2} V. Benci, G. Cerami;
\emph{Multiple positive solutions of some elliptic problems via the Morse
theory and the domain topology},
Calc. Var. Partial Differential Equations 2 (1994), 29-48.
\bibitem{Be3} V. Benci, G. Cerami;
\emph{The effect of the domain topology on the number of positive
solutions of nonlinear elliptic problems},
Arch. Ration. Mech. Anal. 114 (1991) 79-93.
\bibitem{Be4} V. Benci, G. Cerami;
\emph{The effect of the domain topology on the number of positive
solutions of nonlinear elliptic problems},
Arch. Rationa. Mech. Anal. 114(1991) 79-93.
\bibitem{Be5} V. Benci, G. Cerami, D. Passaseo;
\emph{On the number of the positive solutions of some nonlinear elliptic
problems}, in ``Nonlinear Analysis, A tribute in Honour of G Prodi'',
Quaderno Scuola Norm Sup, Pisa, 1991, pp 93-107.
\bibitem{Ca} A. Candela, M. Lazzo;
\emph{Positive solutions for a mixed boundary problem},
Nonlinear Anal. 24 (1995), 1109-1117.
\bibitem{Ch1} C. Chen, Y. Kuo, T. Wu;
\emph{The Nehari manifold for a Kirchhoff type problem involving
sign-changing weight functions}, J. Diff. Equs. 250 (2011), 1876--1908.
\bibitem{Ch2} B. Cheng, X. Wu;
\emph{Existence results of positive solutions of Kirchhoff type problems},
Nonlinear Anal. Theory Methods Appl. 71 (2009), 4883-4892.
\bibitem{Es} M. J. Esteban, P. L. Lions;
\emph{Existence and nonexistence results for semilinear elliptic problems
in unbounded domains}, Proc. Roy. Soc. Edim. 93 (1982), 1-14.
\bibitem{Gh1} M. Ghimenti, A. M. Micheletti;
\emph{The role of the scalar curvature in some singularly perturbed
coupled elliptic systems on Riemannian manifolds},
Discrete Contin. Dynam. Systems 34 (2014), 2535-2560.
\bibitem{Gh2} M. Ghimenti, A. M. Micheletti;
\emph{Positive solutions for singularly perturbed nonlinear elliptic problem
on mainifolds via Morse theory}, arXiv: 1012.5672 (2010).
\bibitem{He1} X. He, W. Zou;
\emph{Multiplicity of solutions for a class of Kirchhoff type problems},
Acta Math. Appl. Sin. Engl. Ser. 26 (2010), 387--394.
\bibitem{He2} X. He, W. Zou;
\emph{Existence and concentration behavior of positive solutions for a
Kirchhoff equations in $\mathbb{R}^3$}, J. Diff. Equs. 252 (2012), 1813--1834.
\bibitem{Lj} L. Ljusternik, L. Schnirelmann;
\emph{M\'ethodes topologiques dans les probl\`emes variationelles},
Actualit\'es Sci. Indust. 188 (1934).
\bibitem{Ma} A. Mao, Z. Zhang;
\emph{Sign-changing and multiple solutions of Kirchhoff type problems
without the (PS) condition}, Nonlinear Anal. 70 (2009), 1275--1287.
\bibitem{Pe} K. Perera, Z. Zhang;
\emph{Nontrivial solutions of Kirchhoff-type problems via the Yang index},
J. Diff. Equs. 221 (2006), 246--255.
\bibitem{Ya} Y. Yang, J. Zhang;
\emph{Nontrivial solutions of a class of nonlocal problems via local linking theory},
Appl. Math. Lett. 23 (2010), 377--380.
\bibitem{Zh} Z. Zhang, K. Perera;
\emph{Sign changing solutions of Kirchhoff type problems via invariant sets
of descent flow}, J. Math. Anal. Appl. 317 (2006), 456--463.
\end{thebibliography}
\end{document}