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SINGULAR LIMITING SOLUTIONS TO 4-DIMENSIONAL
ELLIPTIC PROBLEMS INVOLVING EXPONENTIALLY
DOMINATED NONLINEARITY AND NONLINEAR TERMS

SAMI BARAKET, IMEN BAZARBACHA, MARYEM TRABELSI

ABSTRACT. Let Q € R* be a bounded open regular set, z1,x2,...,2zm € Q,
A, p > 0 and 2, be a non linear operator (which will be defined later). We
prove that the problem

A%y + 2 (u) = ple”
has a positive weak solution in Q with v = Au = 0 on 9%, which is singular
at each x; as the parameters A and p tends to 0.

1. INTRODUCTION AND STATEMENT OF RESULTS

Semilinear equations involving fourth order elliptic operator and exponential
nonlinearity appear naturally in conformal geometry and in particular in the pre-
scription of the so called Q-curvature in four-dimensional Riemannian manifolds
7 18]

1 2 c2
Qg = E(_A!]S!J + 55 — 3| Ricg [7),
where Ric, denotes the Ricci tensor and Sy is the scalar curvature of the metric g.
Recall that the Q-curvature changes under a conformal change of metric

guw = €*g,
according to 3
Pyw +2Q, = 2Q,, ™, (1.1)
where
Py:=A + 5(%591 — 2Ric,) d,
is the Panietz operator, which is an elliptic 4-th order partial differential operator

[8] and which transforms according to

4w _
(& Pezwg = Pg,

under a conformal change of metric g, := e?*g. In the special case where the
manifold is the Euclidean space, the Panietz operator is simply given by
Pgeucl = A27
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in which case (1.1)) can be written as
AQ’LU — Q€4w’

the solutions~of which give rise to conformal metric g, = €?* geucl Whose Q-curvature
is given by ). There is by now an extensive literature about this problem and we
refer to [8] and [I3] for references and recent developments.

Wei in [I8], have studied the behavior of solutions to the following nonlinear
problem in R*. More precisely, consider the problem

A?u=\f(u) inQ

1.2
u=Au=0 on 9. (1.2)

Before showing his result, we introduce some notation. Let G(z,’) defined, over
Q x €, the Green function associated to the bi-laplacian operator with a Navier
boundary conditions, which is the solution of

A2G(z,2") = 64776,y in
G(z,2") = A,G(z,2') =0 on 0N

and denote by H(x,z') = G(z,2’) + 8log |z — 2’| its smooth part. Consider now
the functional

(1.3)

E:(z',...,2™) e R Y H(ad,27) + 3 Ga?,2!) (1.4)
=1 J#l
and u* the solution of .
A%y = 6472 b, in Q
; ‘ (1.5)
u*=Au*=0 on 9.
The author proved the following result.

Theorem 1.1 ([I8]). Let Q be a smooth bounded domain in R* and f a smooth
nonnegative increasing function such that

u
e “f(u) and E_“/ f(s)ds tends to 1 as u — +o0.
0

For uy solution of , denote by X\ = )\fQ f(ux)dxz. Then, three cases occur:
(1) Xx — 0 therefore, ||url|po — 0 as A — 0.
(2) ¥y — 400 then uy — +00 as A — 0.
(3) Xn — 647w2m, for some positive integer m. Then the limiting Function
u* = limy_ouyx has m blow-up points, {z*,..., 2™}, where uy(z*) — +oo
as X — 0. Moreover, (x',... 2™) is a critical point of E.

Now, we are interested in positive solutions of the problem
A%u = ple* inQ

1.
u=Au=0 on 9 (1.6)

when the parameter p tends to 0. Obviously, the application of the implicit function
theorem yields the existence of a smooth one parameter family of solutions (u,),
which converges uniformly to 0 as p tends to 0. This branch of solutions is usually
referred to as the branch of minimal solutions which gives the converse of the case
(1) given in the last Theorem.



EJDE-2015/289 SINGULAR LIMITING SOLUTIONS 3

First, let us mention that in [4], Ben Ayed, El Mehdi and Grossi considered a
bi-harmonic equation with large exponent in the non linear term; that is A%u =
uP, under Navier boundary conditions. The authors have studied the asymptotic
behavior of positive solutions obtained by minimizing suitable functionals.

In [9], the authors studied existence and qualitative properties of positives solu-
tions to the boundary-value problem

Ay = p* k(z)e* in Q

1.
u=Au=0 on 9N (1.7)

where k € C?(Q2), is a non-negative, not identically zero function, €2 a bounded
open regular domain in R* and p > 0 is a small, positive parameter which tends to
0.

Recently, the existence of other branches of solutions as p tends to 0 is studied
in [3]. The authors construct a non-minimal solutions with singular limit as the
parameter p tends to 0. Their results which give the converse of the case (3) given
in the last Theorem, can be stated as follows.

Theorem 1.2 ([3]). Let Q be a smooth open subset of R*. Assume (z!,...,2™) is
a nondegenerate critical point of E. Then there exist pg > 0 and a one parameter

Jamily (uy) pe(0.p0) 0f solutions of (L.6), such that

lliir(l)up =¥, i CEt(Q— {2}, 2™}).

To prove Theorem the authors present, for the first time, a rather efficient
method to solve such singularly perturbed problems in the context of partial dif-
ferential equations. This method based on some nonlinear domain decomposition
has already been used successfully in geometric context (constant mean curvature
surfaces, constant scalar curvature metrics, extremal Kéhler metrics, ...). In this
article, we adopt this method in the study of the following problem.

Let © C R* be a regular bounded open domain in R*. We are interested in
positive solutions of

A?u+ 2, (u) = p*e” in Q (1.8)

satisfying v = Au = 0 on 092 and 2, is the nonlinear operator given by

25 (u) == A[(Au)® + A(|Vul®) + 2Vu - V(Au)]

1.9
+2X% [Au|Vu]? + Vu - V(|Vul?)] + N |Vul*. (1.9)
Using the transformation
w = (Apte®)?, (1.10)
if u is a solution of (|1.8) then w solves the equation
A2y =w> in Q. (1.11)
Remark that the exponent g = % tends to co as A tends to 0.
We denote by € the smallest positive parameter satisfying
3844
4
= — 1.12
P (14 ¢e2)4 (1.12)

We remark that p ~ € as € — 0. We will suppose in the following that
(A1) A\1+9/2c70 = O(1) as € — 0 for any § € (0,1).
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In particular, if we take A\ = O(%/3), then condition (A1) is satisfied. Under the
assumption (Al), we can treat equation (1.8]) as a perturbation of the equation
A%y = pte* in Q cC RL

Our question is: Does there exist u. a sequence of solutions which converges to
some singular function as the parameters € tend to 07
Our main result reads as follows.

Theorem 1.3. Given o € (0,1). Let Q be an open smooth bounded set of R*, X > 0
satisfy condition (Al), and S = {x1,...,zm} C Q be a non empty set. Assume

that (x1,...,%m) 18 a nondegenerate critical point of the function
m
F(X1y. 0oy Tm) = ZH(:I:j,xj) + ZG(mi,xj) in (Q)™,
j=1 i#j

then there exist po > 0, Ao > 0 and a family {u, »} with 0 < p < pg,0 <X < Xg of
solutions of (1.8)), such that

m
. . 4,0
p~>101,n;\1~>0uP’)\ = z:l G(xj,-) inCol(Q—A{z1,...,xm}).
=
2. CONSTRUCTION OF THE APPROXIMATE SOLUTION
We first describe the rotationally symmetric approximate solutions of
A%y —ple" =0, (2.1)

in R*, which will be crucial in the construction of the approximate solution. Given
e > 0, we define

e - () := 4log(1 + %) + 4log T — 4log(e® + (7]x|)?).
which is clearly a solution of (2.1) when

, 384t
P+

For 7 > 0, we remark that equation (2.1) is invariant under some dilation in the
following sense: If u is solution of (2.1]), then

T u(r) +4log .

is also a solution of (2.1). So, for ¢ > 0 and 7 > 0 we denote by u. . the element
of this new family of radial solutions of ([2.1]).

For ¢ = 7 = 1 and we denote by u; = u;,; this particular solution. We also
define the following linear fourth order elliptic operator

384
(14 |2[*)*

which corresponds to the linearization of (2.1) about the solution w;.

L =N —
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2.1. Radial solution on R*. For all ¢,7, A > 0, we set
R.:=7rex/e, where 7.y := max(v/e, V). (2.2)
The classification of bounded solutions of Lw = 0 in R* is well known. Some
solutions are easy to find. For example, we can define
o(e) = r0yus (@) +4 = 42—
x) :=rorug (x =4—
0 1 152
where r = |z|. Clearly Loy = 0 and this reflects the fact that (2.1)) is invariant
under the group of dilations 7 — u(7-) + 4logT. We also define, for i =1,...,4
8x;
7 = —81;. = — 5
¢i() Jur () 1+ |z|?
which are also solutions of IL¢; = 0 since these solutions correspond to the invariance
of the equation under the group of translations a — u(- + a). Then, we have the
following classification.

Lemma 2.1 ([3]). Any bounded solution of £w = 0 defined in R* is a linear
combination of ¢; fori=0,1,...,4.

Let B, denote the ball of radius r centered at the origin in R*.
Definition 2.2. Given &k € N, a € (0,1) and p € R, we introduce the Holder
weighted spaces Cl’j’o‘(R‘l) as the space of functions w € Ck’a(R4) for which the

loc
norm

—6/2

[t legongary = lera sy + 5D (1 + 7)™ /20 egnip, 5, )

is finite.

Also, we define
che (RY) ={fe Cﬁ’a(R‘l)textsuchthatf(x) = f(|z|), Vo € R*}.

rad,
As a consequence of Lemma we recall the surjectivity result of .Z.

Proposition 2.3 ([3]). (1) Assume that pn > 1 and p € Z, then the operator
Ly :Cy*(RY) — Cg’_o‘4(R4) defined by L, (w) = Lw is surjective.
(2) Assume that 6 > 0 and 6 ¢ Z, then the operator Ls : Ciﬁ’é(R‘L)) —
Cfa’375_4(R4) defined by Ls(w) = Lw is surjective.
We set B = By — {0}.
Definition 2.4. Given &k € N, a € (0,1) and g € R, we introduce the Holder

weighted spaces C}»*(B}) as the space of functions in C{Zf‘ (B7) for which the norm

e sy = 51 Ot e o)
is finite.
Then, we define the subspace of radial functions in C(];"O‘(Bf ) by
Clad s(BY) = {f € C""(R"); such that f(x) = f(z]).Vx € Bf}.
Our aim now is the construction of a radial solution u of
A’u+ 2\(u) — p'e* =0 inB,_,. (2.3)
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Thanks to the transformation
v(z) = u(%m) + 8loge — 4log(7(1 +£2)/2),
Equation can be written as
A’v 4 2,(v) — 24" =0 in Bp,_,. (2.4)

Now, we look for a solution of of the form v(z) = uy(z)+h(z); this amounts
to solving
ZLh= &(eh—h—l)—a@mul—&—h) in B_,. (2.5)
T+ )"
We will need the following definition.

Definition 2.5. Given 7 > 1, k € N, a € (0,1) and § € R, the weighted space
C(’;’a(B;) is defined to be the space of functions w € C**(B;) endowed with the
norm

||w||cj;’a(gi) = ”w”C’“va(Bl) + Supi(f‘s||w(7")||ckva(1§1731/2))~

For o > 1, we denote by
& : Cy*(By) — Cy*(RY),

the extension operator defined by

& (f)(@) = x( ),

where ¢t — x(t) is a smooth nonnegative cutoff function identically equal to 1 for
t > 2 and identically equal to 0 for ¢ < 1. It is easy to check that there exists a
constant ¢ = ¢(d) > 0, independent of o > 1, such that

]y

)f(o

o " al

165 () goen gty < cllewllgo s, - (2.6)

We fix § € (0,1), and denote by ¥5 to be a right inverse of % assured by
Proposition[2.3] Now, we use the result of Proposition 2.3|to rephrase the nonlinear
equation ([2.5)) as a fixed point problem. Hence, to obtain a solution of (2.5)), it is

enough to find a fixed point h in a small ball of Cf;i s(R*) for the mapping
hv— A (h) =95 0850 R (h), (2.7)
where 384
Ah) = (" —h—1) - 2 h).
W= Ty @ T T Al
We have

2(0) = —A[(Au)® + A(|Vul?) +2Vu - V(Au)]
— 2X?[Au|Vul® + Vu - V(|Vul?)] — X3 Vul*.

Recall that
up = 4log(2) — 4log(1 + ).

Then
r2 24 p2 1—-27?
Vuil]? =64——, Auy=—-16———, A(|Viy|?) =512———.
V] (1+7r2)2 “ (14 1r2)2 (V) (14r2)1
Hence,

(1+ 7227 2|(Au)? + AV |?) + 2Vuy - V(Aw)| < (1 +12) 73,
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(1 + 7227 3| Awy Va2 + Vg - V([Vug )] < e(1+72) 7173
(147223 |Vuy ! < (1 +72) 75,

This implies that given x > 0, there exists ¢, > 0 (which can depend only on k),
such that for 6 € (0,1) and |z| = r, we have

sup (1+72)27%|2(0)| < cu).

9

T‘gRE,)\
So
||JV(O)||(:;1;§Y§(R4) < C»ﬂ"?,)\- (2.8)
Using Proposition and (2.6]), we deduce that
||h||cfa’315(ﬂ§4) < 20,{!’3’)\. (29)

Now let hy, hy in B(0,2¢, 72 ) of Ci;g"(;(R‘l) and for § € (0,1), then
|% (ha) — Z(h1)| < |e"? — e + hy — ho| + |25 (us + ha) — 2a(u1 + h1)].

Furthermore,
rd=0lehz — M by — ho| < 70y — ha||he + |
<

CHT'(;’I"?:’)\ ||h2 — hl Hcéla,;é(Rgl) .

7O (Aur 4 h1))? = (Aur + h2))?| = 7P [(A(hy — ha))(A(2u1 + by + ha))

<en(1+ 7"67"5,,\) [lha — hl”ci;g&(W)-

A0 AV (uy + ha) 2 — AV (uy 4+ b)) = r | A(V(hy — ha) - V(2uy + hy + hy))|

< Cn(l + 7“67“?))\)||h2 a hl”c:j_s(]R“)‘

r OV (A(uy + ho)) - V(ug + ho) — V(A(ug + b)) - V(wg + )|
= 17| V(A(hy — h2)) - V(2u1 + ha + ha) + V(ha — h1) - V(A(2u1 + ha + ha))|
X 1470V (A(ur + ha)) - V(s + ha) = V(A(ur + 1)) - V(ug + hy)
<en(1 47072 |ha — halless (ge)-
Since
V(w1 + h1)PAur + hr) = [V(u1 + ho) PA(ur + ha)
= A(h1 = ho)[|V(u1 + h1) [ + |V (w1 + ho)|?]
+ A2ur + b+ ho)[[V (ur + ha)[? = [V (u1 + ho)|?],
it follows that
r475||V(u1 +h)|?A(uy + hy) — |V (ug + hg)\QA(ul + hg)‘
w7025+ 0212 ) [lhe = hallgae (eay.
Its easy to see that
V(|V(u1 + h2) )V (uy + ha) — V(| V(ur + h1)]*)V(u1 + hy)
=V(ha — h))V(|V(u1 + h2)|2 +|V(u + hl)‘Q)
+ V(2uy + hy + ha)V(|V(uy + ho)|> — |V (uy + hy)?);

)
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hence
P V(Y (ur + ho) )V (ur + ha) = V(IV (ur + ha) )V (ug + )
Sew(L+70r2 5+ 7712 ) ) [he — I leza | (may-
Finally, since
[V (ur + ho)[* = |V (ur + ha)|*
= V(hg — h1)V(2u1 + hg + hn)(|V (w1 + ho) * + [V (w1 + ha)[?),
it follows that
P39 + ha)[* = 19 + )|
Sew(L+r0r2 3+ 720y + %08 ) e = hallesa gy
Thanks to condition (Al),
sup 4% |Z(ha) — Z(M)]| < CrTe, Zallhe — h1||c4 5 SR

TgRE,)\

Similarly, by Proposition and (2.6), we conclude that given x > 0, then there
exist ¢, > 0 (independent of € and \), A, and ¢,; such that

|4 (h2) — L/V(hl)Hc‘* FGOI CKT?,AW“@ - hIHCfa’fI,a(R“)' (2.10)

Reducing A, > 0 and ¢, > 0 if necessary, we can assume that énr?’ \ < 1/2 for
all A € (0,A;) and € € (0,¢,;). Then, ) and are enough to show that
h — A (h) is a contraction from {h € Cradé(]R‘l) : Hh”Cf;f;é(R“) < 2¢,72 5} into
itself and hence has a unique fixed point A in this set. This fixed point is solution
of in Bg, ,. We summarize this in the following proposition.

Proposition 2.6. Given 6 € (0,1) and k > 0, then there exist £, > 0, Ay > 0
and ¢, > 0 (depending on k) such that for all A € (0, \;), and for e € (0,¢,), there
exists a unique solution h € Cfﬁ,é(R‘l) solution of (2.7) such that

v(z) = wi(z) + h(z)
solves ([2.4) in B, . In addition
”h”Cf;g,g(R“) < 23&T§,A~

2.2. Analysis of the Bi-Laplace operator in weighted spaces. In this section,
we prove a surjectivity result of the bi-laplace operator in some weighted spaces
and recall some estimations concerning the bi-harmonic extensions. First, given
b ..., 2™ € Q we define
Q=0 {2',... 2™},

and we choose rg > 0 so that the balls B,,(x%) of center z° and radius ro are
mutually disjoint and included in Q. For k € N, a € (0,1) and v € R, we introduce
the Holder weighted space C%(Q*) as the space of functions w € Cﬁ)ca(f_l*) endowed
with the norm

[wllego @y = lwllera@-um B, »29)) +Z sup Y |fw(z? + 1) |[eha(By—By)-
= 1 0<r<ro/2

When k > 2, we let [C5(Q*)]o be the subspace of functions w € C*<(Q*) satisfying
w=Aw =0.
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In this article, we need the following mapping properties of A2.
Proposition 2.7 ([3]). Assume that v < 0 and v ¢ Z, then
A% ()]0 — €2y ()
18 surjective.

Remark 2.8 ([3]). It is interesting to observe that, when v < 0, v ¢ Z, the right
inverse even though it is not unique can be chosen to depend smoothly on the points

x', ..., 2™, at least locally. Once a right inverse is fixed for some choice of the points
x', ..., 2™, a right inverse which depends smoothly on the points Z',...,Z™ close
to x',..., 2™ can be obtained using a simple perturbation argument.

Proof of Proposition[2.7. Given (&) close enough to (z°), we define a family of
diffeomorphism D :  — Q depending smoothly on (#%) by

D(@)=z+ Y Xro(x—a7) (2 — &),
j=1
where X, is a cut-off function identically equal to 1 in B, /o and identically equal
to 0 outside B,,. Hence D(#7) = 27 for each j. Then the equation A% = f where
fecd* (Q—{&,1<i<m}) can be solved by considering @ = w o D where w is
a solution of the problem

A’w+ [A*(wo D) — A’woD]oD ' = foD™! (2.11)
and this time fo D=1 € C2*(Q — {z',...,2™}). Tt should be clear that
| [A%*(wo D) — A*wo D] o D_IHCSf @) S Clwllesoq- j:sllme [

4
)

Since we have a fixed right inverse for A2 : C2*(Q*) — €2, (Q*), a perturbation
argument shows that (2.11)) is solvable provided the &7 are close enough to the z7.
This provides a right inverse which depends smoothly on the choice of the points
7t O
2.3. Bi-harmonic extensions. Now, we give some estimates. More precisely,
given ¢ € C+*(S5°) and ¢ € C>*(S%), we define H'(= H{, ;) to be the solution of

A’H'=0 in By

H'= ¢y ondB;

AH' =4 on By,

where, as already mentioned, B; denotes the unit ball in R*. Given k € N, a € (0, 1)

and v € R, we introduce the Hélder weighted spaces C¥<(Bjf) as the space of
function in C}>*(B}) for which the following norm

lullgs gy = sup 7 u(r-)llcren s, p1)

A

is finite. Here B} = By — {0}, therefore, this norm corresponds to the norm already
defined in the previous section when Q = By, m = 1 and ! = 0. We denote by
e1,...,e4 the coordinate functions on S3.
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Lemma 2.9 ([3]). Assume that

/53 8p—1)do=0 and /33(12w —)epdo =0, (2.12)
for 0 =1,...,4. Then there exists ¢ > 0 such that
||H;,w|\cg=“(3;) < c(llpllesassy + 1Yoz (gs))-
Given ¢ € C4*(S%) and 9 € C**(S®) we define (when it exists!) H(= H ;)

to be a solution of
A’H =0 inR'- DB
H¢=¢ onodB
AH® =1 on 0Bj.
which decays at infinity. Given £ € N, @ € (0,1) and pu € R, we introduce the

Hélder weighted spaces Cl’j’o‘ (R* — By) as the space of function w € C{ZCO‘ (R* — By)
for which the norm

llley = gy = supr="llw(r)llese 5,

is finite.

Lemma 2.10 ([3]). Assume that
do = 0. (2.13)
5'3
Then there exists ¢ > 0 such that
IHG plleto mi—p,) < clll@llesa(ss) + [¥llcza(ss))-

Observe that, under the hypothesis of the Lemma, there is uniqueness of the
bi-harmonic extension of the boundary data which decays at infinity.

If E C L?(S?) is a space of functions defined on S, we define the space E+ to
be the subspace of functions which are L?-orthogonal to the functions 1,e1,...,e,4.

Lemma 2.11 ([3]). The mapping
P - C4,a(33)L x CQ,a(SS)L N C3,a(53)L % Cl,a(SS)L
(0, ¥) = (ar(H;,¢ - H&W,&.(AH@W - AH:;,w))

is an tsomorphism.

3. NONLINEAR INTERIOR PROBLEM

We are interested in studying equations of type
Aw + 2y (w) — 24e™ =0 (3.1)

in Br_,. Given ¢ € C**(S%) and ¢ € C**(S%). Let k > 0 (whose value will be
fixed later on), we further assume that the functions ¢, ¥ satisfy

lollcse <wr2y and  [lglcze < w72 5. (3-2)

Define
Vi=u + HZ(‘P; dja '/Rs,)\) + h>
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then we look for a solution of (3.1)) of the form w = v + v and using the fact that
H' is biharmonic, this amounts to solving

384 i 384
Py = eh(eH (s /Ren)tv _ ) 1)+ (eh — 1)

1+ [a2)7 1+ [22)7 53)

+ QA(ul + h) — Q)\ <u1 + Hi(goﬂb, '/Re,)\) + h + ’U).
We fix p € (1,2) and denote by ¥, the right inverse of .Z), provided by Proposi-
tion To obtain a solution of (3.3) it is sufficient to find v € C;*(R*) solution
of

v=N(v):=%,0&,0F(v), (3.4)

where

4 i 4
F(0) = D (e e Rebe ) By,

A+ P 1+ o) (3.5)
+ (w4 h) = 23 (w1 + H (9, 6,/ Re) + B+ ).

We denote by A (= Az x,4,¢) the nonlinear operator appearing on the right-hand
side of (3.4)); then we have the following result.

Lemma 3.1. For p € (1,2) and k > 0, then there exist A\, > 0, &,; > 0, ¢, > 0
and ¢, > 0 (depending on k) such that for all A € (0,\;) and € € (0,¢,),

||*/V(O)||cﬁv”(R4) < Cn"“;x (3.6)
Moreover,
||</V('U2) - </V('Ul)H(jﬁv”‘(]Rél) < Enrg,)\||v2 - vl”cﬁﬂ(sz), (37)
provided that vy,vs € Cﬁ’a(R‘l), satisfy
[villga.e ey < 26072 5

Proof. The proof of the first estimate follows from the asymptotic behavior of H*
together with the assumption on the norm of boundary data ¢ and v given by
(3.2). Indeed, let ¢, be a constant depending only on « (provided € and A are
chosen small enough) it follows from the estimate of H', given by Lemma that

15 (0, SBeMlesean, ) S cRA(lellesa(ss) + ¥ lleza(s9)) < exe®.

Since for each = € Bpg_,, we have

()] < crZi0e™ <

gl=9/2 fore >\
AH0/22=0 for X > ¢,

Then, using condition (A1) , we prove that |h(z)] — 0 as e and A tend to 0. Given
Kk > 0, there exist ¢, > 0 such that

I+ ] P2 ( e 1)l oe g, ) S
On the other hand, using condition (A1), we obtain

sup (1+ r2)2_%|,@,\(u1 +h)— 2, (u1 + Hi(cp, ¥, /Re\) + h)| < cmrg’A.

TgRs,)\
By Proposition and (2.6, for p € (1, 2), we obtain
A (0)[| g0 gay < CuT2 -
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To derive the second estimate, let v; € Cy*(R*) satisfy [|vllgso@ey < 2012 ),
1=1,2, u € (1,2) and condition (A1). Hence there exist ¢, > 0 such that

1L+ |- [Pyt e/ Ren) (e — et — (vy — vlleo,sn, )

< cpe?|lvg — Ul”cﬁvﬂ(w) )
(" = )2~ v0) e 5,y < €tz — 1oy
Hgk (Ul + HZ((Pa’L/)7 '/RE,)\) + h + U2)

— e@)\ (ul + Hl(@,l/)? '/R&)\) + h + Ul) chf4(BRs A)

< ewrZlfvs = ”1||cﬁ‘°*(R4)'
So

sup (147228 #(v2) — #(01)] < ety lloz — vnllern (goy.
r<Re radu

Similarly, using Proposition and (2.6), we conclude that there exist ¢, > 0
such that
1A (v2) = N (01)llgt.e gy < 2 xllvz = vill gt gay-

Reducing A, > 0 and ¢, > 0 if necessary, we can assume that
E,{rg’)\ < %, (3.8)
for all A € (0, A\,) and € € (0,e,). Then, and in Lemma [3.1] are sufficient
to show that v — 4'(v) is a contraction from
{ve Cﬁ’a(R‘l) : ||U||cﬁ""(JR4) < 2¢.67}

into itself and hence has a unique fixed point v = v(e, 7, ¢, ¥; -) in this set. This fixed
point is a solution of (3.4 in R*. We summarize this in the following proposition.

Proposition 3.2. For p € (1,2) and k > 0 there exist £, > 0, Ay > 0 and ¢,; > 0
(depending on k) such that for all € € (0,e,), A € (0, Ay) satisfying (A1), for all T
in some fized compact subset of [T_,7F] C (0,00) and for a given p and v satisfying

(2.12))-(3.2)), then there exists a unique v(:= Ve r o) solution of (3.4) such that
wi=u + Hz(% 1/)» '/Re,)\) +h+ ﬁs,f,ap,w
solve (3.1) in BRE,A' In addition

Hv||cﬁ,a(R4) < QCHT‘E,A.

4. NONLINEAR EXTERIOR PROBLEM

Denote Gz = G(x,%) where G is the Green function given by and H(x, )
its regular part. Clearly « — H(x,Z) is a smooth function.

Let x = (27) € Q™ close to x = (27), 7 = (77) € R™ close to 0. Let ¢ = (¢’) €
(€ (S%)™ and P = (¥7) € (C>*(S?))™ satisfy ([2.13). We define

~ B m » m i . x _ j]
8= gz g = 2 (1H7)Ga + 3 xn(o = &) HE, 5, (5—),
j=1 j=1 ’
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where X, is a cut-off function identically equal to 1 in B, /» and identically equal
to 0 outside B,,,. We would like to solve the equation

A%u+ 25(u) — pte* =0, inQ— Ur<i<mBro  (39)5 (4.1)
with uw = a4+ ? is a perturbation of . This amounts to solve
A% = ple® e — 2,(T+ 1) — A% = A (D).
Denote Qrz = Q — Ui<j<mBr(Z’) for any R > 0. We denote by €r:CO*(ORps) —
CY9(Q*) the extension operator defined by

Er(f)=f inQrgs,
ﬂ%+fz)inBﬂﬂﬂBmﬂW% V1< j<m,
Er(f) =0 in U;Bgj(3).

It easy to check that there exist a constant ¢ = ¢(v) > 0, only depending on v such
that

gR(f)(fi +a)= MT_R

€)@y < clivllcg oy (12)
We fix v € (—1,0), and denote by ¢, the right inverse provided by Proposi-
tion Clearly, it is enough to find o € C»*(Q2*) solution of
=9, 06, oS (D). (4.3)
We denote by A (7) (= e/@mi@ﬂ,(ﬁ)) =9, 0 f;w o (%), the nonlinear operator
on the right-hand side. Even though this is not notified in_the notation, ¥, :
CO (V) — CL*(Q*) is the right inverse defined in Remark with Q* = Q —
{@t,... 2™}
Given k > 0 (whose value will be fixed later on), we further assume that, the
functions ¢’/ and v satisfy
1@ lce < krZy and  [[¢7]cza < k125, Vi=1,...,m. (4.4)
Moreover, we assume that the parameters 77/ and the points &7 are chosen to verify
7] < m*?»\ and 7. y\|# — 27| < m"gy)\. (4.5)
Then the following result holds.
Lemma 4.1. Given v € (—1,0) and k > 0, there exist €, > 0 and ¢,, > 0 (depend-

ing on k) such that for all ¢ € (0,e,) and under the assumptions (4.4) and (4.5)),
we have

A (0)ll ¢t ey < €nr2ns
A (B2) = A (D1)llgae gy < ETEallT2 = Bl et ey
provided that ¥y, 09 € CH*(Q*) and [1Bill a0y < 2,72 )

Proof. The proof of the first estimate follows from the asymptotic behavior of H,
together with the assumption on the norm of boundary data ¢; and z/~1j given by
(4.4). Indeed, let ¢, be a constant depending only on « (provided € and X are
chosen small enough), it follows from the estimate of H,, given by Lemma m
that .
. r— !

| ‘ﬁji"[’j( ’["57)\

)| <ewrdyr (4.6)
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Recall that N (D) =9, 0&,. 0. (), we will estimate .4 (0) in different subregions
of *.
e In B,,(#%) for 1 < j < m, we have x,,(z —37) = 1 and A% = 0, so that
m

i

0 < e [ 1779 ) g,

— |80 1.2, ()].

H"’,:]S* I

So, by an easy computation, for v € (—1,0) and 7/ small enough, we obtain

||=5Z(0)||C§,a(um,:13(ij,ro)) < sup rUULL(0)] < en (e AN

re AST<T0/2

e In Q— B, (#7), we have x,,(z — 7/) = 0 and A% = 0, then

.7 (0)] < e(e* H R N NG
j=1
Thus

H&’Z(O)Hcg,a ) < € Sup .2 (0] < cr(eh + ).

=70

ro,&

e In B, (&7) — By, /2(&), using estimate ([4.6)), we have

1 Z0)] < e [z — #7577 + | 2x(1)]
J

4

+egt ) NA% X (@ = E)[HZ, (2 = 37) fren)l-

M L

1

<.
Il

Here
[A2) X Jw = 28X AwH+wA? Xy +4V X0y - V(Aw) +4Vw -V (AxX,, ) +4V2 X, - Vi
So,

||j(0)||C3’Q(B(;fj77’0)73(53.7"7’0/2)) <co sup  rTVL(0)] < e (rZx+ ).

T0/2<r<T0
Finally, using Proposition with (4.2), we conclude that
H*/V(O)”cﬁva(()*) < Cnri,\- (4.7)

For the proof of the second estimate, let 91 and @, € CH*(Q*) satisfying
[0illga.e < cur g, s0

(A () — P (i1))] < exlple® (€™ — ™) — (2x(@+12) — 25(@ + ).

Then, for 7/ small enough and using estimate (4.2)), there exist ¢, > 0 (depending
on k) such that

A (72) = A (1) s ary < Eur2alle = Blege e (43)

Then we get the second estimate. (I
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Reducing A, > 0 and ¢, > 0 if necessary, we can assume that

EHT;)\ < (4.9)

5 ’
for all A € (0,A,) and € € (0,e,). Then, (4.8) and (4.7) are sufficient to show that
¥ +— A () is a contraction from

{echo®) : ollgpnm < 20025}

into itself and hence has a unique fixed point © = 9(e, 7, ¢, ¥; -) in this set. This fixed
point is a solution of ({4.3]) in R*. We summarize this in the following proposition.

Proposition 4.2. Given v € (—1,0) and k > 0, there exist €, > 0, A\x, > 0 and
¢ > 0 (depending on k) such that for all € € (0,e,) and X € (0, \;), for all set of
parameters 7 and points I7 satisfying , all functions @7, 1/~Jj satisfying
and , there exists a unique U (= U pzo 17)) solution of , such that

m -
Uem 5,3 * :Zl+’7 meLme —THG 5 () T .60
— g
solves ([&.1) in Q. In addition
~ 2
HU||c;4;"(Q*) < 26572 2

As in the previous section, observe that the function o, FE B being obtained as
a fixed point for contraction mapping, it depends smoothly on the parameters i,
the points Z7 and the boundary data ¢’ and 17, for j = 1,...,m. Moreover, as in

the previous section, the mapping

(%, @,%) = 0.z op0D M, 2 €CV ()

is compact (here D is the diffeomorphism defined in §2.2). Again this follows from
the fact that the equation we solve is semilinear and in (4.3) the right hand side
belongs to C3<(Q*).

5. NONLINEAR CAUCHY-DATA MATCHING

We will gather the results of the previous sections, keeping the notations, ap-
plying the result of § 2, § 3, as well as the results of § 4. Assume that X =
(') € Q™ are given close enough to x = (z%) such that it satisfies (4.5), assume
also 7 = (%) € [r7,77]™ C (0,00)™ (the values of 7= and 77 will be fixed
shortly). First, we consider some set of boundary data ¢ = (%) € (C+*(S93))™ and
P = (¢f) € (C*(S3))™ satisfying and (3.2). According to Proposition

and provided ¢ € (0,¢,;), we can find a solution of
A?u+ 2, (u) — ple* =0 in B,_, (Z V1< j<m.
These solutions can be decomposed (in each B,_, (Z7)) as
. RI |\ (x — &) x —
=t (B (o)
Uint,j(T) = Ui (T — T7) + e @I 1 Ter
€ )\(.73 - '%J))

R]
Vs 0 (=
Te X
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where RJ A= = 7ir. \/e and the function v/ = v, ;j ,i 4 satisfies
||”J||cjiv“(1R4) <2 cﬁra)\. (5.1)

Similarly, given some boundary data @ := (¢%) € (C**(53))™ and ¥ = (') €

(C%(S3))™ satisfying (2.13)) and (4.4)), some parameters 1 := (7j°) € R™ satisfying
(4.5)), we can use Proposition [4.2| to find a solution u,; (provided e € (0,¢,)) of

A?u+ 25(u) — p*e* =0, in B, (&), V1< j<m.

Here the solution can be decomposed as

m

. r— il -
Uegt(T) = Z(l + 77 )+ Z Xro (T — xj HW,W ( o ) + Uf:‘i],i,fpﬂl(x)’
j=1 s
where the function ¢/ := 65’;7’5(@@ € CH2 (") satisfies
1 ot ary < cara (5.2)

It remains to determine the parameters and the functions is such a way that the
function which is equal to e ; in B,._, (77) and which is equal t0 Uez in Qr, 5.3
will become a smooth function. This amounts to find the boundary data and the
parameters so that, for each j =1,...,m
Uint,j = Uext, aruint,j = arueztu Auint,j = Auemta arAuint,j = arAuea:t
(5.3)
on 0B,_, (#7). Assuming we have already (for all € small enough), the function
us € C*“ obtained by patching together the functions Uint,; and the function ueq,
is a solution of our equation. Then the elliptic regularity theory implies that this
solution is in fact smooth. This will complete the proof of our result. Because
when as ¢ tends to 0, the sequence of solutions constructed will satisfy the required
properties, namely, away from the points 27 the sequence u. converges to > j Gui.
Before we proceed, the following remarks are important. It will be convenient to
observe that the functions u, ,; can be expanded as

u. .i(v) = —8log|z| — 4log 77 + O(rf,/\) (5.4)
near 0B, ,. Moreover, the function
Z (1 +7)Gzi ()
1<i<m

which appears in the expression of ue;; can be expanded as
> (1 +79)Gae (@ +2) = =8(1+1iY) log || + E; (3, %) + Vo E; (3, %) - 2+ O(r2 )
=1

(5.5)
near 0B, ,, where we define

Ej(2,%) = H(z,#') + Y G(x,3")
L#£]5
Next, in (5.3), all functions are defined on 0B, , (27), nevertheless, it will be
convenient to solve, instead of (5.3)) the following set of equations
(wint,j — text)(F +7e2y) =0, Or(Uinej — tewt)(F + 712 2y) =0,

gy - (5.6)
A(Uint,j — Uezt) (@ +120y) =0, OrA(Uint,j — Ueat) (T + 1e2y) =0,
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on S3.
Also we decompose

=gt el el W =8pi 1201+, @ =G e +El =+

where QD‘Z)HZO € II':':0 = R7 @{ﬂ@{?@z{ € IE1 = Spa'n{ela' . '764} and onlﬂ ia@lf&i S

L?(S®)*, the subspace of functions which are orthogonal to Eg and E;.
Projecting the set of equations (5.6) over Eq will yield the system

—4log 7! — 8logrex + go% +8(1+ ﬁj) logre x — @% — Ej(fj,ic) + O(ri)\) =0
—8+ 20} +8(1+77) + 2@} + O(r2 ) =0
—16 + 8¢} + 16(1 + 7)) + O(r2 ) =0
32-32(147)+O(r2,) = 0.

(5.7)
For the rest of this article, the terms (’)(ri ,) depend nonlinearly on the variables
7t &4 ot ot @€,1;Z7 but it is bounded (in the appropriate norm) by a constant
(independent of £ and k) time rg, - Let us comment briefly on how these equations

are obtained. These equations simply come from when expansions (5.4)) and
(5.5) are used, together with the expression of H? and H€ given in Lemma [2.9{and
Lemma and also the estimates and .

Observe that the projection of the term V,FE; (#7,%) - y arising in 7 as well
as the projection of its partial derivative with respect to r, over the set of constant
function is equal to 0, while its Laplacian vanishes identically. The system
can be readily simplified to

[4 IOgTj + Ej(‘%jvi)] = O(’I“g’/\), ﬁj = O<T§,)\)a

J o 2 ~j _ 2
¥o = O(Te,)\)7 ¥o = O(re,)\)’
We are now in a position to define 7= and 77 since, according to the above, as €

tends to 0 we expect that #/ will converge to 2/ and that 77 will converge to 7
satisfying

log e A

4log ! = —E;(27,x)
and hence it is enough to choose 7~ and 7 in such a way that
4log(t7) < —sup Fj(27,x) < —inf E;(27,x) < 4log(t™).
j J

We now consider the L2-projection of (5.6) over E;. Given a smooth function f
defined in Q, we identify its gradient Vf = (9, f, ..., 0x, f) with the element of E;

Vf= 24: Oz, féi.
i=1
With these notation in mind, we obtain the system of equations
Pl — @ = VE; (i, %) + O(12,) = 0
3] + 3] + 301 - VE(3,%) + 0(r2,) =0
1201 — & +0(2,) =0
12¢] + 3] + O(r2,) = 0.

)
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Again, let us comment briefly on how these equations are obtained. This time, the
only important observation is that the term V,E;(#/,X) -y projects identically over
E; as well as its derivative with respect to r.

The system simplifies to

90{ - O(Tg,/\)v 7;[}{ = O(Tg,)\)v QZJ{ = O(T‘i)\), ij (jj,i) = O(r?,)\)'
Finally, we consider the L2-projection onto L?(S%)+. This yields the system
o -+ O@r2,) =0

7 _ e 2 —
8T(Hwi,wi H@,wi) +00rzx) =0 (5.9)
YL — )+ O(T?,A) =0
i _ e . 2 _
&A(Hﬁywi H%M) +0(r2,) =0.
Thanks the Lemma this last system can be re-written as
@1 = O(TE,)\)a jL = O(Tg,x)-
If we define the parameters t = (/) € R™ by
= o) [4log ™ + E;(37,%)], V1<j<m.
Then the system we have to solve reads
(t7 ’f'v ()007 @0) (Pla @17 /lZIu vE(i)v Y1, SBJJ wJ_v ’(/;J_) = 0(7"3)\)7 (510)

where as usual, the terms (’)(ri ) depend nonlinearly on all the variables on the
left side, but is bounded (in the appropriate norm) by a constant (independent of
¢ and k) time 7”?,,\’ provided € € (0,¢,).

We claim, provided that the degree of the mapping

VE : %+ (VE(25%),...,VE,(Z™; %)), (5.11)

from a neighborhood of x € 2™ to a neighborhood of 0 in ET* is equal to 1, this
nonlinear system can be solve using Schauder’s fixed point theorem in the ball of
radius m‘i y in the product space where the entries live, namely

tﬂ? € Rm; 7’5,)\(5( - X) € (R4)m; %o 950 eR™
P15 8517151 € ET? Pl LPNJJ’l/)JJ SDNL € (6270(53)l)m.

Indeed, the nonlinear mapping which appears on the right hand side of is

continuous, compact. In addition, this nonlinear mapping sends the ball of radius

m“g’ 5 (for the natural product norm) into itself, provided & is fixed large enough.
To obtain the precise statement of our Theorem, we simply observe that

2V, E;(#,%) = Vi B(X).

where F is the functional defined by (1.4)), then a sufficient condition for the map-
ping (5.11)) to have degree 1 is just that the point x = (x!,...,2™) is a nondegen-
erate critical point of the functional E. This completes the proof of our Theorem.

Acknowledgments. This projet was founded by the national plan for science,
technology and innovation (MAARIFAH), King Abdulaziz city for science and Tech-
nology, kingdom of Saudi Arabia, Award number12-MAT2880-02.



EJDE-2015/289 SINGULAR LIMITING SOLUTIONS 19

1
2
3
[4
5
[6
[7
8
[9
[10
[11
[12
[13
14
[15
16
(17
(18

[19

REFERENCES

| G. Arioli, F. Gazzola, H. C. Grunau, E. Mitidieri; A semilinear fourth order elliptic problem
with exponential nonlinearity. SIAM J. Math. Anal., 36(4) (2005), 1226-1258.

| S. Baraket, F. Pacard; Construction of singular limits for a semilinear elliptic equation in
dimension, Calc. Var. PDE, 6 (1998), 1-38.

| S. Baraket, M. Dammak, T. Ouni, F. Pacard; Singular limits for a 4-dimensional semilinear
elliptic problem with exponential nonlinearity, Ann. 1. H. Poincaré - AN., 24 (2007), 875-895.

] M. Ben Ayed, K. El Mehdi, Massimo Grossi; Asymptotic behavior of least energy solutions
of biharmonic equation in dimension four, Indiana University Math. J., 5 (2006), 1723-1750.

| T. Branson; Group representations arising from Lorentz conformal geometry, J. Func. Anal.,
74 (1987), 199-293.

| T. Branson; Shap inequality, the functional determinant and the comlementary series, Tran.
A.M.S., 347 (1995), 3671-3742.

] S.Y.A. Chang; On a fourth order differential operator-the Paneitz operator in conformal
geometry, Proceedings conference for the 70t" birthday of A.P. Calderon, 4 (2000), 155-165.

] S.Y.A. Chang, P. Yang; On a fourth order curvature invariant, Comtemporary Mathematics,
237, Spectral Problems in Geometry and Arithmetic, Ed. T. Branson, AMS, 1999, 9-28.

| M. Clapp, C. Munoz, M. Musso; Singular limits for the bi-laplacian operator with exponential
nonlinaerity in R*, Ann. LH.P., 25 (2008), 1015-1041.

| M. Del Pino, M. Kowalczyk, M. Musso; Singular limits in Liouville type equations, Calc.
Var. PDE., 24(1) (2005), 47-81.

| P. Esposito, M. Grossi, A. Pistoia; On the ezistence of Blowing-up solutions for a mean field
equation, Ann. LH.P., 22 (2005), 227-257.

] J. Liouville; Sur I’équation aux différences partielles 8 log ﬁ + ﬁ =0, J. de Math., 18
(1853), 17-72.

| A. Malchiodi, Z. Djadli; Ezistence of conformal metrics with constant Q-curvature, Ann. of
Math., 168(3) (2008), 813-858.

] R. Mazzeo; Elliptic theory of edge operators I. Comm. in PDE, 10(16) (1991), 1616-1664.

] R. Melrose; The Atiyah-Patodi-Singer Index Theorem, Res. Notes Math., 4(1993).

| F. Pacard, T. Riviere; Linear and nonlinear aspects of vortices: the Ginzburg Landau model
Progress in Nonlinear Differential Equations, 39, Birkauser (2000).

] T. Suzuki; Two dimensional Emden-Fowler equation with exponential nonlinearity, Nonlin-
ear Diffusion Equations and their equilibrium states 3, Birkauser (1992), 493-512.

| J. Wei; Asymptotic behavior of a nonlinear fourth order eigenvalue problem, Comm. Partial
Differential Equations, 21(9-10) (1996), 1451-1467.

| H. C. Wente; Counter ezample to a conjecture of H. Hopf, Pacific J. Math., 121 (1986),
193-243.

SAMI BARAKET

DEPARTMENT OF MATHEMATICS, COLLEGE OF SCIENCE, KING SAUD UNIVERSITY, P.O. Box 2455,
RivapH 11451, SAUDI ARABIA

E-mail address: sbaraket@ksu.edu.sa

IMEN BAZARBACHA

DEPARTEMENT DE MATHEMATIQUES, FACULTE DES SCIENCES DE TUNIS, CAMPUS UNIVERSITAIRE,
2092 Tunis, UNIVERSITY TUNIS EL MANAR, TUNISIA

E-mail address: imen.bazarbacha@gmail.com

MARYEM TRABELSI

DEPARTEMENT DE MATHEMATIQUES, FACULTE DES SCIENCES DE TUNIS, CAMPUS UNIVERSITAIRE,
2092 Tunis, UNIVERSITY TUNIS EL MANAR, TUNISIA

E-mail address: trabelsi.maryem@gmail.com



	1. Introduction and statement of results
	2. Construction of the approximate solution
	2.1. Radial solution on R4
	2.2. Analysis of the Bi-Laplace operator in weighted spaces
	2.3. Bi-harmonic extensions

	3. Nonlinear interior problem
	4. Nonlinear exterior problem
	5. Nonlinear Cauchy-data matching
	Acknowledgments

	References

