\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2015 (2015), No. 279, pp. 1--6.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2015 Texas State University.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2015/279\hfil Solutions to nonlinear Schr\"odinger equations] {Solutions to nonlinear Schr\"odinger equations for special initial data} \author[T. Wada \hfil EJDE-2015/279\hfilneg] {Takeshi Wada} \address{Takeshi Wada \newline Department of Mathematics, Shimane University, Matsue 690-8504, Japan} \email{wada@riko.shimane-u.ac.jp} \thanks{Submitted March 27, 2015. Published November 10, 2015.} \subjclass[2010]{35Q55} \keywords{Nonlinear Schr\"odinger Equations; solvability; rough initial data} \begin{abstract} This article concerns the solvability of the nonlinear Schr\"odinger equation with gauge invariant power nonlinear term in one space dimension. The well-posedness of this equation is known only for $H^s$ with $s\ge 0$. Under some assumptions on the nonlinearity, this paper shows that this equation is uniquely solvable for special but typical initial data, namely the linear combinations of $\delta(x)$ and $\operatorname{p.v.} (1/x)$, which belong to $H^{-1/2-0}$. The proof in this article allows $L^2$-perturbations on the initial data. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \allowdisplaybreaks \section{Introduction} In this article we consider nonlinear Schr\"odinger equations with a gauge invariant nonlinear term \begin{equation} i\partial_t u+\frac12 \partial_x^2 u =f(u), \label{eq:nls} \end{equation} where $u:\mathbb{R}_t\times \mathbb{R}_x\to \mathbb{C}$, $f(u)=|u|^{p-1} u$, $p>1$. The discussion in this paper is irrelevant to the sign of the nonlinear term, so we only treat the defocusing case. For $1
0$, $L^q_TL^r$ is the abbreviation of $L^q(0,T;L^r)$. $X_T=L^\infty_TL^2 \cap L^4_TL^\infty$ and $Y_T=L^1_TL^2+L^{4/3}_TL^1$. \section{Preliminaries} \begin{lemma}[Strichartz]\label{lem:Strichartz} For any $\phi\in L^2$ and for any $F\in Y_T$, the following inequalities hold valid: \begin{gather*} \| U(t) \phi \|_{X_T}\le C \| \phi \|_2, \\ \| \int_0^t U(t-\tau) F(\tau) d\tau \|_{X_T} \le C \| F\|_{Y_T}. \end{gather*} The constants $C$ are independent of $T, \phi$ and $F$. \end{lemma} For a proof of the above lemma, see \cite{Strichartz1977,Yajima1987}. Before proceeding to the nonlinear problem, we consider the linear Cauchy problem. \begin{lemma}\label{lem:asym} Let $\lambda, \mu \in \mathbb{C}$ and let $u_\mathrm{L}$ be the solution of \begin{equation} i\partial_t u_\mathrm{L}+\frac12 \partial_x^2 u_\mathrm{L} =0 \end{equation} with \begin{equation} u_\mathrm{L}(0)=\sqrt{2\pi i}\lambda \delta(x)-\sqrt{\frac{2}{\pi i}}\mu \operatorname{p.v.} \frac1x. \end{equation} Then \[ u_\mathrm{L} = U(t) u_\mathrm{L}(0) = \frac{e^{ix^2/2t}}{\sqrt{t}} g(x/\sqrt{t}). \] Here \[ g(a)=\lambda+\sqrt{\frac{i}{2\pi}}\mu \Big[\int_{-\infty}^a e^\frac{-i\eta^2}{2} d\eta -\int_a^\infty e^\frac{-i\eta^2}{2} d\eta \Big]. \] \end{lemma} We remark that using integration by parts, we can easily show that \[ g(a)=\lambda\pm \mu +O(1/a) \quad\text{as } a\to \pm\infty. \] \begin{proof}[Proof of Lemma \ref{lem:asym}] This is done by a direct calculation. It is well-known that \[ \mathcal{F}u_\mathrm{L}(0)= \sqrt{2\pi i}(\lambda + \mu \operatorname{sign}\xi), \] where $\mathcal{F}$ is the Fourier transform. Therefore \begin{align} u_\mathrm{L}(t) &= \sqrt{\frac{i}{2\pi}} \int_{-\infty}^\infty e^{ix\xi-it\xi^2/2}(\lambda + \mu \operatorname{sign}\xi)d\xi \\ &= \sqrt{\frac{i}{2\pi}} e^{ix^2/2t} \int_{-\infty}^\infty e^{-it(\xi-x/t)^2/2}(\lambda + \mu \operatorname{sign}\xi)d\xi. \end{align} Changing the variable as $-\sqrt{t}(\xi-x/t)=\eta$, we obtain the result. \end{proof} \section{Case $\lambda=0$} In this section we consider the case \begin{equation}\label{eq:ID1} u(0)=-\sqrt{\frac{2}{\pi i}} \mu \operatorname{p.v.} \frac1x +v_0 \end{equation} with $v_0\in L^2$. In this case we put $A(t)=\exp (-i |\mu |^{p-1} t^{1-\alpha}/(1-\alpha))$ and put $v=u-A u_\mathrm{L}$ where $u$ satisfies \eqref{eq:nls} and $u_\mathrm{L}$ is defined as in Lemma \ref{lem:asym} with $\lambda=0$. Then $v$ satisfies \begin{equation} \mathcal{L}v=R+N \end{equation} with $v(0)=v_0$, where \[ R= t^{-\alpha} (-|\mu|^{p-1}+|g(x/\sqrt {t})|^{p-1})A u_\mathrm{L}, \quad N=f(A u_\mathrm{L}+v)-f(A u_\mathrm{L}). \] By Duhamel's principle, we convert this equation to the integral form \begin{equation}\label{eq:IE1} v(t)=U(t)v_0-i \int_0^t U(t-\tau) \{ R(\tau)+N(\tau) \} d\tau. \end{equation} \begin{theorem}\label{thm:1} Let $1
0$ is suitably chosen, $u$ is a solution to \eqref{eq:nls} with \eqref{eq:ID2}, and $u_\mathrm{L}$ is defined as in Lemma \ref{lem:asym}. Then $v$ satisfies \[ \mathcal{L}v=\sum_{j=1}^4 R_j +N, \] where \begin{gather*} R_1=\frac 12 \Big[\int_0^t \tau^{-\alpha-\beta} \rho'(x/\tau^\beta)d\tau \Big]^2 Au_\mathrm{L}, \quad R_2= \frac i2 \int_0^t \tau^{-\alpha-2\beta} \rho''(x/\tau^\beta)d\tau Au_\mathrm{L}, \\ R_3= i\int_0^t \tau^{-\alpha-\beta} \rho'(x/\tau^\beta)d\tau A \partial_x u_\mathrm{L}, \quad R_4=t^{-\alpha} [ |g(x/\sqrt{t})|^{p-1} -\rho(x/t^\beta)] A u_\mathrm{L} \end{gather*} Similarly as in the previous section, we convert this equation to the integral form \begin{equation}\label{eq:IE2} v(t)=U(t)v_0-i \int_0^t U(t-\tau) \{ \sum_{j=1}^4 R_j(\tau)+N(\tau) \} d\tau. \end{equation} We look for the solution to \eqref{eq:IE2} by the contraction mapping principle. \begin{theorem}\label{thm:2} Let $1
}$. By the estimate above we have $\| R_{4,<}\|_2\le Ct^{-\alpha -1/4}$ and hence $\| R_{4,<};L^1_T L^2\|\le CT^{-\alpha +3/4}$ if $\alpha <3/4$. We can similarly estimate $R_{4,>}$ and we obtain $\| R_{4};L^1_T L^2\|\le CT^{-\alpha +3/4}$ if $\alpha <3/4$. If $\beta <1/2$ we divide the spatial real-axis into the parts $ |x/t^\beta|\le 1$ and $ |x/t^\beta|\ge 1$ and estimate $R_4$ similarly. Then we obtain $\| R_{4,<};L^1_T L^2\|\le CT^{-\alpha-\beta/2+1/2}$ if $\alpha -\beta/2<1/2$ and $\| R_{4,>};L^1_T L^2\|\le CT^{-\alpha -\beta/2+1}$ if $\alpha+\beta/2<1$. On the other hand, the estimate of $N$ is same as in the previous section. Collecting all the estimates above, we can conclude that \begin{equation} \| v\|_{X_T} \le C \| v_0\|_2 +CT^\epsilon +CT^{1-\alpha}\|v\|_{X_T} + CT^{1-\alpha/2} \|v\|_{X_T}^p \end{equation} with some $\epsilon>0$, under the conditions that \[ \alpha+\beta<1 \quad \text{and} \quad \alpha-\beta/2<1/2, \] which is possible if $0<\alpha<2/3$ and $(2\alpha-1)_+<\beta<1-\alpha$, or equivalently the assumption for $p$ and $\beta$. The estimate for the difference of two solutions is the same as in the previous section. \end{proof} \section{A remark on the uniqueness} In the previous two sections we discuss the unique existence of the integral equations \eqref{eq:IE1} or \eqref{eq:IE2}. However the uniqueness of the solution to \eqref{eq:nls} with \eqref{eq:ID1} or \eqref{eq:ID2} may fail because different first approximations derive another solutions. In this section we consider this problem. Let $\tilde{\rho}\in C^2(\mathbb{R})$ be a different real-valued function from $\rho$ in the previous section but let $\tilde{\rho}$ satisfy $\tilde{\rho}(a)=|\lambda\pm\mu|^{p-1}$ for $\pm a\ge 1$. Let $\tilde{\beta}>0$, and we put \begin{gather*} \Tilde{A}(t,x)=\exp \Big[ -i\int_0^t \tau^{-\alpha} \Tilde{\rho}(x/\tau^{\Tilde\beta})d\tau \Big], \\ \Tilde v=u-\Tilde A u_\mathrm{L}. \end{gather*} As in the previous section, we convert this equation with $\tilde{v}(0)=v_0$ into integral form and solve this integral equation by the contraction mapping principle. We want to prove that $v+Au_\mathrm{L}=\tilde v +\Tilde A u_\mathrm{L}$, where $v$ and $A$ are the ones in the previous section. To this end it is sufficient to show the following. \begin{theorem}\label{thm:3} Let $1
(p-2)_+$ and let $\tilde \beta$ satisfy the same condition. Then $Au_\mathrm{L}-\Tilde A u_\mathrm{L} \in X_T$. \end{theorem} \begin{proof} By the estimate \begin{equation}\label {eq:A-Atilde} |Au_\mathrm{L}-\Tilde A u_\mathrm{L}| \le Ct^{-1/2}\int_0^t \tau^{-\alpha} |\rho(x/\tau^\beta) -\tilde\rho(x/\tau^{\tilde\beta})|d\tau, \end{equation} we can easily show that $\|Au_\mathrm{L}-\Tilde A u_\mathrm{L} ; L^4_T L^\infty \| \le CT^{3/4-\alpha}$ if $\alpha<3/4$. On the other hand, the right-hand side of \eqref{eq:A-Atilde} does not exceed \[ Ct^{-1/2}\int_0^t \tau^{-\alpha} |\rho(x/\tau^\beta)-|g(x/\sqrt{\tau})|^{p-1}| d\tau +Ct^{-1/2}\int_0^t \tau^{-\alpha}|\tilde\rho(x/\tau^{\tilde\beta}) -|g(x/\sqrt{\tau})|d\tau, \] where $g$ is defined in Lemma \ref{lem:asym}, it suffices to show that the first integral in the above quantity belongs to $X_T$. Since \[ |\rho(x/\tau^\beta)-|g(x/\sqrt{\tau})|^{p-1}| \le \begin{cases} C , & |x/\sqrt{\tau}|\le 1 \text{ or } |x/\tau^\beta|\le 1, \\[4pt] C\sqrt{\tau}/|x|, & |x/\sqrt{\tau}| \ge 1 \text{ and } |x/\tau^\beta|\ge 1, \end{cases} \] we obtain \[ \|t^{-1/2}\int_0^t \tau^{-\alpha} |\rho(x/\tau^\beta)-|g(x/\sqrt{\tau})|^{p-1}| d\tau;L^\infty_T L^2\| \le CT^{-\alpha+\beta/2+1/2}+CT^{-\alpha-\beta/2+1} \] if $\alpha<3/4$ and $\beta>(2\alpha-1)_+$. Thus we have proved the theorem. \end{proof} \begin{thebibliography}{0} \bibitem{KenigPonceVega1996} C. E. Kenig, G. Ponce, L. Vega; \emph{Quadratic forms for the {$1$}-{D} semilinear {S}chr\"odinger equation}, Trans. Amer. Math. Soc.\textbf{348} (1996), 3323--3353. \bibitem{Tsutsumi1987} Y. Tsutsumi; \emph{$L^2$-solutions for nonlinear Schr\"odinger equations and nonlinear groups}, Funkcial. Ekvac. \textbf{30} (1987), 115--125. \bibitem{Kita2014} N. Kita; \emph{Nonlinear Schr\"odinger equation with $\delta$-function as initial data}, Sugaku Expositions, \textbf{27} (2014), 223--241. \bibitem{KitaPre} N. Kita; \emph{Nonlinear Schr\"odinger equation with $\delta$-functional initial data}, Unpublished. \bibitem{Strichartz1977} R. Strichartz; \emph{Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations}, Duke Math. J. \textbf{44} (1977), 705--714. \bibitem{Yajima1987} K. Yajima; \emph{Exsistence of solutions for Schr\"odinger evolution equations}, Comm. Math. Phys. \textbf{110} (1987), 415--426. \end{thebibliography} \end{document}