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CONTROLLABILITY OF NEUTRAL STOCHASTIC
INTEGRO-DIFFERENTIAL SYSTEMS WITH

IMPULSIVE EFFECTS

ABBES BENCHAABANE

Abstract. This article concerns the complete controllability for nonlinear

neutral impulsive stochastic integro-differential system in finite dimensional

spaces. Sufficient conditions ensuring the complete controllability are formu-
lated and proved under the natural assumption that the associated linear con-

trol system is completely controllable. The results are obtained by using the

Banach fixed point theorem. A numerical example is provided to illustrate our
technique.

1. Introduction

The problem of controllability is one of the fundamental concept in mathematical
control theory and engineering. The problem of controllability is to show the exis-
tence of a control function, which steers dynamical control systems from its initial
state to the final state, where the initial and final states may vary over the entire
space. The controllability of nonlinear deterministic systems in a finite dimensional
space has been extensively studied, [1, 2].

Stochastic differential equations have been considered extensively through dis-
cussion in the finite dimensional spaces. As a matter of fact, there exist broad
literature on the related to the topic and it has played an important role in many
ways such as option pricing, forecast of the growth of population, etc., and as an ap-
plications which cover the generalizations of stochastic differential equations arising
in the fields such as electromagnetic theory, population dynamics, and heat conduc-
tion in material with memory and stochastic differential equations are obtained by
including random fluctuations in ordinary differential equations which have been
deduced from phenomenological or physical laws. Random differential and inte-
gral equations play an important role in characterizing numerous social, physical,
biological and engineering problems. For more details reader may refer [3, 4, 5]
and reference therein. For a dynamic system the simplest continuous stochastic
perturbation is naturally considered to be a Brownian motion (BM). In general,
a continuous stochastic perturbation will be modeled as some stochastic integral
with respect to the (BM). However, the (BM) has the strange property that even
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though its trajectory is continuous in t, it is not differentiable for all t . So for a
stochastic integral with respect to (BM) one has to use a different approach, Ito
approach is used to define it (see [6, 7] for details).

Controllability of non-linear stochastic systems in finite-dimensional spaces has
been investigated by many authors. Klamka and Socha [8] derived sufficient condi-
tions for the stochastic controllability of linear and nonlinear systems using a Lya-
punov technique. Mahmudov and Zorlu [9] derived sufficient conditions for complete
and approximate controllability of semilinear stochastic systems with non-Lipschitz
coefficients via Picard-type iterations. Balachandran et al. [10, 11] studied the
controllability of semilinear stochastic integrodifferential systems using the Banach
fixed point theorem.

The theory of impulsive differential equations has provided a natural framework
for mathematical modeling of many real world phenomena, namely in control, bio-
logical and medical domains [12, 13, 14]. In these models, the processes are charac-
terized by the fact that they undergo abrupt changes of state at certain moments
of time between intervals of continuous evolution. The presence of impulses implies
that the trajectories of the system do not necessarily preserve the basic properties
of the non-impulsive dynamical systems. To this end the theory of impulsive differ-
ential systems has emerged as an important area of investigation in applied sciences
[15]. Yang, Xu and Xiang [16] established the exponential stability of non-linear
impulsive stochastic differential equations with delays. More recently, Liu and Liao
[17] studied the existence, uniqueness and stability of stochastic impulsive systems
using Lyapunov-like functions.

Many of the physical systems may also contain some information about the
derivative of the state component and such systems are called neutral systems.
Therefore, the investigation of stochastic impulsive neutral differential equations
attracts great attention, especially as regards to controllability [18, 19].

In this article, we consider the impulsive neutral semilinear stochastic integrod-
ifferential system

d{x(t)−G(t, x(t), g(ηx(t))}
= A(t)x(t)dt+B(t)u(t)dt+ F1 (t, x(t), f1,1(ηx(t)), f1,2(δx(t)), f1,3(ξx(t))) dt

+ F2 (t, x(t), f2,1(ηx(t)), f2,2(δx(t)), f2,3(ξx(t))) dw(t),

t ∈ [0, T ], t 6= tk,

∆x(tk) = Ik(x(t−k )), t = tk, k = 1, 2, . . . , r,

x(0) = x0 ∈ Rn,

(1.1)
where, for i = 1, 2:

fi,1(ηx(t)) =
∫ t

0

fi,1(t, s, x(s))ds, fi,2(δx(t)) =
∫ T

0

fi,2(t, s, x(s))ds,

g(ηx(t)) =
∫ t

0

g(t, s, x(s))ds, fi,3(ξx(t)) =
∫ t

0

fi,3(t, s, x(s))dw(s).

Here A(t) and B(t) are continuous matrices of dimensions n×n, and n×m respec-
tively

F1 : [0, T ]× Rn × Rn × Rn × Rn → Rn,

F2 : [0, T ]× Rn × Rn × Rn × Rn → Rn×n,
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G : [0, T ]× Rn × Rn → Rn, fi,1, fi,2 : [0, T ]× [0, T ]× Rn → Rn,

fi,3 : [0, T ]× [0, T ]× Rn → Rn×n, g : [0, T ]× [0, T ]× Rn → Rn.

Ik ∈ C(Rn,Rn), u(t) is a feedback control and w is a n-dimensional standard (BM).
Furthermore, 0 = t0 < t1 < · · · < tr < tr+1 = T , x(t+k ) and x(t−k ) represent the
right and left limits of x(t) at t = tk, respectively. Also ∆x(tk) = x(t+k ) − x(t−k ),
represents the jump in the state x at time tk with Ik determining the size of the
jump, the initial value x0 is F0-measurable with E‖x0‖2 <∞.

The system (1.1) is in a very general form and it covers many possible models
with various definitions of f1,1, f1,2, f1,3, f2,1, f2,2, f2,3 and g. We would like
to mention that Balachandran and Karthikeyan [11] studied the case Ik = g =
f1,3 = f2,3 = 0. The controllability problem with g = f1,3 = f2,3 = 0 was studied
by Sakthivel [20]. The system (1.1) with f1,3 = f2,3 = 0 was investigated by
Karthikeyan and Balachandran [21].

Motivated by the above references, we extend the results to obtain the complete
controllability for wide class of impulsive neutral integro-differential equations un-
der basic assumptions on the system operators. In particular, we assume the com-
plete controllability of the associated linear system. To prove the main results,
Theorem 3.5, we use stochastic analysis and fixed point theorem. Our work is or-
ganized as follows. The next section contains definitions, preliminary results and
a mathematical model of impulsive stochastic systems with control. Section 3 is
devoted to analyzing complete controllability results of the problem (1.1) via a fixed
point technique. Section 4 contains an illustrative example.

2. Preliminaries

The problem of controllability of a linear stochastic system of the form
dx(t) = [A(t)x(t) +B(t)u(t)]dt+ σ(t)dw(t), t ∈ [0, T ],

x(0) = x0,
(2.1)

has been studied by various authors [22, 23, 24] where σ : [0, T ] → Rn×n. In this
article, the following notation is adopted.

• (Ω,F , P ) is the probability space with probability measure P on Ω.
• {Ft | t ∈ [0, T ]} is the filtration generated by {w(s) : 0 ≤ s ≤ t} and
F = FT .
• L2(Ω,FT ,Rn) is the Hilbert space of all FT -measurable square integrable

variables with values in Rn.
• Uad = LF2 ([0, T ], Rm) is the Hilbert space of all square integrable and Ft-

measurable processes with values in Rm.
• PC([0;T ]; Rn) is the space of function from [0;T ] into Rn such that x(t) is

continuous at t 6= tk and left continuous at t = tk and the right limit X(t+k )
exists for k = 1, 2, . . . r.
• H2 := PCb

Ft
([0, T ], L2(Ω,Ft,Rn)) is the Banach space of all bounded Ft

-measurable, PC([0;T ]; Rn) valued random variables ϕ satisfying

‖ϕ‖2 = sup
t∈[0,T ]

E‖ϕ(t)‖2.

• L(X,Y ) is the space of all linear bounded operators from a Banach space
X to a Banach space Y ,

• φ(t) = exp(At).
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Now we introduce the following operators and sets.
• The operator LT

0 ∈ L
(
LF2 ([0, T ], Rm),L2(Ω,FT ,Rn)

)
is defined by

LT
0 =

∫ T

0

φ(T − s)B(s)u(s)ds.

Clearly, the adjoint
(
LT

0

)∗ : L2(Ω,FT ,Rn)→LF2 ([0, T ], Rm) is defined by

(LT
0 )∗z = B∗φ∗(T − t)E(z|Ft).

• The controllability operator ΠT
0 associated with (2.1) is

ΠT
0 (.) =

∫ T

s

φ(T − t)BB∗φ∗(T − t)E(. | Ft)dt,

which belongs to L (L2(Ω,FT ,Rn),L2(Ω,FT ,Rn)) and the controllability
matrix ΓT

s ∈ L(Rn,Rn)

ΓT
s =

∫ T

s

φ(T − t)BB∗φ∗(T − t)dt, 0 ≤ s ≤ t.

• The set of all states attainable from x0 in time T > 0 is

Rt(x0) = {x(t, x0, u) : u ∈ Uad},
where x(t, x0, u) is the solution of (1.1) corresponding to x0 ∈ Rn and
u(.) ∈ Uad.

Definition 2.1. System (1.1) is completely controllable on [0, T ] if

RT (x0) = L2(Ω,FT ,Rn),

that is, if all the points in L2(Ω,FT ,Rn) can be reached from the point x0 at time
T . See Example (4.1) for Motivated application.

3. Controllability

In this section we derive controllability conditions for the non-linear stochastic
system (1.1) using the contraction mapping principle.

We impose the following conditions on data of the problem
(H1) The functions Fi, fi,j , G, g, i = 1, 2, j = 1, 3 satisfies the Lipschitz condi-

tion: there exist constants L1, N1, K1, C1, qk > 0 for xh, yh, vh, zh ∈ Rn,
h = 1, 2 and 0 ≤ s ≤ t ≤ T such that

‖Fi(t, x1, y1, v1, z1)− Fi(t, x2, y2, v2, z2)‖2

≤ L1

(
‖x1 − x2‖2 + ‖y1 − y2‖2 + ‖v1 − v2‖2 + ‖z1 − z2‖2

)
,

‖G(t, x1, y1)−G(t, x2, y2)‖2 ≤ N1

(
‖x1 − x2‖2 + ‖y1 − y2‖2

)
,

‖fi,j(t, s, x1(s))− fi,j(t, s, x2(s))‖2 ≤ K1‖x1 − x2‖2,
‖g(t, s, x1(s))− g(t, s, x2(s))‖2 ≤ C1‖x1 − x2‖2,
‖Ik(x)− Ik(y)‖2 ≤ qk‖x− y‖2, k ∈ {1, . . . , r}.

(H2) The functions Fi, fi,j , G, g, i = 1, 2, j = 1, 3 are continuous and there are
constants L2, N2, K2, C2, dk > 0 for x, y, v, z ∈ Rn and 0 ≤ t ≤ T such
that

‖Fi(t, x, y, v, z)‖2 ≤ L2

(
1 + ‖x‖2 + ‖y‖2 + ‖v‖2 + ‖z‖2

)
,
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‖G(t, x, y)‖2 ≤ N2

(
1 + ‖x‖2 + ‖y‖2

)
,

‖fi,j(t, s, x(s))‖2 ≤ K2

(
1 + ‖x‖2

)
,

‖g(t, s, x)‖2 ≤ C2

(
1 + ‖x‖2

)
,

‖Ik(x)‖2 ≤ dk

(
1 + ‖x‖2

)
, k ∈ {1, . . . , r}.

(H3) The linear system (2.1) is completely controllable.
Now for our convenience, let us introduce the following notation:

l1 = max{‖φ(t)‖2, t ∈ [0, T ]}, l2 = max{‖A(t)‖2, t ∈ [0, T ]},
M = max{‖ΓT

s ‖2, s ∈ [0, T ]}.
The following lemma will play an important role in the proofs of our main results
(see [5]).

Lemma 3.1 (Ito isometry). Let Ψ : J × Ω → Rn be measurable and Ft-adapted
mapping and such that E

∫ T

0
‖Ψ(s, ω)‖2ds <∞. Then

E‖
∫ t

0

Ψ(s)dw(s)‖2 = E
(∫ t

0

‖Ψ(s)‖2ds
)
, for t ∈ [0, T ]

Lemma 3.2 ([25]). For every z ∈ L2(Ω,FT ,Rn)
• E‖Πt

0z‖2 ≤ME‖z‖2.
• Assume (H3) holds, then there exist l3 > 0 such that

E‖(ΠT
0 )−1‖2 ≤ l3.

We define the operator V from H2 to H2 as follows:

(V x)(t) = (Ĝx)(t) +
∫ t

0

Aφ(t− s)(Ĝx)(s)ds+
∫ t

0

φ(t− s)(F̂1x)(s)ds

+
∫ t

0

φ(t− s)(F̂2x)(s)dw(s) +
∑

0<tk<t

φ(t− tk)Ik(x(t−k )),

where, for i = 1, 2,

(F̂ix)(t) = Fi (t, x(t), fi,1(ηx(t)), fi,2(δx(t)), fi,3(ξx(t))) ,

(Ĝx)(t) = G (t, x(t), g(ηx(t))) .

The following results will be used throughout this paper.

Lemma 3.3. Under conditions (H1) and (H2), there exist real constants M1,M2 >
0 such that for x, y ∈ H2, we have

E‖(V x)(t)− (V y)(t)‖2 ≤M1

(
sup

s∈[0,T ]

E‖x(s)− y(s)‖2
)
, (3.1)

E‖(V x)(t)‖2 ≤M2

(
1 + T sup

s∈[0,T ]

E‖x(s)‖2
)
. (3.2)

Proof. First, we prove inequality (3.1), since (3.2) can be established in a similar
way. For i = 1, 2, let x, y ∈ H2. It follows from condition (H1), Holder inequality
and Ito isometry that

‖(F̂ix)(t)− (F̂iy)(t)‖2

≤ L1

(
‖x(t))− y(t))‖2 + ‖fi,1(ηx(t))− fi,1(ηy(t))‖2
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+ ‖fi,2(δx(t))− fi,2(δy(t))‖2 + ‖fi,3(ξx(t))− fi,3(ξy(t))‖2Q
)
,

≤ L1(1 + 2T 2K1 + TK1) sup
s∈[0,T ]

‖x(s)− y(s)‖2,

from which it follows that

E
(∫ t

0

‖(F̂ix)(s)− (F̂iy)(s)‖2ds
)
≤ L1T (1 + 2T 2K1 +TK1) sup

s∈[0,T ]

E‖x(s)− y(s)‖2.

We have

‖(Ĝx)(t)− (Ĝy)(t)‖2 ≤ N1

(
‖x(t)− y(t)‖2 + ‖g(ηx(t))− g(ηy(t))‖2

)
,

≤ N1(1 + T 2C1)
(

sup
s∈[0,T ]

‖x(s)− y(s)‖2
)
,

Then we obtain

E
(∫ t

0

‖(Ĝx)(s)− (Ĝy)(s)‖2ds
)
≤ N1T (1+T 2C1)

(
sup

s∈[0,T ]

E‖x(s)−y(s)‖2
)
. (3.3)

It follows from the above inequality, Holder inequality and Ito isometry that

E‖(V x)(t)− (V y)(t)‖2

≤ 5E‖
∫ t

0

Aφ(t− s)[(Ĝx)(s)− (Ĝy)(s)]ds‖2

+ 5E‖
∫ t

0

φ(t− s)[(F̂1x)(s)− (F̂1y)(s)]ds‖2

+ 5E‖
∫ t

0

φ(t− s)[(F̂2x)(s)− (F̂2y)(s)]dw(s)‖2

+ 5E‖
∑

0<tk<t

φ(t− tk)[Ik(x(t−k ))− Ik(y(t−k ))]‖2 + 5E‖(Ĝx)(t)− (Ĝy)(t)‖2,

then, we have

E‖(V x)(t)− (V y)(t)‖2

≤ 5T l1l2E
∫ t

0

‖(Ĝx)(s)− (Ĝy)(s)‖2ds+ 5T l1E
∫ t

0

‖(F̂1x)(s)− (F̂1y)(s)‖2ds

+ 5l1E
∫ t

0

‖(F̂2x)(s)− (F̂2y)(s)‖2ds+ 5l1r
r∑

k=1

E‖Ik(x(t−k ))− Ik(y(t−k ))‖2

+ 5E‖(Ĝx)(t)− (Ĝy)(t)‖2.

Thus we have

E‖(V x)(t)− (V y)(t)‖2

≤
(

10T 2l1l2N1(1 + T 2C1) + 15l1(T + 1)L1T (1 + 2T 2K1 + TK1)

+ 5l1r

(
r∑

k=1

qk

)
+ 10N1(1 + T 2C1)

)
sup

s∈[0,T ]

E‖x(s)− y(s)‖2

= M1 sup
s∈[0,T ]

E‖x(s)− y(s)‖2,
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where

M1 = 5T 2l1l2N1(1 + T 2C1) + 5l1r

(
r∑

k=1

qk

)
+ 5N1(1 + T 2C1)

+ 5l1(T + 1)L1T (1 + 2T 2K1 + TK1).

�

For a given initial condition and any u ∈ Uad for t ∈ [0, T ], one can prove
the existence and uniqueness of solution x(t, x0, u) of the of the nonlinear impulsive
stochastic integrodifferential state equations (1.1) based on the fixed point technique
[26]. The solution of the which can be represented in the following integral form:

x(t) = φ(t)[x0 −G(0, x0, 0)] + (Ĝx)(t) +
∫ t

0

Aφ(t− s)(Ĝx)(s)ds

+
∫ t

0

φ(t− s)
(
Bu(s) + (F̂1x)(s)

)
ds+

∫ t

0

φ(t− s)(F̂2x)(s)dw(s)

+
∑

0<tk<t

φ(t− tk)Ik(x(t−k )),

= φ(t)[x0 −G(0, x0, 0)] + (V x)(t) +
∫ t

0

φ(t− s)Bu(s)ds.

(3.4)

The following lemma gives a formula for a control steering the state x0 to an
arbitrary final point xT .

Lemma 3.4. Assume ΠT
0 is invertible, then for arbitrary xT ∈ L2(Ω,FT ,Rn) the

control

u(t) = B∗φ∗(T − t)E{(ΠT
0 )−1 (xT − φ(T )[x0 −G(0, x0, 0)]− (V x)(T )) |Ft} (3.5)

transfers the system (3.4) from x0 ∈ Rn to xT ∈ Rn at time T .

Proof. By substituting (3.5) in (3.4), we obtain

x(t) = φ(t)[x0 −G(0, x0, 0)] + (V x)(t)

+
∫ t

0

φ(t− s)BB∗φ∗(t− s)φ∗(T − t)

×E{(ΠT
0 )−1 (xT − φ(T )[x0 −G(0, x0, 0)]− (V x)(T )) |Ft}

= φ(t)[x0 −G(0, x0, 0)] + (V x)(t) + Πt
0(φ∗(T − t)(ΠT

0 )−1

× (xT − φ(T )[x0 −G(0, x0, 0)]− (V x)(T ))).

(3.6)

Writing t = T in (3.6), we see that the control u(.) transfers the system (3.4) from
x0 to xT . �

To apply the contraction mapping principle, we define the nonlinear operator
Υ : H2 → H2 by

(Υx)(t) = φ(t)[x0 −G(0, x0, 0)] + (V x)(t) +
∫ t

0

φ(t− s)Bu(s)ds,

where

u(t) = B∗φ∗(T − t)E{(ΠT
0 )−1 (xT − φ(T )[x0 −G(0, x0, 0)]− (V x)(T )) |Ft}. (3.7)
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From Lemma (3.4), the control (3.7) transfers the system (3.4) from the initial state
x0 to the final state xT provided that the operator Υ has a fixed point. So, if the
operator Υ has a fixed point then the system (1.1) is completely controllable. As
mentioned above, to prove the complete controllability it is enough to show that Υ
has a fixed point in H2. To do this, we use the contraction mapping principle. To
apply the contraction principle, first we show that Υ maps H2 into itself.

Theorem 3.5. Assume that conditions (H1)–(H3) hold. If the inequality

2M1(1 +Ml1l3) < 1 (3.8)

holds, then the stochastic control system (1.1) is completely controllable on [0, T ].

Proof. To prove the complete controllability of the stochastic system (3.4) it is
enough to show that Υ has a fixed point in H2. To apply the contraction principle,
first we show that Υ maps H2 into itself. Let x ∈ H2. Now by Lemma (3.4), for
t ∈ [0, T ] we have

E‖(Υx)(t)‖2

= E‖φ(t)[x0 −G(0, x0, 0)] + (V x)(t)

+ Πt
0φ
∗(T − t)(ΠT

0 )−1 (xT − φ(T )[x0 −G(0, x0, 0)]− (V x)(T )) ‖2,
≤ 3E‖φ(t)[x0 −G(0, x0, 0)]‖2 + 3E‖(V x)(t)‖2

+ 3E‖Πt
0φ
∗(T − t)(ΠT

0 )−1 (xT − φ(T )[x0 −G(0, x0, 0)]− (V x)(T )) ‖2.

From Lemma (3.2) it follows that

E‖(Υx)(t)‖2

≤ 6l1
(
‖x0‖2 + ‖G(0, x0, 0)‖2

)
+ 3E‖(V x)(t)‖2

+ 9Ml1l3
(
E‖xT ‖2 + 2l1[‖x0‖2 + ‖G(0, x0, 0)‖2] + E‖(V x)(T )‖2

)
,

≤ 6l1
(
‖x0‖2 + ‖G(0, x0, 0)‖2

)
+ 9Ml1l3

(
E‖xT ‖2 + 2l1[‖x0‖2 + ‖G(0, x0, 0)‖2]

)
+ 3(1 + 3Ml1l3)M2

(
1 + T sup

s∈[0,T ]

E‖x(s))‖2
)
,

therefore, we obtain that ‖(Υx)(t)‖2H2
<∞. Since Υ maps H2 into itself.

Secondly, we show that Υ is a contraction mapping. To see this let x, y ∈ H2,
so for t ∈ [0, T ] we have

E‖(Υx)(t)− (Υy)(t)‖2

= E‖(V x)(t)− (V y)(t) + Πt
0φ
∗(T − t)(ΠT

0 )−1 ((V x)(T )− (V y)(T )) ‖2,
≤ 2E‖(V x)(t)− (V y)(t)‖2 + 2Ml1l3E‖(V x)(T )− (V y)(T )‖2,
≤ 2(1 +Ml1l3) sup

s∈[0,T ]

E‖V (x(s))− V (y(s))‖2,

≤ 2(1 +Ml1l3)M1

(
sup

s∈[0,T ]

E‖x(s)− y(s)‖2
)
.

It result from Lemma (3.2) and inequality (3.1) that

sup
s∈[0,T ]

E‖(Υx)(s)− (Υy)(s)‖2 ≤ 2M1(1 +Ml1l3)
(

sup
s∈[0,T ]

E‖x(s)− y(s)‖2
)
.
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Therefore Υ is contraction mapping if the inequality (3.8) holds. Then the mapping
Υ has a unique fixed point x(.) in H2 which is the solution of the equation (1.1).
Thus the system (1.1) is completely controllable. �

4. Applications

Example 4.1. A rocket in vertical motion may be modeled by

ḣ = v

mv̇ = −mg + f ,
(4.1)

where h is altitude, v is velocity; m is mass, f is thrust force. Let x1 = h, x2 = v,
u = f

m − g, then (4.1) becomes

ẋ1 = x2

ẋ2 = u

The complete controllability is to find a (continuous) control u(t) over the period
[t0, tf ] to move the state of the system from a given initial state x(t0) = x0 to a
desired final state x(tf ) = xf .

Example 4.2. Consider the nonlinear impulsive neutral stochastic systems in the
form of (1.1),

d{x(t)− (Ĝx)(t)} = −5x(t)dt+ {e−2tu(t) + (F̂1x)(t)}dt

+ (F̂2x)(t)dw(t), t ∈ [0, T ], t 6= tk,

∆x(tk) = 0, 24e0,03(x(t−1
k )), t = tk, where tk = tk−1 + 0, 5 for k = 1, 2, . . . r.

x(0) = x0 ∈ Rn.

(4.2)
where w(.) is one-dimensional Brownian motion. (BM) is any of various physical
phenomena in which some quantity is constantly undergoing small, random fluc-
tuations. If a number of particles subject to (BM) are present in a given medium
and there is no preferred direction for the random oscillations, then over a period
of time the particles will tend to be spread evenly throughout the medium. (BM)
is a Gaussian process with independent increments which are normally distributed.
Here

A(t) = −5, B(t) = e−2t.

Moreover,

(F̂1x)(t) = x(t) + 2t2e−t +
∫ t

0

se−sx(s)ds

+
∫ T

0

arctan(x(s))ds+
∫ t

0

cos(x(s))dw(s),

(F̂2x)(t) = e−t sin(x(t)) +
∫ t

0

(2s2 + 3)x(s)ds

+
∫ T

0

1√
1 + |x(s)|

ds+
∫ t

0

log(1 + |x(s)|)dw(s),

(Ĝx)(t) = log[e2t
∣∣ ∫ t

0

e−s(x(s) + 1)ds
∣∣+ 1],
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Note that the above functions satisfy the hypotheses (H1)–(H2). For this system,
we have

ΓT
0 =

∫ T

0

φ(T, s)B(s)B∗(s)φ∗(T, s)ds,

=
∫ T

0

e−4T ds = Te−4T > 0, for some T > 0.

Hence, the stochastic system (1.1) is completely controllable on [0, T ].
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evolution equation approach, volume 113. Cambridge University Press, 2007.

[8] J. Klamka L. Socha. Some remarks about stochastic controllability. Automatic Control, IEEE
Transactions on, 22(5):880–881, 1977.

[9] N. I. Mahmudov, S. Zorlu; Controllability of semilinear stochastic systems. International
Journal of Control, 78(13):997–1004, 2005.

[10] K. Balachandran, S. Karthikeyan; Controllability of stochastic integrodifferential systems.

International Journal of Control, 80(3):486–491, 2007.
[11] K. Balachandran, S. Karthikeyan; Controllability of nonlinear itô type stochastic integrodif-
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