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LATTICE BOLTZMANN METHOD FOR COUPLED
BURGERS EQUATIONS

YALI DUAN, LINGHUA KONG, XIANJIN CHEN

Abstract. In this paper, we propose a lattice Boltzmann model for coupled

Burgers equations (CBEs). With a proper time-space scale and the Chapman-

Enskog expansion, the governing equations are recovered successfully from the
lattice Boltzmann equations, and the resulting local equilibrium distribution

functions are also obtained. The partial derivative ∂(uv)/∂x in the model is
treated as a source term and discretized with a 2nd-order central difference

scheme. Numerical experiments show that the numerical results by the Lattice

Boltzmann Method (LBM) either agree well with the corresponding exact
solutions or are quite comparable with those available numerical results in

the literature.

1. Introduction

In this article, we are concerned with the lattice Boltzmann numerical solutions
of the coupled Burgers equations (CBEs) which were first derived by Esipov [7] to
study the model of polydispersive sedimentation. The coupled Burgers equations
can be written as the nonlinear partial differential equations

∂u

∂t
+ ηu

∂u

∂x
+ α

∂(uv)
∂x

− ∂2u

∂x2
= 0, x ∈ [a, b], t ∈ [0, T ], (1.1)

∂v

∂t
+ ξv

∂v

∂x
+ β

∂(uv)
∂x

− ∂2v

∂x2
= 0, x ∈ [a, b], t ∈ [0, T ] (1.2)

with initial conditions

u(x, 0) = φ(x), v(x, 0) = ϕ(x), (1.3)

and boundary conditions

u(a, t) = h1(a, t), u(b, t) = h2(b, t), v(a, t) = l1(a, t), v(b, t) = l2(b, t), (1.4)

where η, ξ are real constants, α, β are arbitrary constants depending on the sys-
tem parameters such as the Péclet number, the Stokes velocity of particles due to
gravity, and the Brownian diffusivity. This system is a simple model of sedimenta-
tion or evolution of scaled volume concentrations of two kinds of particles in fluid
suspensions or collision under the effect of gravity.
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Note that exact solutions of (1.1)–(1.4) are generally not available. Numerically,
(1.1)–(1.4) have been studied by many authors with different methods, see [7]-[14].
Esipov [7] provided some numerical simulations for the CBEs and compared them
with available experimental results. Kaya [9] used the decomposition method to
successfully obtain some solutions of both homogenous and inhomogeneous CBEs in
the form of a convergent power series. In order to solve the CBEs, Abdou and Soli-
man [1] used a variational iteration method, while Dehghan et al. [5] developed and
used the Adomian-Páde technique. Khater et al. [10] used the Chebyshev spectral
collocation method to solve the CBEs and successfully obtained some approximate
solutions. Rashid et al. [17] proposed a Fourier pseudo-spectral method. Based on
a Crank-Nicolson formulation for time integration and cubic B-spline functions for
space integration, Mittal et al. [14] also proposed a useful numerical scheme for the
CBEs.

Recently, the lattice Boltzmann method (LBM) has been developed as an al-
ternative and promising numerical scheme for simulating fluid flows [2, 16, 4, 12]
and for solving various mathematical physics problems [15, 21, 22, 6, 19, 18, 11].
The LBM can be either regarded as an extension of the lattice gas automaton
[13] or as a special discrete form of the Boltzmann equation for the kinetic theory
[8]. Unlike conventional numerical schemes which are on a basis of a discretization
of partial differential equations under macroscopic conservation laws, the LBM is
based on microscopic models and mesoscopic kinetic equations. Thanks to its ad-
vantages in geometrical flexibility, natural parallelity, simplicity of programming
and numerical efficiency, the LBM has made great success in many fields and been
extensively applied to solve numerous problems. It also shows some potentials to
simulate nonlinear systems, such as reaction-diffusion equations [15], convection-
diffusion equations [19], wave equations [21] and Burgers equations [6, 18]. In this
paper, a lattice Boltzmann model for the CBEs is developed. We treat the partial
derivative ∂(uv)/∂x as a source term and then use the second order central differ-
ence scheme to approximate such term. With a proper time-space scale and the
Chapman-Enskog expansion, the resulting governing equations can be recovered
from the lattice Boltzmann equations and the resulting local equilibrium distri-
bution functions can also be obtained. Numerical results are presented and are
compared with those available ones in the literature. Numerical experiments show
that the LBM method is reliable and efficient for solving the CBEs.

This article is organized as follows. In Section 1, a brief introduction is given. In
Section 2, a lattice Boltzmann model for the CBEs is developed. The application
of the LBM to the coupled Burgers equations is also presented in the section.
In Section 3, three numerical examples are given to illustrate the efficiency and
accuracy of the LBM method numerically. Some conclusions are made in the final
section.

2. Lattice Boltzmann model

To propose a lattice Boltzmann model for the coupled Burgers equations, we
rewrite (1.1)–(1.2) in the form

∂u

∂t
+ ηu

∂u

∂x
− ∂2u

∂x2
= −α∂(uv)

∂x
, (2.1)

∂v

∂t
+ ξv

∂v

∂x
− ∂2v

∂x2
= −β ∂(uv)

∂x
. (2.2)
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According to the theory of the lattice Boltzmann method, it consists of two
steps: (1) colliding, which occurs when particles arrive at an interaction node from
different directions and possibly change their moving directions in the light of scat-
tering rules; (2) streaming, which occurs when each particle moves to the nearest
node along its moving direction. Usually, with the single-relaxation-time and the
Bhatnagar-Gross-Krook (BGK) approximation [3], these two steps can be combined
together and converted into the lattice Boltzmann equations. The corresponding
evolution equations of the distribution functions in the model read as

fi(x+ ei∆t, t+ ∆t)− fi(x, t) = −∆t
τ

(fi(x, t)− feq
i (x, t)) + ∆t

Fi(x, t)
b

, (2.3)

gi(x+ ei∆t, t+ ∆t)− gi(x, t) = −∆t
τ

(gi(x, t)− geq
i (x, t)) + ∆t

Gi(x, t)
b

, (2.4)

where fi(x, t) and gi(x, t) are the distribution functions of particles; feq
i (x, t) and

geq
i (x, t) are the local equilibrium distribution functions of particles; ∆x and ∆t

are the lattice space and time increments, respectively; c = ∆x/∆t is the particle
speed and τ is the dimensionless relaxation time; Fi(x, t) and Gi(x, t) depend only
on the right hand side of (2.1)–(2.2), respectively; {ei, i = 0, 1, . . . , b − 1} is the
set of discrete velocity directions, for the 3-bit model in the one-dimensional case,
{e0, e1, e2} = {0, c,−c}. The macroscopic variables, u and v are defined in terms
of the distribution functions as

u =
∑

i

fi =
∑

i

feq
i , v =

∑
i

gi =
∑

i

geq
i . (2.5)

To derive the macroscopic equations (2.1)–(2.2) (or (1.1)–(1.2)) from the lattice
BGK model, the Chapman-Enskog expansion is performed under the assumption
that the Kundsen number ε = l/L is small, where l is the mean free path and L
is the characteristic length. The Chapman-Enskog expansion is then applied to
fi(x, t) and gi(x, t), i.e.,

fi = feq
i +

∞∑
n=1

εnf
(n)
i = feq

i + εf
(1)
i + ε2f

(2)
i + . . . (2.6)

gi = geq
i +

∞∑
n=1

εng
(n)
i = geq

i + εg
(1)
i + ε2g

(2)
i + . . . (2.7)

With time scale t1 = εt, t2 = ε2t and space scale x1 = εx, then the time derivation
and the space derivation can be expanded formally as:

∂t = ε∂t1 + ε2∂t2 , ∂x = ε∂x1 . (2.8)

In (2.3)–(2.4), assume further that the second order terms Fi(x, t) and Gi(x, t)
take the form

Fi(x, t) = ε2F̃i(x, t), Gi(x, t) = ε2G̃i(x, t) (2.9)

for some functions F̃i(x, t), G̃i(x, t).
For simplicity, we only consider how to recover (2.1) from (2.3), and (2.2) from

(2.4) through a similar derivation. Performing the Taylor expansion on (2.3) up
to terms with order of O(ε3) and using (2.6), (2.8)–(2.9), one can get the partial
differential equations in order of ε, ε2 as

(∂t1 + ei∂x1)feq
i = − 1

τ∆t
f

(1)
i , (2.10)
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∂t2f
eq
i + (∂t1 + ei∂x1)f (1)

i +
∆t
2

(∂t1 + ei∂x1)2feq
i = − 1

τ∆t
f

(2)
i +

F̃i(x, t)
b

. (2.11)

Taking (2.10) times ε plus (2.11) times ε2, summing over i and using (2.5), (2.8),
(2.10) and ∑

i

f
(k)
i = 0 (k ≥ 1), (2.12)

we have

∂tu+ ∂x(
b−1∑
i=0

eif
eq
i ) + ε2∆t(

1
2
− τ)

b−1∑
i=0

(∂t1 + ei∂x1)2feq
i =

b−1∑
i=0

ε2
F̃i(x, t)

b
+O(ε3).

(2.13)
Now, in view of (2.1), one can set

b−1∑
i=0

eif
eq
i =

η

2
u2, (2.14)

ε2
b−1∑
i=0

(∂t1 + ei∂x1)2feq
i = λ

∂2u

∂x2
, (2.15)

b−1∑
i=0

ε2
F̃i(x, t)

b
=

b−1∑
i=0

Fi(x, t)
b

= −α∂(uv)
∂x

, (2.16)

where

λ =
1

∆t(τ − 0.5)
. (2.17)

The CBEs with the second order accuracy of truncation error is hence obtained.
In addition, if summing (2.10) over i and using (2.5), (2.12) and (2.14), we obtain

∂t1u+ ηu∂x1u = 0. (2.18)

On the other hand, using (2.10), (2.15) and (2.18), we get the 2nd-order moment
equation of the resulting local equilibrium distribution function

b−1∑
i=0

eieif
eq
i = λu+

η2

3
u3. (2.19)

In view of (2.5), (2.14) and (2.19), the equilibrium distribution functions {feq
i } of

3-bit model can be obtained as

feq
0 = u− η2

3c2
u3 − λu

c2
,

feq
1 =

λu

2c2
+

η2

6c2
u3 +

η

4c
u2,

feq
2 =

λu

2c2
+

η2

6c2
u3 − η

4c
u2.

(2.20)
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Similarly, the equilibrium distribution functions for {geq
i } can be achieved as

geq
0 = v − ξ2

3c2
v3 − λv

c2
,

geq
1 =

λv

2c2
+

ξ2

6c2
v3 +

ξ

4c
v2,

geq
2 =

λv

2c2
+

ξ2

6c2
v3 − ξ

4c
v2.

(2.21)

Next, we use the second order central difference scheme to approximate partial
derivatives ∂(uv)/∂x in (2.1)–(2.2), i.e., the source terms

F (x, t) = −α∂(uv)
∂x

= −αu∂v
∂x
− αv∂u

∂x

≈ −α
[
u
v(x+ ∆x, t)− v(x−∆x, t)

2∆x

+ v
u(x+ ∆x, t)− u(x−∆x, t)

2∆x
)
]
,

(2.22)

G(x, t) = −β ∂(uv)
∂x

= −βu∂v
∂x
− βv∂u

∂x

≈ −β
[
u
v(x+ ∆x, t)− v(x−∆x, t)

2∆x

+ v
u(x+ ∆x, t)− u(x−∆x, t)

2∆x
)
]
.

(2.23)

Finally, in order not to make large errors on the boundary which can influence the
global evolution, we use the three-adjacent-point difference scheme (second order
accuracy) to approximate partial derivatives v ∂u

∂x , u ∂v
∂x on the boundary, i.e.,

v
∂u

∂x
|x=a = v(a, t)

−3u(a, t) + 4u(a+ ∆x, t)− u(a+ 2∆x, t)
2∆x

, (2.24)

u
∂v

∂x
|x=a = u(a, t)

−3v(a, t) + 4v(a+ ∆x, t)− v(a+ 2∆x, t)
2∆x

, (2.25)

v
∂u

∂x
|x=b = v(b, t)

u(b− 2∆x, t)− 4u(b−∆x, t) + 3u(b, t)
2∆x

, (2.26)

u
∂v

∂x
|x=b = u(b, t)

v(b− 2∆x, t)− 4v(b−∆x, t) + 3v(b, t)
2∆x

. (2.27)

3. Numerical results and analysis

In this section, numerical results of the 3-bit LBM for the coupled Burgers equa-
tions are given. The efficiency and accuracy of the LBM are demonstrated through
three numerical examples. In particular, we compare the LBM numerical simula-
tions with the exact solutions and/or some available numerical results [10, 14] in
the literature. Here, we use the discrete L∞-norm error and the relative discrete
L2-norm error as follows:

‖E(u)‖∞ = max
0≤i≤N

{|uexact(xi, t)− unum(xi, t)|},
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‖E(u)‖2 =
( N∑

i=0

|uexact(xi, t)− unum(xi, t)|2
)1/2/( N∑

i=0

|uexact(xi, t)|2
)1/2

,

where N is the number of the lattice, unum(xi, t) and uexact(xi, t) represent the
numerical solution and the exact solution, respectively.

Example 3.1. To examine the performance of the 3-bit LBM for solving Burgers
equations, we set the parameters η = ξ = −2 and α = β = 1. With initial condition

u(x, 0) = v(x, 0) = sin(x),

Equations (1.1)–(1.2) read as follows

∂u

∂t
− 2u

∂u

∂x
+
∂(uv)
∂x

− ∂2u

∂x2
= 0, (3.1)

∂v

∂t
− 2v

∂v

∂x
+
∂(uv)
∂x

− ∂2v

∂x2
= 0, (3.2)

whose exact solution is [9]

u(x, t) = v(x, t) = e−t sin(x).

To obtain the LBM numerical solution, we choose ∆x = 0.04, ∆t = 0.001,
λ = c2/2, and the domain {x, x ∈ [−π, π]}. As before, c = ∆x/∆t is the particle
speed. To test the computational efficiency and accuracy of the LBM, we use both
L2-norm and L∞-norm errors for u, v as shown in Table 1. The numerical solution
u(x, t) is depicted in Figure 1 for t = 0.1, 0.5, 1. Because of the symmetry of u and
v, it is also true for v(x, t).

Table 1. L∞, L2 errors for u, v at different time stages

u v

t L∞ L2 L∞ L2

0.1 8.6936e–4 6.1750e–4 8.6936e–4 6.1750e–4

0.5 5.4963e–4 3.1121e–4 5.4963e–4 3.1121e–4

1 2.3350e–4 1.3417e–4 2.3350e–4 1.3417e–4

Example 3.2. Choosing η = ξ = 2, the CBEs in (1.1)–(1.2) are

∂u

∂t
+ 2u

∂u

∂x
+ α

∂(uv)
∂x

− ∂2u

∂x2
= 0, (3.3)

∂v

∂t
+ 2v

∂v

∂x
+ β

∂(uv)
∂x

− ∂2v

∂x2
= 0. (3.4)

If we use the initial conditions

u(x, 0) = a0(1− tanh(Dx)), v(x, 0) = a0[
2β − 1
2α− 1

− tanh(Dx)],

then the corresponding exact solution (u, v) for (3.3)–(3.4) is [20]

u(x, t) = a0(1− tanh(D(x− 2Dt))),

v(x, t) = a0[
2β − 1
2α− 1

− tanh(D(x− 2Dt))],
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Figure 1. A comparison of numerical and exact solutions in Ex-
ample 3.1

where D = a0(4αβ− 1)/(4α− 2), a0 is an arbitrary constant. The LBM numerical
results of this example are showed in Tables 2–3 by using the domain [−10, 10],
the L∞ error and the relative L2 error with ∆t = 0.01, ∆x = 1, c = ∆x/∆t,
λ = c2/3. In both tables, we compare the LBM results with those available ones
in the literature [10, 14]. As is seen from the tables, the 3-bit lattice Boltzmann
method is quite comparable with those methods used in [10, 14].

Table 2. Comparison of L∞, L2 errors for u(x, t) in Example 3.2.

Khater [10] Mittal [14] LBM

t α β ‖E(u)‖∞ ‖E(u)‖2 ‖E(u)‖∞ ‖E(u)‖2 ‖E(u)‖∞ ‖E(u)‖2

0.5 0.1 0.3 4.38e–5 1.44e–3 4.167e–5 6.736e–4 4.028e–5 6.589e–4

0.3 0.03 4.58e–5 6.68e–4 4.590e–5 7.326e–4 4.936e–5 7.335e–4

1 0.1 0.3 8.66e–5 1.27e–3 8.258e–5 1.325e–3 8.140e–5 1.298e–3

0.3 0.03 9.16e–5 1.30e–3 9.182e–5 1.452e–3 9.014e–5 1.422e–3

Example 3.3. Consider the CBEs (1.1)–(1.2) with initial condition [14]

u(x, 0) =

{
sin(2πx), 0 ≤ x ≤ 0.5,
0, 0.5 < x ≤ 1,

v(x, 0) =

{
0, 0 ≤ x ≤ 0.5,
− sin(2πx), 0.5 < x ≤ 1,
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Table 3. Comparison of L∞, L2 errors for v(x, t) in Example 3.2.

Khater [10] Mittal [14] LBM

t α β ‖E(v)‖∞ ‖E(v)‖2 ‖E(v)‖∞ ‖E(v)‖2 ‖E(v)‖∞ ‖E(v)‖2

0.5 0.1 0.3 4.99e–5 5.42e–4 1.480e–4 9.057e–4 2.021e–5 4.705e–4

0.3 0.03 1.81e–4 1.20e–3 5.729e–4 1.591e–3 1.862e–4 1.301e–3

1 0.1 0.3 9.92e–5 1.29e–3 4.770e–5 1.252e–3 4.029e–5 9.389e–4

0.3 0.03 3.62e–4 2.35e–3 3.617e–4 2.250e–3 3.657e–4 2.557e–3

and zero boundary conditions. The numerical solution is computed on the domain
[0, 1]. In Tables 4 and 5, we present a comparison of the 3-bit LBM numerical
results and those obtained by the cubic B-spline collocation scheme [14] in term of
maximum values of u, v for different times (i.e., t = 0.1, 0.2, 0.3, 0.4) and different
values of α, β. Here, we choose η = ξ = 2, N = 50,∆t = 0.0001 and λ = c2/2. The
numerical solutions (u, v) are also depicted in Figures 2–3 with α = β = 10 and
α = β = 100, respectively. A sharp decay is clearly displayed in Figure 3 when α, β
are large. Note that the 3-bit LBM numerical results also agree well with those in
[14].

Table 4. Comparison of maximum values of u(x, t), v(x, t) for α =
β = 10.

Mittal [14] LBM Mittal [14] LBM

t umax x umax x vmax x vmax x

0.1 0.14456 0.58 0.14464 0.58 0.14306 0.66 0.14327 0.66

0.2 0.05237 0.54 0.05241 0.54 0.04697 0.56 0.04704 0.56

0.3 0.01932 0.52 0.01934 0.52 0.01725 0.52 0.01727 0.52

0.4 0.00718 0.50 0.00719 0.50 0.00641 0.50 0.00642 0.50

Table 5. Comparison of maximum values of u(x, t), v(x, t) for α =
β = 100.

Mittal [14] LBM Mittal [14] LBM

t umax x umax x vmax x vmax x

0.1 0.04175 0.46 0.04167 0.46 0.05065 0.76 0.05080 0.76

0.2 0.01479 0.58 0.01478 0.58 0.01033 0.64 0.001035 0.64

0.3 0.00534 0.54 0.00534 0.54 0.00350 0.56 0.00351 0.56

0.4 0.00198 0.52 0.00198 0.52 0.00129 0.52 0.00129 0.52

To the best of our knowledge, there is no exact solution available in the literature
for general values of η, ξ. Hence, numerical experiments are important in study of
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Figure 2. Numerical solution (u(x, t), v(x, t)) of Example 3.3 for
α = β = 10.

the behavior of solutions for larger values of η, ξ. With α = β = 10, numerical
solutions (u, v) in Example 3.3 are plotted in Figures 4–5 to illustrate the effect of
different values of η, ξ, i.e., η = ξ = 20, 200. From the figures it can be seen that
the solution (u, v) decays to zero as time t or the value of η, ξ increases. It can
also be observed that the LBM is capable of finding numerical solutions for larger
values of η, ξ. As a comparison, if taking the numerical solution on a fine mesh
of 500 lattices as the “exact” solution, then one can see from Figures 4–5 that the
numerical solution on a much coarser mesh (containing 50 lattices) agrees well with
such “exact” solution.

Conclusions. In this article, a 3-bit lattice Boltzmann model for the CBEs is pro-
posed. The partial derivative ∂(uv)/∂x is treated as a source term and discretized
with a second-order central difference scheme. By choosing an appropriate time-
space scale and applying the Chapman-Enskog expansion, the resulting governing
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Figure 3. Numerical solution (u(x, t), v(x, t)) of Example 3.3 for
α = β = 100.

equations are recovered from the lattice Boltzmann equations and the resulting
local equilibrium distribution functions are also obtained. Then, three numerical
examples are presented to illustrate the efficiency of the LBM. Numerical experi-
ments show that LBM results agree well with either the exact solutions or other
available results. Certain important behaviors of general CBEs are also verified nu-
merically. Undoubtedly, it is worth further investigating the LBM in solving other
types of nonlinear partial differential equations in future.
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Figure 4. Numerical solution (u, v) at different time levels for
α = β = 10 and η = ξ = 20.
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Figure 5. Numerical solution (u, v) at different time levels for
α = β = 10 and η = ξ = 200.
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