\documentclass[reqno]{amsart} \usepackage{hyperref} \usepackage{amssymb,mathrsfs} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2015 (2015), No. 250, pp. 1--9.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2015 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2015/250\hfil axisymmetric Navier-Stokes equations] {Regularity for the axisymmetric Navier-Stokes equations} \author[P. Wang \hfil EJDE-2015/250\hfilneg] {Peng Wang} \address{Peng Wang \newline Department of Mathematics, Zhejiang Normal University, Jinhua 321004, Zhejiang, China} \email{wpmath2013@gmail.com} \thanks{Submitted June 11, 2015. Published September 25, 2015.} \subjclass[2010]{35Q30, 76D03} \keywords{ Navier-Stokes equations; axi-symmetric flow; regularity criterion} \begin{abstract} In this article, we establish a regularity criterion for the Navier-Stokes system with axisymmetric initial data. It is proved that if the local axisymmetric smooth solution $u$ satisfies ${\|u^\theta\|_{L^{\alpha}(0,T; L^{\beta})}}<\infty$ , where $\frac{2}{\alpha}+\frac{3}{\beta} \leq 1 $, and $3 < \beta \leq \infty$, then the strong solution keeps smoothness up to time $T$. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \allowdisplaybreaks \section{Introduction} We study the following classic 3D incompressible Navier-Stokes equations in the whole space, \begin{equation} \label{e1.1} \begin{gathered} \partial_tu + (u\cdot \nabla u)u + \nabla p=\nu \Delta u, \\ \nabla \cdot u=0,\\ u(x,t=0)=u_0, \end{gathered} \end{equation} where $u(x, t)\in \mathbb{R}^3$ and $p(x, t) \in \mathbb{R}$ denote the unknowns, velocity and pressure respectively, while $\nu$ denotes the viscous coefficient of the system. A lot of works have been devoted to study the above system, but global well-posedness for \eqref{e1.1} with arbitrary large initial data is still a challenging open problem, see \cite{CF, F, MB, YZ, YZ1, YZ2}. Here, we are concerned with \eqref{e1.1} with axisymmetric initial data. If $u_0$ is axisymmetric in system \eqref{e1.1}, then the solution $u(x,t)$ of system \eqref{e1.1}is also axisymmetric~\cite{UY, LMNP}. So, it is convenient to write $u(x,t)$ as in the form \[ u(x,t)=u^r(r, z, t)e_r+u^\theta(r, z, t)e_\theta +u^z(r, z, t)e_z, \] where $e_r$, $e_\theta$ and $e_z$ are the standard orthonormal unit vectors in cylindrical coordinate system \begin{gather*} e_r=({\frac{x_1}{r}}, {\frac{x_2}{r}}, 0)=(\cos{\theta}, \sin{\theta}, 0),\\ e_\theta=({-\frac{x_2}{r}}, {\frac{x_1}{r}}, 0)=(-\sin{\theta},\cos{\theta}, 0),\\ e_z=(0, 0, 1), \end{gather*} with $r=(x_1^2+x_2^2)^{1/2}$. By direct computations, it is easy to show the following relations. \begin{gather*} \nabla =(\partial_{x_1}, \partial_{x_2}, \partial_{z})^{T} = \partial_r e_r+\frac{\partial_\theta}{r}e_\theta + \partial_ze_z, \\ \Delta =\nabla \cdot \nabla=\frac{1}{r}\partial_r(r\partial_r) +\frac{1}{r^2}\frac{\partial^2}{\partial_\theta^2} +\frac{\partial^2}{\partial z^2}, \\ \frac{\partial e_r}{\partial \theta}=e_\theta, \quad \frac{\partial e_\theta}{\partial \theta}=-e_r. \end{gather*} Accordingly, the system \eqref{e1.1} can be rewritten equivalently as \begin{equation} \label{e1.2} \begin{gathered} \frac{\tilde{D}}{Dt}u^r-\nu (\partial_r^2+\partial_z^2 +\frac{1}{r}\partial_r-\frac{1}{r^2})u^r-\frac{(u^\theta)^2}{r}+\partial_rp=0 , \\ \frac{\tilde{D}}{Dt}u^\theta-\nu (\partial_r^2+\partial_z^2 +\frac{1}{r}\partial_r-\frac{1}{r^2})u^\theta+\frac{u^ru^\theta}{r}=0,\\ \frac{\tilde{D}}{Dt}u^z-\nu (\partial_r^2+\partial_z^2 +\frac{1}{r}\partial_r)u^z+\partial_zp=0,\\ u|_{t=0}=u_0^r\cdot e_r + u_0^\theta\cdot e_\theta + u_0^z\cdot e_z, \end{gathered} \end{equation} where ${\frac{\tilde{D}}{Dt}}$ denotes the material derivative \[ {\frac{\tilde{D}}{Dt}}=\partial_t +u^r\partial_r +u^z\partial_z. \] If $u^\theta=0$ (so-called without swirl), Ukhovskii and Yudovich \cite{UY} (see also \cite{LMNP}) proved the existence of generalized solutions, uniqueness and regularity. When $u^\theta\neq 0$ (with swirl), it is much complicated and difficult. For recent progress, one can find results on regularity criteria or global existence with small initial data in \cite{CL,JN,LMNP,ZZ}. In particular, very recently in \cite{ZZ}, the following regularity criterion was established: \begin{equation} \label{e1.3} \|u^\theta 1_{r\leq\varsigma}\|_{L^\alpha((0, T);L^\beta)}<\infty,\quad \text{with } \frac{2}{\alpha}+\frac{3}{\beta}<1, \quad \beta>6, \quad \text{or } (\alpha,\beta)=(4, 6), \end{equation} where $\varsigma>0$ is given. The aim of this paper is to give a regularity criteria in terms of $u^\theta$. More precisely, we have the following theorem. \begin{theorem} \label{thm1.1} Let $u_0 \in H^2$, and $u\in C([0,T);H^2(\mathbb{R}^3))\cap L^2_{loc}([0,T);\dot{H}^3(\mathbb{R}^3))$ be the solution of \eqref{e1.1}. If it satisfies \begin{equation} \label{e1.4} {\|u^\theta\|_{L^\alpha(0,T;L^\beta)}} <\infty , \quad \text{where } {\frac{2}{\alpha}+\frac{3}{\beta}=1}, \text{ and } 3< \beta\leq \infty, \end{equation} then $u(x,t)$ can be continued beyond $T$. \end{theorem} In Section 2 some key lemmas are given. Then Section 3 is devoted to the proof of the main result. \section{Key lemmas} Before going to the details, let us introduce some notation. $L^{p,q}$ norm be defined by \begin{equation} \label{e2.1} \|u\|_{L^{p,q}} = \begin{cases} \big(\int_{0}^{t}{\|u\|_{L^q}^p}{\rm d}\tau\big)^{1/p} &\text{if } 1 \leq p <\infty,\\[4pt] \operatorname{ess\,sup}_{ 0<\tau 0$ and $C_{2} > 0$, independent of $u$, such that for $ 1 < p < \infty$, we have \begin{gather*} {\|\nabla u^r\|_{L^p}} +{\|\frac{u^r}{r}\|_{L^p}} \leq C_{1}(p){\|\omega^\theta\|_{L^p}},\\ {\|\partial_{r}(\frac{u^\theta}{r})\|_{L^p}} \leq C_{2} {\|\nabla^2 u\|_{L^p}}. \end{gather*} \end{lemma} \begin{lemma}[{\cite[Lemma 4]{JN}}] \label{lem2.5} Suppose that $u$ is a sufficiently smooth axisymmetric vector field, then there exists a constant $C > 0$ that is independent of $u$, such that for all $1 \leq p \leq \infty$, we have \begin{gather*} {\|\nabla u^\theta\|_{L^p}} +{\|\frac{u^\theta}{r}\|_{L^p}} \leq C{\|\nabla u\|_{L^p}},\\ {\|\partial_{r}(\frac{u^\theta}{r}) \|_{L^p}} \leq C {\|\Delta u\|_{L^p}}. \end{gather*} \end{lemma} \begin{lemma}[{\cite[Lemma 5]{JN}}] \label{lem2.6} Let $u$ be the sufficiently smooth and divergence-free axisymmetric vector field. Then there exist $C_{1}(p)$, $C_{2}$, independent of $u$, such that for $1 < p < \infty$ \begin{align*} C_{1}(p){\|\Delta u\|_{L^p}} &\leq {\|\frac{\omega^r}{r}\|_{L^p}}+{\|\frac{\omega^\theta}{r}\|_{L^p}} +{\|\nabla \omega^r\|_{L^p}}, +{\|\nabla \omega^\theta \|_{L^p}}+{\|\nabla \omega^z\|_{L^P}} \\ &\leq C_{2}{\|\Delta u\|_{L^p}}. \end{align*} \end{lemma} \begin{lemma} \label{lem2.7} Let $u$ be the unique local axisymmetric solution of \eqref{e1.1}, then we have \begin{align*} {\|\nabla^2 u\|_{L^2}^2} &={\|{\nabla}\partial_ru^r\|_{L^2}^2} + {\|{\nabla}\frac{u^r}{r}\|_{L^2}^2} + {\|{\nabla}\partial_zu^r\|_{L^2}^2} +{\|\partial_z\frac{u^r}{r}\|_{L^2}^2}\\ &\quad+{\|{\nabla}\partial_ru^\theta\|_{L^2}^2}+{\|{\nabla} \frac{u^\theta}{r}\|_{L^2}^2} +{\|{\nabla}\partial_zu^\theta\|_{L^2}^2}+{\|\partial_z\frac{u^\theta}{r}\|_{L^2}^2} +{\|\nabla^2u^z\|_{L^2}^2}\\ &\quad +\int_{\mathbb{R}^3}{\frac{2}{r^2}\big\{(\partial_ru^r)^2 +(\frac{u^r}{r})^2-\partial_ru^r\frac{u^r}{r}\big\}}{\rm d}x\\ &\quad +\int_{\mathbb{R}^3}{\frac{2}{r^2}\big\{(\partial_ru^\theta)^2 +(\frac{u^\theta}{r})^2-\partial_ru^\theta\frac{u^\theta}{r}\big\}}{\rm d}x \end{align*} \end{lemma} \begin{lemma}[{Proposition 2.5]{MZ}}] \label{lem2.8} Let $u$ be the sufficiently smooth and divergence-free axisymmetric vector field, and $\nabla \times u = \omega$, then one can obtain that \begin{equation} \label{e2.3} \frac{u^r}{r} = \Delta^{-1}\partial_z(\frac{\omega^\theta}{r}) - 2\frac{\partial_r}{r}\Delta^{-2}{\partial_z}(\frac{\omega^\theta}{r}) \end{equation} where \begin{equation} \label{e2.4} \frac{\partial_r}{r}f(r,z) = \frac{x_2^2}{r^2}R_{11}f +\frac{x_1^2}{r^2}R_{22}f -2\frac{x_1x_2}{r^2}R_{12}f \end{equation} here $R_{ij}= \Delta^{-1}\partial_i\partial_j$. \end{lemma} \begin{lemma} \label{lem2.9} Based on Lemma \ref{lem2.7}, for $ 1 < p < \infty$, one can deduce easily the following results \begin{gather} {\|\hat{\nabla}\frac{u^r}{r}\|_{L^p}} \leq C(p){\|\frac{\omega^\theta}{r}\|_{L^p}} \label{e2.5}\\ \|\hat{\nabla}\hat{\nabla}\frac{u^r}{r}\|_{L^p} \leq C(p){\|\partial_z(\frac{\omega^\theta}{r})\|_{L^p}} \label{e2.6} \end{gather} \end{lemma} The Lemma below is a general Sobolev-Hardy inequality, which was deduced by Hui chen et al \cite[v]{ZC}. About more Sobolev-Hardy inequality one can see \cite[Theorem 2.1]{BT}. \begin{lemma}[{\cite[Lemma 2.4]{ZC}}] \label{lem2.10} We assume that There exist a positive constant $C(s, q^*)$, $q^* \in [2, 2(2-s)]$ with $0 \leq s <2$ and $r = (x_1^2 + x_2^2)^{1/2}$ such that for all $u \in \mathscr{D}^{1, q}(\mathbb{R}^3)$, one can obtain that \[ {\|\frac{u}{r^{\frac{s}{q^*}}}\|_{L^{q^*}}} \leq C(q^*, s){\|u\|_{L^2}^{\frac{3-s}{q^*} -\frac{1}{2}}}{\|\nabla u\|_{L^2}^{\frac{3}{2}-\frac{3-s}{q^*}}}. \] \end{lemma} \begin{lemma}[\cite{ZC}] \label{lem2.11} Let $u$ be the unique axisymmetric solution of \eqref{e1.1}, then we have \begin{align*} &{\|\frac{\omega^\theta}{r}\|^2_{L^\infty(0, T; L^2)}} +{\|\frac{\omega^r}{r}\|^2_{L^\infty(0,T; L^2)}} + {\|\nabla \frac{\omega^\theta}{r}\|_{L^2(0, T;L^2)}^2} +{\|\nabla{\frac{\omega^r}{r}}\|^2_{L^2(0,T; L^2)}}\\ & \leq C\Big\{{\|\frac{\omega^r_0}{r}\|_{L^2}} +{\|\frac{\omega^\theta_0}{r}\|_{L^2}}\Big\} \exp\Big\{C\int_{0}^{T}{\|u^\theta\|_{L^\beta}^{\frac{2}{1-\frac{3}{\beta}}}} {\rm d}t\Big\}. \end{align*} where $(\alpha, \beta)$ satisfies $\frac{2}{\alpha}+\frac{3}{\beta}\leq 1$ with $ 3 < \beta \leq \infty$. \end{lemma} \begin{proof} This proof can be found in \cite{ZC}. For reader's convenience, we give it here. Multiplying the $\omega^r$ equation of $\eqref{e2.2}$ by $\frac{\omega^r}{r^2}$ and integrating the resulting equation over ${\mathbb{R}^3}$ leads to \begin{align*} &{\frac{1}{2}{\frac{d}{dt}}{\|\frac{\omega^r}{r}\|_{L^2}^2}} +\nu{\|\hat{\nabla}\frac{\omega^r}{r}\|_{L^2}^2} \\ &= \int_{\mathbb{R}^3}{(\omega^r\partial_r + \omega^z \partial_z){\frac{u^r}{r}}{\frac{\omega^r}{r}}\cdot r} {\rm d}x \\ &= -2\pi \int_{\mathbb{R}}\int_{0}^{\infty} {\partial_z u^\theta \cdot\partial_r{\frac{u^r}{r}}\cdot{\frac{\omega^r}{r}}}{\rm d}r {\rm d}z + 2\pi \int_{\mathbb{R}}\int_{0}^{\infty} {\frac{\partial_r(ru^\theta)}{r} \cdot{\partial_z{\frac{u^r}{r}}\cdot{\frac{\omega^r}{r}}}\cdot r} {\rm d}r {\rm d}z\\ & = \int_{\mathbb{R}^3}{u^\theta(\partial_z\partial_r\frac{u^r}{r}) {\frac{\omega^r}{r}} + u^\theta(\partial_r{\frac{u^r}{r}})(\partial_z{\frac{\omega^r}{r}})} {\rm d}x\\ &\quad - \int_{\mathbb{R}^3}{u^\theta\cdot(\partial_r\partial_z{\frac{u^r}{r}}) (\frac{\omega^r}{r})} {\rm d}x -\int_{\mathbb{R}^3}{u^\theta\cdot(\partial_z{\frac{u^r}{r}}) (\partial_r\frac{\omega^r}{r})} {\rm d}x\\ &= \int_{\mathbb{R}^3}{u^\theta\cdot(\partial_r\frac{u^r}{r})\cdot (\partial_z\frac{\omega^r}{r})}{\rm d}x -\int_{\mathbb{R}^3}{u^\theta\cdot(\partial_z\frac{u^r}{r}) \cdot(\partial_r\frac{\omega^r}{r})}{\rm d}x = H_1 + H_2 \end{align*} Form Lemma \ref{lem2.9} we obtain \begin{align*} |H_1| &\leq \int_{\mathbb{R}^3}{|u^\theta\cdot(\partial_r\frac{u^r}{r} \partial_z\frac{\omega^r}{r}) |}{\rm d}x \\ &\leq {\|u^\theta\|_{L^\beta}}{\|\partial_r\frac{u^r}{r} \|_{L^{\frac{2\beta}{\beta-2}}}{\|\partial_z\frac{\omega^r}{r}\|_{L^2}}} \quad\text{(H\"older inequality)}\\ & \leq C{\|u^\theta\|_{L^\beta}}{\|\hat{\nabla} \partial_r\frac{u^r}{r}\|_{L^2}^{\frac{3} {\beta}}{\|\partial_r\frac{u^r}{r}\|_{L^2}^{1-\frac{3}{\beta}}} {\|\partial_z\frac{\omega^r}{r}\|_{L^2}}} \\ &\quad \text{((Lemma \ref{lem2.10} $s=0$, $q^* =\frac{2\beta}{\beta-2} $)}\\ & \leq C{\|u^\theta\|_{L^\beta}{\|\hat{\nabla} \frac{\omega^\theta}{r}\|_{L^2}^{\frac{3}{\beta}}} {\|\frac{\omega^\theta}{r}\|_{L^2}^{1-\frac{3}{\beta}}} {\|\hat{\nabla}\frac{\omega^r}{r}\|_{L^2}}} \quad \text{(Lemma \ref{lem2.9})}\\ & \leq C_{\delta}{\|u^\theta\|_{L^\beta}^{\frac{2}{1-\frac{3}{\beta}}} {\|\frac{\omega^\theta}{r}\|_{L^2}^2}} +\delta{\|\hat{\nabla}\frac{\omega^r}{r}\|_{L^2}^2} +\delta{\|\hat{\nabla}\frac{\omega^\theta}{r}\|_{L^2}^2} \quad \text{(Young inequality)} \end{align*} The quantity $H_2$ can be estimated similarly as $H_1$: \[ |H_2| \leq C_{\delta}{\|u^\theta\|_{L^\beta}^{\frac{2}{1-\frac{3}{\beta}}}} {\|\frac{\omega^\theta}{r}\|_{L^2}^2} +\delta{\|\hat{\nabla} \frac{\omega^r}{r}\|_{L^2}^2} +\delta{\|\hat{\nabla} \frac{\omega^\theta}{r}\|_{L^2}^2}. \] Thus we have \begin{equation} \label{e2.7} \begin{aligned} &{\frac{1}{2}{\frac{d}{dt}}{\|\frac{\omega^r}{r}\|_{L^2}^2}} +\nu{\|\hat{\nabla}\frac{\omega^r}{r}\|_{L^2}^2}\\ &\leq C_{\delta}{\|u^\theta\|_{L^\beta}^{\frac{2}{1-\frac{3}{\beta}}} {\|\frac{\omega^\theta}{r}\|_{L^2}^2}} +2\delta{\|\hat{\nabla} \frac{\omega^r}{r}\|_{L^2}^2} +2\delta{\|\hat{\nabla} \frac{\omega^\theta}{r}\|_{L^2}^2} \end{aligned} \end{equation} Multiplying $\omega^\theta$ equation of \eqref{e2.2} by $\frac{\omega^\theta}{r^2}$, and integrating over $\mathbb{R}^3$, after integrating by parts we obtain that \[ \frac{1}{2}{\frac{d}{dt}{\|\frac{\omega^\theta}{r}\|_{L^2}^2}} +\nu{\|\hat{\nabla}\frac{\omega^\theta}{r}\|_{L^2}^2} =2\int_{\mathbb{R}^3}{\frac{u^\theta}{r}{\frac{\omega^r}{r}} {\frac{\omega^\theta}{r}}}{\rm d}x := H_3 \] \begin{align*} |H_3| &\leq \int_{\mathbb{R}^3}{|u^\theta\cdot({r^{-\frac{1}{2}} \frac{\omega^\theta}{r}})({r^{-\frac{1}{2}}{\frac{\omega^r}{r}}})|}{\rm d}x\\ &\leq C{\|u^\theta\|_{L^\beta}}{\|{r^{-\frac{1}{2}} \frac{\omega^\theta}{r}}\|_{L^{\frac{2\beta}{\beta-1}}}} {\|{r^{-\frac{1}{2}}{\frac{\omega^r}{r}}}\|_{L^{\frac{2\beta}{\beta-1}}}} \quad \text{(H\"older inequality)}\\ & \leq C{\|u^\theta\|_{L^\beta}}{\|\frac{\omega^\theta}{r}\|_{L^2}^{\frac{1}{2} -\frac{3}{2\beta}}} {\|\hat{\nabla}\frac{\omega^\theta}{r}\|_{L^2}^{\frac{1}{2} +\frac{3}{2\beta}}}{\|\frac{\omega^r}{r}\|_{L^2}^{\frac{1}{2}-\frac{3}{2\beta}}} {\|\hat{\nabla}\frac{\omega^r}{r}\|_{L^2}^{\frac{1}{2}+\frac{3}{2\beta}}}\\ &\text{(where we used Lemma \ref{lem2.10} $s=\frac{\beta}{\beta-1}$, $q^* =\frac{2\beta}{\beta-1} $)}\\ &\leq C_{\delta}{\|u^\theta\|_{L^\beta}^{\frac{2}{1-\frac{3}{\beta}}}} {\|\frac{\omega^r}{r}\|_{L^2}}{\|\frac{\omega^\theta}{r}\|_{L^2}} +\delta{\|\hat{\nabla}\frac{\omega^\theta}{r}\|_{L^2}^2} + \delta{\|\hat{\nabla}\frac{\omega^r}{r}\|_{L^2}^{2}} \quad \text{(Young ineq.)}\\ &\leq C_{\delta}{\|u^\theta\|_{L^\beta}^{\frac{2}{1-\frac{3}{\beta}}}} ({\|\frac{\omega^r}{r}\|_{L^2}^2} + {\|\frac{\omega^\theta}{r}\|_{L^2}^2} ) +\delta{\|\hat{\nabla}\frac{\omega^\theta}{r}\|_{L^2}^2} + \delta{\|\hat{\nabla}\frac{\omega^r}{r}\|_{L^2}^{2}} \end{align*} Then we obtain \begin{equation} \label{e2.8} \begin{aligned} &\frac{1}{2}{\frac{d}{dt}{\|\frac{\omega^\theta}{r}\|_{L^2}^2}} + \nu{\|\hat{\nabla}\frac{\omega^\theta}{r}\|_{L^2}^2}\\ &\leq C_{\delta}{\|u^\theta\|_{L^\beta}^{\frac{2}{1-\frac{3}{\beta}}}} ({\|\frac{\omega^r}{r}\|_{L^2}^2} + {\|\frac{\omega^\theta}{r}\|_{L^2}^2} ) +\delta{\|\hat{\nabla}\frac{\omega^\theta}{r}\|_{L^2}^2} + \delta{\|\hat{\nabla}\frac{\omega^r}{r}\|_{L^2}^{2}} \end{aligned} \end{equation} Combining \eqref{e2.7} and \eqref{e2.8} together and let $\delta$ be a small enough constant, we have then by Gronwall's inequality that \begin{align*} &{{\|\frac{\omega^r}{r}\|^2_{L^\infty(0,T;L^2)}}} +{\|\hat{\nabla}\frac{\omega^r}{r}\|^2_{L^2(0,T;L^2)}} +{{\|\frac{\omega^\theta}{r}\|^2_{L^\infty(0,T;L^2)}}} + {\|\hat{\nabla}\frac{\omega^\theta}{r}\|^2_{L^2(0,T;L^2)}}\\ &\leq C({\|\frac{\omega^r_0}{r}\|_{L^2}} + {\|\frac{\omega^\theta_0}{r}\|_{L^2}}) \exp\Big\{C\int_{0}^{T}{\|u^\theta\|_{L^\beta}^{\frac{2}{1-\frac{3}{\beta}}}} {\rm d}t\Big\}. \end{align*} \end{proof} \section{Proof of regularity criteria} \begin{proof} Let $u$ be an axisymmetric smooth solution of the Navier-Stokes equations. Taking curl on the both sides of the Navier-Stokes equations, then we can obtain the equation \[ \partial_t \omega - \Delta \omega +(u\cdot \nabla)\omega = (\omega\cdot\nabla)u. \] By multiplying $\omega$ on the both sides of the above equations, and integrating over $\mathbb{R}^3$, one obtain: \begin{align*} & \frac{1}{2}\frac{d}{dt} \int_{\mathbb{R}^3} {|\omega|}^2 {\rm d}x + \int_{\mathbb{R}^3} {|\nabla\omega|}^2 {\rm d}x\\ &=\int_{\mathbb{R}^3} {(\omega \cdot \nabla)u\cdot \omega} {\rm d}x \\ &= \int_{\mathbb{R}^3} {\omega^r \partial_{r} u^r \omega^r} {\rm d}x -\int_{\mathbb{R}^3} {\frac{\omega^\theta}{r} u^\theta \omega^r} {\rm d}x + \int_{\mathbb{R}^3} {\omega^z \partial_{z}u^r \omega^{r}} {\rm d}x +\int_{\mathbb{R}^3} {\omega^r \partial_r u^\theta \omega^\theta} {\rm d}x \\ &\quad + \int_{\mathbb{R}^3}{\frac{\omega^\theta}{r}u^r \omega^\theta} {\rm d}x + \int_{\mathbb{R}^3}{\omega^z \partial_{z} u^\theta \omega^\theta} {\rm d}x +\int_{\mathbb{R}^3}{\omega^r \partial_{r}u^z \omega^\theta} {\rm d}x +\int_{\mathbb{R}^3}{\omega^z \partial_z u^z \omega^z} {\rm d}x\\ &:= I_{1}+I_{2}+I_{3}+I_{4}+I_{5}+I_{6}+I_{7}+I_{8}. \end{align*} We will estimate the terms one by one, for the term $I_1$, using integration by parts, we have \begin{align*} I_{1} &= \int_{\mathbb{R}^3} {\omega^r \partial_{r} u^r \omega^r} {\rm d}x \\ &= -{\int_{\mathbb{R}^3} {{\partial_{z}u^\theta}\cdot\partial_{r} u^r\cdot\omega^r} {\rm d}x}\\ &=\int_{\mathbb{R}^3}({u^\theta\cdot{\partial_z\partial_ru^r}\cdot\omega^r +u^\theta\cdot{\partial_ru^r}{\partial_z\omega^r}}){\rm d}x \end{align*} then \[ |I_{1}| \leq \int_{\mathbb{R}^3}|{u^\theta\cdot{\partial_z\partial_ru^r} \cdot\omega^r}| {\rm d}x +\int_{\mathbb{R}^3}|{u^\theta \cdot{\partial_ru^r}{\partial_z\omega^r}}|{\rm d}x \doteq I_1^1+I_1^2 \] For the term $I_1^1$, \begin{align*} I_1^1 & \leq \Big\{ \int_{{R}^3}|{u^\theta\cdot\omega^r}|^2{\rm d}x\Big\}^{1/2} \cdot{\|\partial_z\partial_r u^r\|_{L^2}} \quad \text{(H\"older inequality)}\\ &\leq C_\delta\int_{{R}^3}|{u^\theta\cdot\omega^r}|^2{\rm d}x + \delta {\|\partial_z\partial_r u^r\|^2_{L^2}} \quad \text{(Young inequality)}\\ &\leq C_\delta\int_{{R}^3}|{u^\theta\cdot\omega^r}|^2{\rm d}x + \delta {\|\nabla\omega\|^2_{L^2}} \quad \text{(By Lemma \ref{lem2.6})}\\ &\leq C_\delta{\|u^\theta\|^2_{L^\beta}}{\|\omega^r\|^2_{L^{\frac{2\beta}{\beta-2}}}} + \delta {\|\nabla\omega\|^2_{L^2}} \quad \text{(H\"older inequality)}\\ &\leq C_\delta{\|u^\theta\|^2_{L^\beta}} \left\{{\|\omega\|^\theta_{L^2}{\|\nabla\omega\|^{1-\theta}_{L^2}}} \right\}^2 +\delta {\|\nabla\omega\|^2_{L^2}}\\ &\quad \text{(Gagliardo-Nirenberg inequlity and $\theta = 1 - \frac{3}{\beta}$)}\\ &\leq C_\delta {\|u^\theta\|^{\frac{2}{\theta}}_{L^\beta}}{\|\omega\|_{L^2}^2} + 2\delta{\|\nabla\omega\|^2_{L^2}} \quad \text{(Young inequality)} \end{align*} For the term of $I_1^2$, \begin{align*} I_1^2& = \int_{\mathbb{R}^3}{|u^\theta\cdot{\partial_{r}u^r \cdot{\partial_{z}\omega^r}}|}{\rm d}x \\ &\leq \Big\{\int_{\mathbb{R}^3}{|u^\theta\cdot{\partial_{r}u^r}|^2}{\rm d}x \Big\}^{1/2}\cdot{\|{\partial_z\omega^r}\|_{L^2}} \quad {\text{(H\"older inequality)}}\\ &\leq C_\delta\Big\{\int_{\mathbb{R}^3}{|u^\theta\cdot{\partial_{r}u^r}|^2} {\rm d}x\Big\} + \delta{\|{\partial_z\omega^r}\|_{L^2}^2} \quad \text{(Young inequality)}\\ &\leq C_\delta{\|u^\theta\|_{L^\beta}^2}{\|{\partial_{r}u^r\|_{L^{\frac{2\beta} {\beta-2}}}^2}}+\delta{\|{\partial_z\omega^r}\|_{L^2}^2} \quad {\text{(H\"older inequality)}}\\ &\leq C_\delta{\|u^\theta\|_{L^\beta}^2} \Big\{{\|\omega\|_{L^2}^{\theta}}{\|\nabla\omega\|_{L^2}^{1-\theta}}\Big\}^{1/2} +\delta{\|{\partial_z\omega^r}\|_{L^2}^2}\\ &\quad \text{(Gagliardo-Nirenberg inequlity and $\theta = 1 - \frac{3}{\beta}$)}\\ &\leq C_\delta{\|u^\theta\|_{L^\beta}^{\frac{2}{\theta}}} {\|\omega\|_{L^2}^2}+2\delta{\|\nabla\omega\|^2_{L^2}} \quad \text{(Young inequality and Lemma \ref{lem2.6})} \end{align*} Then we obtain \[ |I_1| \leq C_\delta{\|u^\theta\|_{L^\beta}^{\frac{2}{1-{\frac{3}{\beta}}}}} {\|\omega\|_{L^2}^2}+2\delta{\|\nabla\omega\|^2_{L^2}} \] Similarly, one has \begin{align*} |I_{2}|, |I_{3}|, |I_{4}|, |I_{6}|, |I_{7}| \leq C_\delta{\|u^\theta\|_{L^\beta}^{\frac{2}{1-{\frac{3}{\beta}}}}} {\|\omega\|_{L^2}^2}+2\delta{\|\nabla\omega\|^2_{L^2}}. \end{align*} One can see that $I_{5}$ is a difficult term, but we can obtain a term that can be estimated by Lemma \ref{lem2.10}, \begin{align*} |I_{5}| &\leq \int_{\mathbb{R}^3}{|\frac{\omega^\theta}{r}\omega^\theta u^r|}{\rm d}x \leq C{\|u^r\|_{L^2}}(\int_{\mathbb{R}^3}{\frac{(\omega^\theta)^4}{r^2}} {\rm d}x)^{1/2} \quad {\text{(H\"older inequality)}}\\ &\leq C{\|\frac{\omega^\theta}{r}\|_{L^6}} {\|\omega^\theta\|_{L^3}} \leq C{\|\frac{\omega^\theta}{r}\|_{L^6}}{\|\omega^\theta\|_{L^2}^{1/2}} {\|\nabla \omega^\theta\|_{L^2}^{1/2}} \; \text{ (Gagliardo-Nirenberg ineq.)}\\ & \leq C_{\delta}{\|\nabla\frac{\omega^\theta}{r}\|_{L^{2}}^{\frac{4}{3}}} {\|\omega^\theta\|_{L^2}^{\frac{2}{3}}} +\delta{\|\nabla \omega^\theta\|_{L^2}^2} \quad \text{(Young inequality )}\\ &\leq {\|\nabla\frac{\omega^\theta}{r}\|_{L^{2}}^{2}} + C_{\delta}{\|\omega^\theta\|_{L^2}^{2}} +\delta{\|\nabla \omega^\theta\|_{L^2}^2}. \quad \text{(Young inequality )}\\ &\leq\|\nabla\frac{\omega^\theta}{r}\|_{L^{2}}^2 +C_{\delta}{\|\omega\|_{L^2}^{2}}+\delta{\|\nabla \omega\|_{L^2}^2}. \quad \text{(Lemma \ref{lem2.6})}\\ \end{align*} Using integration by parts, one has \begin{align*} I_{8}&=\int_{\mathbb{R}^3}{\omega^z \partial_{z} u^z \omega^z} {\rm d}x = \int_{\mathbb{R}^3} {(\partial_{r}{u^\theta}+\frac{u^\theta}{r}) {\partial_{z}u^z}{\omega^r}}{\rm d}x\\ &= \int_{\mathbb{R}^3}{{\partial_{r}{u^\theta}}{\partial_z\cdot u^z\cdot\omega^r}}{\rm d}x +\int_{\mathbb{R}^3}{{\frac{u^\theta}{r} \cdot{\partial_z{u^z}\cdot\omega^r}}}{\rm d}x\\ & = -\int_{\mathbb{R}^3}{u^\theta\cdot{\partial_r\partial_z u^z}\cdot \omega^r}{\rm d}x -\int_{\mathbb{R}^3}{u^\theta \cdot \partial_z u^z \cdot\partial_r \omega^r}{\rm d}x +\int_{\mathbb{R}^3}{u^\theta \cdot {\partial_z u^z}\cdot{\frac{\omega^r}{r}}}{\rm d}x\\ &:= I_8^1 +I_8^2 +I_8^3 \end{align*} For the term $I_{8}^{1}$, \begin{align*} |I_{8}^{1}| &\leq \int_{\mathbb{R}^3}{|u^\theta\cdot \partial_r \partial_z \cdot\omega^r|}{\rm d}x \leq \Big\{\int_{\mathbb{R}^3}{|u^\theta\cdot \omega^r|^2}{\rm d}x\Big\}^{1/2} {\|\partial_r\partial_z u^z\|_{L^2}} \quad {\text{(H\"older ineq.)}}\\ &\leq C_\delta\int_{\mathbb{R}^3}{|u^\theta\cdot \omega^r|^2}{\rm d}x +\delta{\|\partial_r\partial_z u^z\|_{L^2}} \quad \text{(Young inequality )}\\ &\leq C_\delta {\|u^\theta\|_{L^\beta}^2}{\|\omega\|_{\frac{2\beta}{\beta-2}}^2} +\delta{\|\nabla\omega\|_{L^2}^2} \quad \text{(H\"older inequality and Lemma \ref{lem2.7})}\\ &\leq C_\delta {\|u^\theta\|_{L^\beta}^2} \left\{{\|\omega\|_{L^2}^\theta}{\|\nabla\omega\|_{L^2}^{1-\theta}}\right\}^{2} +\delta{\|\nabla\omega\|_{L^2}^2} \quad \text{(Gagliardo-Nirenberg inequlity )}\\ &\leq C_\delta{\|u^\theta\|_{L^\beta}^{\frac{2}{\theta}}}{\|\omega\|_{L^2}^2} +2\delta{\|\nabla\omega\|_{L^2}^2} \quad \text{(Young inequality )} \end{align*} The quantities $|I_{8}^{2}|$, $|I_{8}^{3}|$ can be estimated similarly to $|I_{8}^{1}|$. Putting together the above estimates, and taking $\delta$ small enough, then one have \[ \frac{d}{dt}\|{\omega}\|_{L^2}^2+ \|{\nabla \omega}\|_{L^2}^2 \leq C\Big\{1+{\|u^\theta\|_{L^\beta}^{\frac{2}{1-\frac{3}{\beta}}}} \Big\} {\|\omega\|_{L^2}^2} + C{\|\nabla\frac{\omega^\theta}{r}\|_{L^2}^2} \] Using Gronwall's inequality, we have \begin{align*} &{\|\omega\|_{L^\infty((0,T);L^2)}^2}+{\|\nabla\omega\|_{L^2((0,T);L^2)}^2} \\ &\leq C\big\{{\|\omega_{0}\|_{L^2}^2}+{\|\nabla\frac{\omega^\theta}{r}\|_{L^2 (0, T; L^{2})}^{2}}\big\} \exp\Big\{C + C\int_{0}^{T}{\|u^\theta\|_{L^\beta}^{\frac{2\beta}{\beta-3}}}{\rm d}t \Big\}. \end{align*} Therefore, combining with Lemma \ref{lem2.11} then we completes the proof of Theorem \ref{thm1.1}. \end{proof} \begin{thebibliography}{99} \bibitem{BT} M. Badiale, G. Tarantello; \emph{A {S}obolev-{H}ardy inequality with applications to a nonlinear elliptic equation arising in astrophysics}, {Arch. Ration. Mech. Anal.} 163 (2002), 259--293. \bibitem{CL} D. Chae, J. Lee; \emph{On the regularity of the axisymmetric solutions of the {N}avier-{S}tokes equations}, {Math. Z.} 239 (2002), 645--671. \bibitem{CF} P. Constantin, C. Foias; \emph{Navier-{S}tokes equations}, {Chicago Lectures in Mathematics}. {University of Chicago Press, Chicago}, 1988. \bibitem{ZC} H. Chen, D. Fang, T. Zhang; \emph{Regularity of 3D axisymmetric Navier-Stokes equations}. arXiv:1505.00905 [math.AP] \bibitem{F} C. L. Fefferman; \emph{Existence and smoothness of the {N}avier-{S}tokes equation}, {The millennium prize problems}, {Clay Math. Inst., Cambridge, MA} (2006), 57--67. \bibitem{JN} J. Neustupa, M. Pokorn{\'y}; \emph{Axisymmetric flow of {N}avier-{S}tokes fluid in the whole space with non-zero angular velocity component}, {Math. Bohem.} {126} {(2001)}, {469--481}. \bibitem{LMNP} S. Leonardi, J. M{\'a}lek, J. Ne{\v{c}}as, M. Pokorn{\'y}; \emph{On axially symmetric flows in $\mathbb{R}^3$}, Z. Anal. Anwendungen 18 (1999), 639--649. \bibitem{MB} A. J. Majda, A. L. Bertozzi; \emph{Vorticity and incompressible flow}, {Cambridge Texts in Applied Mathematics}, {27}, {Cambridge University Press, Cambridge}, 2002. \bibitem{MZ} C. Miao, X. Zheng; \emph{Global well-posedness for axisymmetric {B}oussinesq system with horizontal viscosity}, {J. Math. Pures Appl.} 101 (2014), 842--872. \bibitem{UY} M. R. Ukhovskii, V. I. Iudovich; \emph{Axially symmetric flows of ideal and viscous fluids filling the whole space}, {J. Appl. Math. Mech.} {32} {(1968)}, {52--61}. \bibitem{ZZ} P. Zhang, T. Zhang; \emph{Global axisymmetric solutions to three-dimensional {N}avier-{S}tokes system}, {Int. Math. Res. Not. IMRN} {3} (2014), 610--642. \bibitem{YZ} Y. Zhou; \emph{A new regularity criterion for weak solutions to the Navier-Stokes equations}, J. Math. Pures Appl. (9) 84 (2005), 1496--1514. \bibitem{YZ1} Y. Zhou, M. Pokorn\'y; \emph{On a regularity criterion for the {N}avier-{S}tokes equations involving gradient of one velocity component}, {J. Math. Phys.} 50 (2009), {123514, 11} \bibitem{YZ2} Y. Zhou, M. Pokorn\'y; \emph{On the regularity of the solutions of the {N}avier-{S}tokes equations via one velocity component}, {Nonlinearity}, 23 (2010), 1097--1107 \end{thebibliography} \end{document}