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MULTIPLE SOLUTIONS FOR FRACTIONAL
SCHRÖDINGER EQUATIONS

HONGXIA SHI, HAIBO CHEN

Abstract. In this article we study the fractional Schrödinger equations

(−∆)αu+ V (x)u = f(x, u) in RN ,
where 0 < α < 1, N ≥ 2, (−∆)α stands for the fractional Laplacian of order
α. First by using Morse theory in combination with local linking arguments,

we prove the existence of at least two nontrivial solutions. Next we prove that

the problem has k distinct pairs of solutions by using the Clark theorem.

1. Introduction and main results

In this article, we consider the fractional Schrödinger equation

(−∆)αu+ V (x)u = f(x, u) in RN , (1.1)

where 0 < α < 1, N ≥ 2, (−∆)α stands for the fractional Laplacian of order α,
V ∈ C(RN ,R) and f ∈ C(RN × R,R).

When α = 1, (1.1) becomes the classical Schrödinger equation

−∆u+ V (x)u = f(x, u) in RN . (1.2)

In recent years, the existence and multiplicity of standing wave solutions of (1.2)
have been widely studied, we refer the readers to [12, 18, 25, 26, 27, 28] and the
references therein.

When 0 < α < 1, (1.1) is a nonlocal model known as nonlinear fractional
Schrödinger equation. The nonlocal model has attracted much attentions recently.
For the case of a bounded domain, Ricceri [19] established a theorem tailor-made
for a class of nonlocal problems involving nonlinearities with bounded primitive. In
[9], Molica Bisci and Repovš studied a class of nonlocal fractional Laplacian equa-
tions depending on two real parameters and obtained the existence of three weak
solutions by exploiting the result established by Ricceri in [19]. For more related
results, we refer the readers to [7, 8] and the references therein.

Equations of the form (1.1) in the whole space RN were studied by a number of
authors. See, for instance, [2, 4, 6, 20, 21, 22, 29] and the references therein. Felmer,
Quaas and Tan [6] studied the existence and regularity of positive solution of (1.1)
with V (x) ≡ 1 for general s ∈ (0, 1) when f has subcritical growth and satisfies

2000 Mathematics Subject Classification. 35B38, 35G99.
Key words and phrases. Fractional Schrödinger equations; variational methods;
Morse theory; local linking.
c©2015 Texas State University - San Marcos.

Submitted November 16, 2014. Published January 27, 2015.

1



2 H. SHI, H. CHEN EJDE-2015/25

the Ambrosetti-Rabinowitz((AR) for short) condition. Secchi [20] obtained the
existence of ground state solutions of (1.1) for general s ∈ (0, 1) when V (x)→ +∞
as |x| → +∞ and (AR) condition holds. In [4], the authors looked for radially
symmetric solutions of (1.1) when V and f do not depend explicitly on the space
variable x. In [29], the authors obtained the existence of infinitely many weak
solutions for (1.1) by variant fountain theorem established by Zou in [30] when f
has subcritical growth.

On the other hand, Morse theory and local linking theorem are powerful tools
in modern nonlinear analysis [3, 10, 24], especially for the problems with resonance
[11, 23]. However, there are no existed papers dealing with the existence of solutions
for fractional Schrödinger equations by using Morse theory.

Motivated by the above facts, the goal of this paper is to consider the multiplicity
of nontrivial solutions for problem (1.1). Under some natural assumptions, by using
Morse theory in combination with local linking arguments, the existence results of
at least two nontrivial solutions are obtained. Next we prove that the problems
have k distinct pairs of solutions by using the Clark theorem. It is worthy stressing
that we will use a more general assumption on V (x), which extend some recent
results from the literature.

Next we state our main results, using the following assumptions:
(V1) V ∈ C(RN ,R) and β := infRN V (x) > 0.
(F1) There exist constants 1 < γ1 < γ2 < · · · < γm < 2 and positive functions

ξ1(x) ∈ L
2

2−γ1 (RN ,R), . . . , ξm(x) ∈ L
2

2−γm (RN ,R) such that

|f(x, u)| ≤ γ1ξ1(x)|u|γ1−1 + · · ·+ γmξm(x)|u|γm−1, ∀(x, u) ∈ RN × R.
(F2) There exist c1 > 0, 0 < c2 <

1
2S2

2
, 1 < γ < 2 and small constants 0 < r < r0,

such that

c2|u|2 > F (x, u) ≥ c1|u|γ , r ≤ |u| ≤ r0 a.e. x ∈ RN ,
where S2 is the Sobolev constant from Hα(RN ) to L2(RN ); furthermore,
in the sequel F (x, u) =

∫ u
0
f(x, s)ds.

(F3) f(x,−u) = −f(x, u).

Theorem 1.1. Assume that the potential V (x) and the nonlinearity f(x, u) satisfy
(V1), (F1)–(F2). Then problem (1.1) has at least two nontrivial solutions..

Theorem 1.2. Assume that (V1), (F1)–(F3) are satisfied. Then problem (1.1) has
at least k distinct pairs of solutions.

The remainder of this article is organized as follows. In Section 2, some prelim-
inary results are presented. In Section 3, we give the proof of our main results.

2. Variational setting and preliminaries

In this section, we collect some information to be used later. We will denote
either by û or by Fu the usual Fourier transform of u.

Sobolev spaces of fractional order are the convenient setting for our equations.
A complete introduction to fractional Sobolev spaces can be found in [5], we offer
below a short review. We recall that the fractional Sobolev space Wα,p(RN ) is
defined for any p ∈ [1,+∞) and α ∈ (0, 1) as

Wα,p(RN ) =
{
u ∈ Lp(RN ) :

∫
RN

|u(x)− u(y)|p

|x− y|αp+N
dx dy <∞

}
.
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This space is endowed with the Gagliardo norm

‖u‖Wα,p =
(∫

RN
|u|p dx+

∫
RN

|u(x)− u(y)|p

|x− y|αp+N
dx dy

)1/p

.

When p = 2, these spaces are also denoted by Hα(RN ).
If p =2, an equivalent definition of fractional Sobolev spaces is possible, based

on Fourier analysis. Indeed, it turns out that

Hα(RN ) =
{
u ∈ L2(RN ) :

∫
RN

(1 + |ξ|2α)|û|2dξ <∞
}
,

and the norm can be equivalently written by

‖u‖Hα =
(
‖u‖22 +

∫
RN
|ξ|2α|û|2dξ

)1/2

.

Furthermore, we know that ‖ · ‖Hα is equivalent to the norm

‖u‖Hα =
(∫

RN
(|(−∆)α/2u|2 + u2) dx

)1/2

.

In this article, in view of the potential V (x), we consider its subspace

E =
{
u ∈ Hα(RN ) :

∫
RN

V (x)u2 dx <∞
}
.

Then, by [20], E is a Hilbert space with the inner product

(u, v)E =
∫

RN
(|ξ|2αû(ξ)v̂(ξ) + û(ξ)v̂(ξ))dξ +

∫
RN

V (x)u(x)v(x) dx, ∀u, v ∈ E,

and the norm

‖u‖E =
(∫

RN
(|ξ|2αû2 + û2)dξ +

∫
RN

V (x)u2 dx
)1/2

.

Furthermore, we know that ‖ · ‖E is equivalent to the norm

‖u‖ =
(∫

RN
(|(−∆)α/2u|2 + V (x)u2) dx

)1/2

.

The corresponding inner product is

(u, v) =
∫

RN
((−∆)α/2u(x)(−∆)α/2v(x) + V (x)u(x)v(x)) dx.

Throughout out this paper, we use the norm ‖ · ‖ in E.
As usual, for 1 ≤ p < +∞, we let

‖u‖p =
(∫

RN
|u(x)|p dx

)1/p

, u ∈ Lp(RN ),

‖u‖∞ = ess supx∈RN |u(x)|, u ∈ L∞(RN ).

To prove our results, the following compactness result is necessary.

Lemma 2.1 ([13]). E is continuously embedded into Lp(RN ) for 2 ≤ p ≤ 2∗α and
compactly embedded into Lploc(RN ) for 2 ≤ p < 2∗α with 2∗α = 2N

N−2α .

It follows directly from the Lemma 2.1 that there are constants Sp > 0 such that

‖u‖p ≤ Sp‖u‖, ∀u ∈ E, p ∈ [2, 2∗α].
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Lemma 2.2. Assume that (V1), (F1) hold. Then the functional Φ : E → R defined
by

Φ(u) =
1
2
‖u‖2 −

∫
RN

F (x, u(x)) dx (2.1)

is well defined and of class C1(E,R) and

(Φ′(u), v) = (u, v)−
∫

RN
f(x, u(x))v(x) dx. (2.2)

Furthermore, the critical points of Φ in E are solutions of problem (1.1).

Proof. From (F1), one has

|F (x, u)| ≤ ξ1(x)|u(x)|γ1 + · · ·+ ξm(x)|u(x)|γm , ∀(x, u) ∈ RN × R. (2.3)

For any u ∈ E, from (V1), (2.3) and the Hölder inequality, it follows that∫
RN
|F (x, u)| dx ≤

∫
RN

[ξ1(x)|u(x)|γ1 + · · ·+ ξm(x)|u(x)|γm ] dx

≤
m∑
i=1

β−γi/2
(∫

RN
|ξi(x)|

2
2−γi dx

) 2−γi
2
(∫

RN
V (x)|u(x)|2 dx

)γi/2
≤

m∑
i=1

β−γi/2‖ξi‖ 2
2−γi
‖u‖γi ,

and so Φ defined by (2.1) is well defined on E.
Next, we prove that (2.2) holds. For any function θ : R → (0, 1), by (F1) and

the Hölder inequality, we have∫
RN

max
t∈[0,1]

|f(x, u(x) + tθ(x)v(x))v(x)| dx

≤
∫

RN
max
t∈[0,1]

|f(x, u(x) + tθ(x)v(x))||v(x)| dx

≤
m∑
i=1

γi

∫
RN

ξi(x)(|u(x)|+ |v(x)|)γi−1|v(x)| dx

≤
m∑
i=1

γi

∫
RN

ξi(x)(|u(x)|γi−1 + |v(x)|γi−1)|v(x)| dx

≤
m∑
i=1

γiβ
−γi/2

(∫
RN
|ξi(x)|

2
2−γi dx

) 2−γi
2
(∫

RN
V (x)|u(x)|2 dx

) γi−1
2

×
(∫

RN
V (x)|v(x)|2 dx

)1/2

+
m∑
i=1

γiβ
−γi/2

(∫
RN
|ξi(x)|

2
2−γi dx

) 2−γi
2
(∫

RN
V (x)|u(x)|2 dx

)γi/2
≤

m∑
i=1

γiβ
−γi/2‖ξi‖ 2

2−γi
(‖u‖γi−1 + ‖v‖γi−1)‖v‖ < +∞.

(2.4)
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Then by the above inequality, (2.1) and the Lebesgue’s Dominated Convergence
Theorem, we have

(Φ′(u), v) = lim
t→0+

Φ(u+ tv)− Φ(u)
t

= lim
t→0+

1
t

{‖u+ tv‖2 − ‖u‖2

2
−
∫

RN
[F (x, u(x) + tv(x))− F (x, u(x))] dx

}
= lim
t→0+

[
(u, v) +

t‖v‖2

2
−
∫

RN
f(x, u(x) + tθ(x)v(x))v(x) dx

]
= (u, v)−

∫
RN

f(x, u(x))v(x) dx.

This shows that (2.2) holds. Furthermore, by a standard argument, it is easy to
show that the critical points of Φ in E are solutions of problem (1.1) (see[16]).

Let us prove that Φ′ is continuous. Let uk → u in E, then uk → u in L2(RN ),
and so

lim
k→∞

uk(x) = u(x), a.e. x ∈ RN . (2.5)

We claim that

lim
k→∞

∫
RN
|f(x, uk(x))− f(x, u(x))|2 dx = 0. (2.6)

Indeed, if it is not true, then there exists a constant ε > 0 and a subsequence uki
such that ∫

RN
|f(x, uki(x))− f(x, u(x))|2 dx ≥ ε, ∀i ∈ N. (2.7)

Since uk → u in L2(RN ), passing to a subsequence if necessary, it can be assumed
that

∑∞
i=1 ‖uki − u‖22 < +∞. Set ω(x) =

[∑∞
i=1 |uki(x)− u(x)|2

]1/2, x ∈ RN .
Then ω ∈ L2(RN ). Note that

|f(x, uki(x))− f(x, u(x))|2

≤ 2|f(x, uki(x))|2 + 2|f(x, u(x))|2

≤ 4γ2
1 |ξ1(x)|2

[
|uki(x)|2(γ1−1) + |u(x)|2(γ1−1)

]
+ · · ·+ 4γ2

m|ξm(x)|2
[
|uki(x)|2(γm−1) + |u(x)|2(γm−1)

]
≤

m∑
j=1

(4γj + 4)γ2
j |ξj(x)|2

[
|uki(x)− u(x)|2(γj−1) + |u(x)|2(γj−1)

]
≤

m∑
j=1

(4γj + 4)γ2
j |ξj(x)|2

[
|ω(x)|2(γj−1) + |u(x)|2(γj−1)

]
:= g(x), ∀i ∈ N, x ∈ RN

(2.8)

and∫
RN

g(x) dx =
m∑
j=1

(4γj + 4)γ2
j

∫
RN
|ξj(x)|2

[
|ω(x)|2(γj−1) + |u(x)|2(γj−1)

]
dx

≤
m∑
j=1

(4γj + 4)γ2
j ‖ξj‖2 2

2−γj

(
‖ω‖2(γj−1)

2 + ‖u‖2(γj−1)
2

)
< +∞.

(2.9)
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Then by (2.5), (2.8), (2.9) and the Lebesgue’s Dominated Convergence Theorem,
we have

lim
i→∞

∫
RN
|f(x, uki(x))− f(x, u(x))|2 dx = 0,

which contradicts (2.7). Hence (2.6) holds. From (2.2), (2.6) and the Hölder in-
equality, we have

|(Φ′(uk)− Φ′(u), v)|

=
∣∣∣(uk − u, v)−

∫
RN

[f(x, uk(x))− f(x, u(x))]v(x) dx
∣∣∣

≤ ‖uk − u‖‖v‖+
∫

RN
|f(x, uk(x))− f(x, u(x))||v(x)| dx

≤ ‖uk − u‖‖v‖+ β
−1
2

(∫
RN
|f(x, uk(x))− f(x, u(x))|2 dx

)1/2

‖v‖ = o(1),

as k → +∞, which implies the continuity of Φ′. The proof is complete. �

We will use Morse theory in combination with local linking arguments to obtain
the critical points of Φ. Now, it is necessary to recall the following definitions and
results.

Definition 2.3. Let E be a real reflexive Banach space. We say that Φ satisfies
the (PS)-condition, i.e. every sequence {un} ⊂ E satisfying Φ(un) bounded and
limn→∞ Φ′(un) = 0 contains a convergent subsequence.

Let E be a real Banach space and Φ ∈ C1(E,R). K = {u ∈ E : Φ′(u) = 0},
then the qth critical group of Φ at an isolated critical point u ∈ K with Φ(u) = c
is defined by

Cq(Φ, u) := Hq(Φc ∩ U,Φc ∩ U \ {u}), q ∈ N := {0, 1, 2, . . . },

where Φc = {u ∈ E : Φ(u) ≤ c}, U is a neighborhood of u, containing the unique
critical point, H∗ is the singular relative homology with coefficient in an Abelian
group G.

We say that u ∈ E is a homological nontrivial critical point of Φ if at least one of
its critical groups is nontrivial. Now, we present the following propositions which
will be used later.

Proposition 2.4 ([15, Proposition 2.1]). Assume that Φ has a critical point u = 0
with Φ(0) = 0. Suppose that Φ has a local linking at 0 with respect to E = V ⊕W ,
k = dimV <∞; that is, there exists ρ > 0 small such that

Φ(u) ≤ 0, u ∈ V, ‖u‖ ≤ ρ;

Φ(u) > 0, u ∈W, 0 < ‖u‖ ≤ ρ.

Then Ck(Φ, 0) � 0, hence 0 is a homological nontrivial critical point of Φ.

Proposition 2.5 ([15, Theorem 2.1]). Let E be a real Banach space and let Φ ∈
C1(E,R) satisfy the (PS)-condition and is bounded from below. If Φ has a critical
point that is homological nontrivial and is not a minimizer of Φ, then Φ has at least
three critical points.
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Proposition 2.6 ([17, Theorem 9.1]). Let E be a real Banach space, Φ ∈ C1(E,R)
with Φ even, bounded from below, and satisfying (PS)-condition. Suppose Φ(0) = 0,
there is a set K ⊂ E such that K is homeomorphic to Sj−1 by an odd map, and
supK Φ < 0. Then Φ possesses at least j distinct pairs of critical points.

3. Proof of main results

In this section, we prove Theorems 1.1 and 1.2. To this end we need the following
lemmas.

Lemma 3.1. Suppose that Φ satisfies (V1) and (F1), then Φ satisfies the (PS)-
condition.

Proof. We first prove that Φ is coercive. By (2.1), (2.3) and the Hölder inequality,
we have

Φ(u) =
1
2
‖u‖2 −

∫
RN

F (x, u(x)) dx

≥ 1
2
‖u‖2 −

m∑
i=1

∫
RN

ξi(x)|u(x)|γi dx

≥ 1
2
‖u‖2 −

m∑
i=1

β−γi/2
(∫

RN
|ξi(x)|

2
2−γi dx

) 2−γi
2
(∫

RN
V (x)|u(x)|2 dx

)γi/2
≥ 1

2
‖u‖2 −

m∑
i=1

β−γi/2‖ξi‖ 2
2−γi
‖u‖γi .

(3.1)
Since 1 < γ1 < · · · < γm < 2, (3.1) implies that Φ(u)→ +∞ as ‖u‖ → +∞.

Next, we prove that Φ satisfies the (PS)-condition. Assume that {uk} ⊂ E is
a sequence such that {Φ(uk)} is bounded and Φ′(uk) → 0 as k → +∞. Then by
(3.1), there exists a constant M > 0 such that

‖uk‖ ≤M, ∀k ∈ N. (3.2)

Going if necessary to a subsequence we can assume that uk ⇀ u0 in E. For any
given number ε > 0, by (F1), we can choose Rε > 0 such that(∫

|x|>Rε
|ξi(x)|

2
2−γi

) 2−γi
2

< ε, i = 1, 2, . . . , n. (3.3)

Since the embedding of E ↪→ L2
loc(RN ) is compact, then

uk → u0, in L2
loc(RN ),

and hence,

lim
k→∞

∫
|x|≤Rε

|uk(x)− u0(x)|2 dx = 0. (3.4)

By (3.4), there exists k0 ∈ N such that∫
|x|≤Rε

|uk(x)− u0(x)|2 dx < ε2, for k ≥ k0. (3.5)
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Hence, by (F1), (3.2), (3.5) and the Hölder inequality, for any k ≥ k0 we have∫
|x|≤Rε

|f(x, uk(x))− f(x, u0(x))||uk(x)− u0(x)| dx

≤
(∫
|x|≤Rε

|f(x, uk(x))− f(x, u0(x))|2 dx
)1/2(∫

|x|≤Rε
|uk(x)− u0(x)|2 dx

)1/2

≤
[ ∫
|x|≤Rε

2(|f(x, uk(x))|2 + |f(x, u0(x))|2) dx
]1/2

ε

≤ 2
[ m∑
i=1

γ2
i

∫
|x|≤Rε

|ξi(x)|2(|uk(x)|2(γi−1) + |u0(x)|2(γi−1)) dx
]1/2

ε

≤ 2
[ m∑
i=1

γ2
i ‖ξi‖2 2

2−γi
(‖uk‖2(γi−1)

2 + ‖u0‖2(γi−1)
2 )

]1/2
ε

≤ 2
[ m∑
i=1

γ2
i ‖ξi‖2 2

2−γi
(M2(γi−1) + ‖u0‖2(γi−1)

2 )
]1/2

ε.

(3.6)
On the other hand, for k ∈ N, it follows from (F1), (3.2), (3.3) and the Hölder
inequality that∫

|x|>Rε
|f(x, uk(x))− f(x, u0(x))||uk(x)− u0(x)| dx

≤
m∑
i=1

γi

∫
|x|>Rε

|ξi(x)|(|uk(x)|γi−1 + |u0(x)|γi−1)(|uk(x)|+ |u0(x)|) dx

≤ 2
m∑
i=1

γi

∫
|x|>Rε

|ξi(x)|(|uk(x)|γi + |u0(x)|γi) dx

≤ 2
m∑
i=1

γi

(∫
|x|>Rε

|ξi(x)|
2

2−γi dx
) 2−γi

2
(‖uk‖γi2 + ‖u0‖γi2 )

≤ 2
m∑
i=1

γi

(∫
|x|>Rε

|ξi(x)|
2

2−γi dx
) 2−γi

2
(Mγi + ‖u0‖γi2 )

≤ 2
m∑
i=1

γi(Mγi + ‖u0‖γi2 )ε.

(3.7)

Since ε is arbitrary, combining (3.6) with (3.7), one has∫
RN

[f(x, uk(x))− f(x, u0(x))][uk(x)− u0(x)] dx→ 0 (3.8)

as k →∞. It follows from (2.2) that

(Φ′(uk)− Φ′(u0), uk − u0)

= ‖uk − u0‖2 −
∫

RN
[f(x, uk(x))− f(x, u0(x))][uk(x)− u0(x)] dx.

(3.9)

In view of the definition of weak convergence, we have

(Φ′(uk)− Φ′(u0), uk − u0) = 0. (3.10)
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It follows from (3.8)-(3.10) that

uk → u0 in E.

Hence, Φ satisfies the (PS)-condition. �

We choose an orthogonal basis {ej} of E and define Xj := span{ej}, j = 1, 2, . . . ,
Yk := ⊕kj=1Xj , Zk = ⊕∞j=k+1Xj , then E = Yk ⊕ Zk.

Lemma 3.2. Suppose that the conditions of Theorem 1.1 are satisfied, then there
exists k0 ∈ N such that Ck0(Φ, 0) � 0.

Proof. It follows from (F1) that the zero function is a critical point of Φ. So we
only need to prove that Φ has a local linking at 0 with respect to E = Yk ⊕ Zk.
Step 1: Take u ∈ Yk, since Yk is finite dimensional, we have that for given r0,
there exists 0 < ρ < 1 small such that

u ∈ Yk, ‖u‖ ≤ ρ⇒ |u| < r0, x ∈ RN

For 0 < r < r0, let Ω1 = {x ∈ RN : |u(x)| < r}, Ω2 = {x ∈ RN : r ≤ |u(x)| ≤ r0},
Ω3 = {x ∈ RN : |u(x)| > r0}, then RN =

⋃3
i=1 Ωi. For the sake of simplicity, let

G(x, u) = F (x, u)− c1|u|γ . Therefore, form (F2) it follows that

Φ(u) =
1
2
‖u‖2 −

∫
RN

c1|u|γ dx−
(∫

Ω1

+
∫

Ω2

+
∫

Ω3

)
G(x, u) dx

≤ 1
2
‖u‖2 −

∫
RN

c1|u|γ dx−
∫

Ω1

G(x, u) dx.

Note that the norms on Yk are equivalent to each other, ‖u‖γ is equivalent to
‖u‖ and

∫
Ω1
G(x, u) dx → 0 as r → 0. Since 0 < γ < 2, then Φ(u) ≤ 0, for all

u ∈ Yk with ‖u‖ ≤ ρ.
Step 2: Take u ∈ Zk, since the embedding E ↪→ Lp is continuous, we have that
for given r0, there exists 0 < ρ < 1 small such that

u ∈ Zk, ‖u‖ ≤ ρ⇒ |u| < r0, x ∈ RN .
Therefore, it follows from (F2) that

Φ(u) ≥ 1
2
‖u‖2 −

∫
RN

c2|u|2 dx >
1
2
‖u‖2 − 1

2
‖u‖2 = 0.

Therefore, by Proposition 2.4, the proof is complete. �

Proof of Theorem 1.1. By Lemma 3.1, Φ satisfies the (PS)-condition and is bounded
from below. By Lemma 3.2 and Proposition 2.4, the trivial solution u = 0 is homo-
logical nontrivial and is not a minimizer. Then Theorem 1.1 follows immediately
from Proposition 2.5. �

Proof of Theorem 1.2. By (F3), we can easily check that the functional Φ is even.
Lemma 3.1 shows that Φ satisfies the (PS)-condition and is bounded from below.
For ρ > 0, let K = Sρ = {u ∈ Yk : ‖u‖ = ρ}. Thus, just as shown in the proof of
Lemma 3.2, if ρ > 0 is small enough, we have that

sup
K

Φ(u) ≤ 0.

By the definition of Yk, we have dimYk = k, then by Proposition 2.6, we have that
Φ has at least k distinct pairs of critical points. Therefore, problem (1.1) has at
least k distinct pairs of solutions. �
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[9] G. Molica Bisci, D. Repovš; Higher nonlocal problems with bounded potential, J. Math.
Anal. Appl. 420(1) (2014) 167-176.

[10] M. Jiang, M. Sun; Some qualitative results of the critical groups for the p-Laplacian equations,

Nonlinear Analysis: TMA 75 (2012) 1778-1786.
[11] K. Li, S. Wang, Y. Zhao; Multiple periodic solutions for asymptotically linear Duffing equa-

tions with resonance (II), J. Math. Anal. Appl. 397 (2013) 156-160.

[12] Y. Q. Li, Z. Q. Wang, J. Zeng; Ground states of nonlinear Schrödinger equations with po-
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[17] P. H. Rabinowitz; Minimax Methods in Critical Point Theory with Applicaions to Differential

Equations, in: CBMS Reg. Conf. Ser. in Math., Vol. 65, Amer. Math. Soc., Providence, RI,

1986.
[18] P. H. Rabinowitz; On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys. 43

(1992) 270-291.

[19] B. Ricceri; A multiplicity result for nonlocal problems involving nonlinearities with bounded
primitive, Studia Univ. Babes-Bolyai Math. 55 (2010) 107-114.

[20] S. Secchi; Ground state solutions for nonlinear fractional Schrödinger equations in RN , J.
Math. Phys. 54 (2013) 031501.

[21] S. Secchi; On fractional Schrödinger equations in RN without the Ambrosetti-Rabinowitz

condition, (2014) arXiv:1210.0755v2.
[22] X. Shang, J. Zhang; Ground states for fractional Schrödinger equations with critical growth,

Nonlinearity 27 (2014) 187-207.
[23] J. B. Su; Semilinear elliptic boundary value problems with double resonance between two

consecutive eigenvalues, Nonlinear Analysis 48 (2002) 881-895.
[24] M. Sun; Multiplicity of solutions for a class of the quasilinear elliptic equations at resonance,

J. Math. Anal. Appl. 386 (2012) 661-668.
[25] A. Szulkin, T. Weth; Ground state solutions for some indefinite variational problems, J.

Funct. Anal. 257 (2009) 3802-3822.

[26] X. H. Tang; Infinitely many solutins for semilinear Schrödinger equation with sign-changing
potential and nonlinearity, J. Math. Anal. Appl. 401 (2013) 407-415.



EJDE-2015/25 MULTIPLE SOLUTIONS 11

[27] X. H. Tang; New conditions on nonlinearity for a periodic Schrödinger equation having zero

as spectrum, J. Math. Anal. Appl. 413 (2014) 392-410.

[28] X. H. Tang; New super-quadratic conditions on ground state solutions for superlinear
Schrödinger equation, Adv. Nonlinear Studies 14 (2014) 349-361.

[29] D. Wei, J. Xu, Z. Wei; Infinitely many weak solutions for a fractional Schrödinger equation,

Boundary Value Problems (2014) 2014:159.
[30] W. M. Zou; Zou, Variant fountain theorems and their applications, Manuscripta Math. 104

(2001) 343-358.

Hongxia Shi
School of Mathematics and Statistics, Central South University, Changsha, 410083

Hunan, China

E-mail address: shihongxia5617@163.com

Haibo Chen (corresponding author)

School of Mathematics and Statistics, Central South University, Changsha, 410083

Hunan, China
E-mail address: math chb@163.com


	1. Introduction and main results
	2. Variational setting and preliminaries
	3. Proof of main results
	Acknowledgments

	References

