\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2015 (2015), No. 249, pp. 1--14.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2015 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2015/249\hfil Mutualistic models with double fronts] {Existence of global solutions to a mutualistic model with double fronts} \author[M. Li, L. Lin \hfil EJDE-2015/249\hfilneg] {Mei Li, Lin Lin} \address{Mei Li \newline School of Mathematical Science, Nanjing Normal University, Nanjing 210023, China. \newline School of Applied Mathematics, Nanjing University of Finance and Economics, Nanjing 210023, China} \email{limei@njue.edu.cn} \address{Lin Lin \newline School of Mathematical Science, Nanjing Normal University, Nanjing 210023, China} \email{linlin@njnu.edu.cn} \thanks{Submitted December 14, 2014. Published September 25, 2015.} \subjclass[2010]{35R35, 35K60} \keywords{Mutualistic model; free boundary; grow-up solution; \hfill\break\indent global fast solution; global slow solution} \begin{abstract} We study a system of semilinear parabolic equations with two free boundaries describing the spreading fronts of the invasive species in a mutualistic ecological model. We establish the existence and uniqueness of a local classical solution and then study the asymptotic behavior of the free boundary problem. The results indicate that two free boundaries tend monotonically to finite values at the same time, or to infinite simultaneously. Also the free boundary problem admits a global slow solution with unbounded free boundaries if the geometric average of the interaction coefficients is less than 1, while if it is bigger than 1 there exist the grow-up solution and global fast solution with bounded free boundaries. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}[theorem]{Remark} \newtheorem{definition}[theorem]{Definition} \allowdisplaybreaks \section{Introduction} Free boundary problems associated with the ecological models have attracted considerable research attention in the past because of their relevance in applications. For example, Lin \cite{LIN} introduced the free boundary in a predator-prey model. Du and Lou \cite{DL3} considered a two free boundaries problem with a general nonlinear term. Wang and Zhao \cite{Wa, WZ} studied the Lotka-Volterra type prey-predator model. While Lotka-Volterra type competition models had been discussed by Du and Lin \cite{DL1}, and Guo and Wu \cite{GW}. Some free boundary problems describing tumor growth had been considered by Tao and Xu \cite{TY, XS}. For the mutualistic model, Kim and Lin \cite{KLL} studied the free boundary problem \begin{gather} u_{t}-d_1 u_{xx}=u(a_1-b_{1}u+c_{1}v),\quad t>0, \; 00, \; 00, \; x=h(t), \nonumber\\ \frac{\partial u} {\partial x}(t,0)=\frac{\partial v} {\partial x}(t,0)=0,\quad t>0, \nonumber\\ h(0)=b, \quad (00, \; 00, \; x=h(t), \\ \frac{\partial u}{\partial x}(t, 0)=u(0, h(t))=0,\quad t>0,\\ h(0)=b, \quad (01$, the solution would grow up, which means that it becomes infinite as the time goes to infinity, while if $\alpha_1\alpha_2<1$ there is an unique positive equilibrium $(\frac{K_1+\alpha_1K_2}{1-\alpha_1\alpha_2}, \frac{K_2+\alpha_2K_1}{1-\alpha_1\alpha_2})$. Linearization and spectrum analysis shows that the unique positive equilibrium is locally asymptotically stable, and it is globally asymptotically stable in the positive quadrant by constructing the Lyapunov function. Motivated by the former work, we study the following mutualistic model with double fronts, \begin{equation} \begin{gathered} \frac{\partial u}{\partial t}=a\frac{\partial^2u}{\partial x^2} +r_1u(1-\frac{u}{K_1+\alpha_1v}),\quad t>0, \; g(t)0, \; -\infty0, \; x\leq g(t) \text{ or } x\geq h(t),\\ g(0)=-h_0,\quad g'(t)=-\mu \frac{\partial u}{\partial x}(t, g(t)), \quad t>0, \\ h(0)=h_0, \quad h'(t)=-\mu \frac{\partial u}{\partial x}(t, h(t)), \quad t>0,\\ u(0,x)=u_0(x),\quad v(0,x)=v_0(x),\quad -\infty 0,\quad x\in (-h_0, h_0), \\ v_0\in C^2(-\infty, \infty)\cap L^\infty (-\infty, \infty), \quad v_0(x)=0,\; x\in (-\infty, -h_0] \cup [h_0, \infty). \end{gathered} \label{Ae1} \end{equation} The paper is organized as follows. In the next section, existence and uniqueness of local solutions for two free boundaries problem \eqref{a3} is established by using contraction mapping theorem. Results relating to global slow solution for $\alpha_1\alpha_2<1$ are presented in Section 3. In Section 4, the grow-up solution and global fast solution for $\alpha_1\alpha_2>1$ are established. We end this section by recalling two definitions which will be used in next sections. \begin{definition}[\cite{SP1,SP2}] \rm A solution $(u, v; g, h)$ of \eqref{a3} is said to be classical if $u\in C([0, T_{\rm max})\times [g(t), h(t)])\cap C^{1,2}((0, T_{\rm max})\times (g(t), h(t))$, $v\in C([0, T_{\rm max})\times (-\infty, \infty )) \cap C^{1,2}((0, T_{\rm max})\times (-\infty, \infty)) \cap C([0, T_{\rm max})\times L^\infty(-\infty, \infty))$ and $h,g\in C^1[0, T_{\rm max})$ with $T_{\rm max}\leq +\infty$ and satisfy \eqref{a3}, where $T_{\rm max}$ denotes the maximal existing time of solution. \end{definition} \begin{definition}[\cite{BG,SP1,SP2}] \rm A solution $(u, v; g, h)$ of \eqref{a3} is said to be global if $T_{\rm max}=+\infty$. If $T_{\rm max}=\infty$ and $\lim _{t\to T_{max}}(\|u(t, x)\|_{L^{\infty}[g(t), h(t)]} +\|v(t, x)\|_{L^{\infty}(-\infty, +\infty)})$ $\to + \infty$, we say that the solution grows up. If $T_{\rm max}=\infty$ and $h_\infty:=\lim _{t\to \infty}h(t)<\infty$, $g_\infty:=\lim _{t\to \infty}g(t)>-\infty$, the solution is called global fast solution since that the solution decays uniformly to $0$ at an exponential rate, while If $T_{\rm max}=\infty$ and $h_\infty=\infty$, $g_\infty=-\infty$, it is called global slow solution, whose decay rate is at most polynomial. \end{definition} \section{Existence and uniqueness} In this section, we first present the following local existence and uniqueness result by the contraction mapping theorem and then give the property of the double fronts. \begin{theorem} \label{thm2.1} For any given $(u_0, v_0)$ satisfying \eqref{Ae1}, and any $\alpha \in (0, 1)$, there exists a $T>0$ such that problem \eqref{a3} admits a unique solution $$ (u, v; g, h)\in C^{ 1+\alpha,(1+\alpha)/2}(D_{T}) \times C^{ 1+\alpha,(1+\alpha)/2}(D^\infty_{T})\times [C^{1+\alpha/2}([0,T])]^2, $$ moreover, \begin{equation} \begin{aligned} &\|u\|_{C^{1+\alpha,(1+\alpha)/2}({D}_{T})} +\|v\|_{C^{1+\alpha,(1+\alpha)/2}({D}_{T})}\\ &+\|g\|_{C^{1+\alpha/2}([0,T])}+\|h\|_{C^{1+\alpha/2}([0,T])} \leq K, \end{aligned} \label{b12} \end{equation} where $D_{T}=\{(t, x)\in \mathbb{R}^2: t\in [0,T], x\in [g(t), h(t)]\}$, $D^\infty_{T}=\{(t, x): t\in [0,T], x\in \mathbb{R}\}$, $K$ and $T$ only depend on $h_0, \alpha, \|u_0\|_{C^{2}([-h_0, h_0])}$, $\|v_0\|_{C^{2}([-h_0, h_0])}$ and $\|v_0\|_{L^{\infty}(-\infty, \infty)}$. \end{theorem} \begin{proof} As in \cite{ZL}, we first straighten the double free boundary fronts by making the following change of variable: $$ x=\frac{h(t)-g(t)}{2h_0}y+\frac{h(t)+g(t)}{2}. $$ Now, a straightforward computation yields \begin{gather*} \frac{\partial y}{\partial x}=\frac{2h_0}{h(t)-g(t)},\\ \frac{\partial y}{\partial t}=-2h_0\frac{x(h'(t)-g'(t)) +h(t)g'(t)-h'(t)g(t)}{(h(t)-g(t))^2}. \end{gather*} If we set \begin{gather*} u(t, x)=u(t, \frac{h(t)-g(t)}{2h_0}y+\frac{h(t)+g(t)}{2}):=w(t, y),\\ v(t, x)=v(t, \frac{h(t)-g(t)}{2h_0}y+\frac{h(t)+g(t)}{2}):=z(t, y), \end{gather*} then \begin{gather*} u_t=w_t-2h_0\frac{x[h'(t)-g'(t)]+h(t)g'(t)-h'(t)g(t)}{[h(t)-g(t)]^2}w_y=w_t-Aw_y,\\ v_t=z_t-2h_0\frac{x[h'(t)-g'(t)]+h(t)g'(t)-h'(t)g(t)}{[h(t)-g(t)]^2}z_y=z_t-Az_y,\\ u_{xx}=Bw_{yy}, \quad v_{xx}=Bz_{yy}, \end{gather*} where \begin{gather*} A=A(h, g, y)=\frac{y[h'(t)-g'(t)]+h_0[h'(t)+g'(t)]}{h(t)-g(t)},\\ B=B(h,g)=\frac{4h_0^2}{[h(t)-g(t)]^2}. \end{gather*} Problem \eqref{a3} can be reduced to \begin{equation} \begin{gathered} w_{t}=Aw_{y}+a Bw_{yy}+r_1w(1-\frac{w}{K_1+\alpha_1z}),\quad t>0, \; -h_00, \; -\infty0, \; y\geq h_0,\\ w=0,\quad g'(t)=-\frac{2h_0\mu}{h(t)-g(t)}\frac{\partial w}{\partial y},\quad t>0, \; y\leq -h_0,\\ h(0)=h_0, \quad g(0)=-h_0, \\ w(0, y)=w_0(y):=u_0(y),\quad z(0, y)=z_0(y):=v_0(y),\quad -\infty\leq y\leq \infty. \end{gathered}\label{Hb} \end{equation} Now the free boundaries $x=h(t)$ and $x=g(t)$ become the fixed lines $y=h_0$ and $y=-h_0$ respectively, and the equations become more complex, since the coefficients in the first and second equations of \eqref{Hb} contain unknown functions $h(t)$, $g(t)$ and their derivatives. The rest of the proof is by the contraction mapping argument as in \cite{DL, ZL} with suitable modifications, and we omit the details here. \end{proof} To discuss further on \eqref{a3}, we need some preliminary theorems which will be used in the sequel. Next we present the monotonicity of the double fronts. \begin{theorem} \label{thm2.2} The two free boundaries for problem \eqref{a3} are strictly monotone, namely, for any solution on $[0, T]$, we have $$ h'(t)>0\quad \text{and} \quad g'(t)<0\quad \text{for } 0\leq t\leq T. $$ \end{theorem} \begin{proof} Using the Hopf Lemma to the system of \eqref{a3}, we immediately deduce that $$ u_x(t, h(t))<0,\ u_x(t,g(t))>0 \quad \text{for } 0\leq t\leq T. $$ Then, combining the above two inequalities with the Stefan conditions in \eqref{a3}, the result can be obtained. \end{proof} The above theorem indicates that $h(t)$ and $g(t)$ are strictly monotone, and therefore there exists $h_\infty, -g_\infty\in (0, +\infty]$ such that $\lim_{t\to +\infty} \ h(t)=h_\infty$ and $\lim_{t\to +\infty} \ g(t)=g_\infty$. Thus, we have four possible cases: (I) $h_\infty=\infty=-g_\infty$, (II) $h_\infty<\infty, g_\infty>-\infty$, (III) $h_\infty<\infty, g_\infty=-\infty$ and (IV) $h_\infty=\infty, g_\infty>-\infty$. The following theorem shows that the last two cases are unlikely to occur. It indicates that both $h_\infty$ and $g_\infty$ are finite or infinite simultaneously. \begin{theorem} \label{thm2.3} Let $(u, v; g, h)$ be a solution of \eqref{a3} in $[0, T_{\rm max})\times [g(t), h(t)]$. Then $g(t)$ and $h(t)$ satisfy $$ -2h_00$. Define $$T:= \sup\{s: g(t)+h(t)<2h_0,\ t\in[0,s)\}.$$ We can deduce that $T=T_{\rm max}$ in the following proof by contradiction. Suppose that $T0, $$ which contradicts \eqref{b12}. Therefore $g(t)+h(t)<2h_0$ for all $0-2h_0$ for all $0T_{\rm max}$. Then $u(x,t)$ $\leq le^{r_1M}$ in $[0, T_{\rm max})\times[g(t), h(t)]$. By Lemma \ref{lem2.4}, we can find $M_2, M_3$ independent of $T$ such that \begin{gather*} 0\leq v\leq M_2\quad \text{for } 0\leq t< T_{\rm max},\; -\infty\leq x<\infty,\\ 0<-g'(t), h'(t) \leq M_3 \quad \text{for } 0\leq t< T_{\rm max}. \end{gather*} It then follows from the proof of Theorem \ref{thm2.1} that there exists a $\tau>0$ depending only on $M$, $M_2$ and $M_3$ such that the solution \eqref{a3} with initial time $T_{\rm max}-\tau/2$ can be extended uniquely to the time $T_{\rm max}-\tau /2+\tau$. But this contradicts the assumption. The proof is complete. \end{proof} \section{Global bounded solution} To obtain the existence of a global solution, we first derive a priori estimate for the solution of \eqref{a3}. \begin{lemma} \label{lem3.1} If $\alpha_1\alpha_2<1$, then the solution of the free boundary problem \eqref{a3} satisfies \begin{gather*} 00$ in $[g(t), h(t)]\times [0, T]$ and $v\geq 0$ in $(-\infty, \infty)\times [0, T]$ provided that solution exists. Since the solution is classical in $[0, T]$, there exists a $\tilde K(T)$ such that $u(t, x)\leq \alpha_1\tilde K$ and $v(t, x)\leq \tilde K$. Next we give the proof for $u(t, x)\leq C_1$ and $v(t, x)\leq C_2$, where \begin{gather*} C_1 :=m \frac{K_1+K_2\alpha_1}{1-\alpha_1\alpha_2} >\max_{[-h_0, h_0]} u_0(x),\\ C_2 :=m \frac{K_1\alpha_2+K_2}{1-\alpha_1\alpha_2} >\|v_0\|_{L^\infty(-\infty, \infty)} \end{gather*} for some $m>1$. Because the interval $(-\infty, \infty)$ is unbounded, maximum principle does not apply. Next we prove that for any $l>h_0$, \begin{gather*} u(t, x)\leq C_1+\alpha_1 \frac {\tilde K[x^2+2\max(a, b) t]}{l^2},\\ v(t, x)\leq C_2+\frac {\tilde K[x^2+2\max(a, b) t]}{l^2} \end{gather*} for $0\leq t\leq T$, $ -l\leq x\leq l$. Setting \begin{gather*} \overline{u}(t, x)= C_1+\alpha_1 \frac {\tilde K[x^2+2\max(a, b) t]}{l^2},\\ \overline{v}(t, x)=C_2+\frac {\tilde K[x^2+2\max(a, b) t]}{l^2}, \end{gather*} then $(\overline{u}, \overline{v})$ satisfies \begin{gather*} \overline{u}_{t}-a\overline{u}_{xx}\geq r_1\overline{u} (1-\frac{\overline{u}}{K_{1}+\alpha_1\overline{v}}),\quad 0u,\quad \overline{v}\geq C_2+\tilde K>v,\quad 0u_0(x),\quad -l\leq x\leq l \\ \overline{v}(0, x)\geq C_2> v_0(x), \quad -l\leq x\leq l. \end{gather*} It follows that $ u\leq \overline{u}$ and $v\leq \overline{v} $ by using the maximum principle on $[0, T]\times [-l, l]$. Now for any fixed $(t_0, x_0)\in [0, T]\times (-\infty, \infty)$, letting $l$ sufficiently large so that $(t_0, x_0)\in [0, T]\times [-l, l]$, we deduce from the above proof that \begin{gather*} u(t_0, x_0)\leq \overline{u}(t_0, x_0) = C_1+\alpha_1 \frac {\tilde K[x^2_0+2\max(a, b) t_0]}{l^2},\\ v(t_0, x_0)\leq \overline{v}(t_0, x_0) =C_2+\frac {\tilde K[x^2_0+2\max(a, b) t_0]}{l^2}. \end{gather*} Taking $l\to \infty$ gives the desired estimates. \end{proof} Combing Theorem \ref{thm2.5} with Lemma \ref{lem3.1} yields the following result. \begin{theorem} \label{thm3.2} If parameters $\alpha_1, \alpha_2$ in double free boundaries problem \eqref{a3} satisfy $\alpha_1\alpha_2<1$, then \eqref{a3} admits a unique global bounded solution. \end{theorem} Next we discuss the long-time behavior of the free boundary problem \eqref{a3}. We first present the slow solution. \begin{theorem} \label{f5} If $\alpha_1\alpha_2<1$ and $h_0>\frac{\pi}{2}\sqrt{a/r_1}$, the free boundaries of the problem \eqref{a3} satisfy $h_\infty=\infty$ and $g_\infty=-\infty$. \end{theorem} \begin{proof} Combing Lemma \ref{lem2.4} with Theorem \ref{thm3.2}, we know that the solution is global, $x=g(t)$ is monotonic decreasing and $x=h(t)$ is monotonic increasing. Assuming that $g_\infty>-\infty$ by contradiction, then we have $\lim_{t\to +\infty}g'(t)=0$. On the other hand, the condition $1>a/{r_1}(\frac{\pi}{2h_0})^2 $ implies that $1>\lambda_1$, where $\lambda_1$ denotes the first eigenvalue of the problem $$ -(a/{r_1})\phi''=\lambda \phi \ \ \text{in}\ \ (-h_0, h_0),\quad \phi(\pm h_0)=0.$$ Therefore, for all small $\delta>0$, the first eigenvalue $\lambda^\delta _1$ of the problem $$ -a\phi''+\delta \phi'=\lambda r_1\phi \quad \text{in } (-h_0, h_0),\quad \phi(\pm h_0)=0 $$ satisfies $\lambda^\delta _1<1$. Fix such a $\delta >0$ and consider the problem \begin{equation} L_\delta \psi=\psi -\frac{\psi^2}{K_1} \quad \text{in } (-h_0,h_0),\quad \psi(\pm h_0)=0,\label{m0} \end{equation} where $L_\delta \psi=-(a \psi ''-\delta \psi ')/{r_1}$. It is well known \cite[Proposition 3.3]{CC} that \eqref{m0} admits a unique positive solution $\psi=\psi_\delta$. By the moving plane method one easily sees that $\psi(x)$ is symmetric about $x=0$ with $\psi ' (x)> 0 $ for $x\in [-h_0, 0)$. Moreover using the comparison principle, we have $\psi< K_1$ in $[-h_0, h_0]$. We now set $$ \mathcal{F}(t, x)=\psi \Big(\frac {-h_0 }{g(t)}x \Big), $$ and directly compute \[ \mathcal{F}_t -a \mathcal{F}_{xx} = \frac {h_0 x}{g^2(t)} g'(t) \psi '-a \frac {h_0^2}{g^2(t)} \psi '' =\frac {h_0^2}{g^2(t)}[ -a \psi ''+ \frac {x g'(t)}{h_0} \psi ']. \] Note that $g'(t)\to 0$ as $t\to +\infty$, we can choose $T_0>0$ such that $g'(t)>\delta \frac{h_0}{g_\infty}$ for $t\geq T_0$, then, we obtain $\frac{xg'(t)}{-h_0}\geq -\delta $ for $t\geq T_0$ and $x\in [g(t), 0]$, which leads to \[ \mathcal{F}_t -a \mathcal{F}_{xx}\leq \frac {h_0^2}{g^2(t)}(-a\psi ''+\delta \psi ') = \frac {h_0^2}{g^2(t)}r_1(\psi -\frac{\psi^2}{K_1}). \] Because of $0\leq \psi< K_1$ and $\frac {-h_0}{g(t)}\leq 1$, we obtain $$ \mathcal{F}_t- a \mathcal{F}_{xx} \leq r_1(\psi -\frac{\psi^2}{K_1})= r_1(\mathcal{F} -\frac{\mathcal{F}^2}{K_1})\quad \text{for } t\geq T_0, \ x\in [g(t), 0]. $$ Now we choose $\delta \in (0, 1)$ sufficiently small so that $\delta \mathcal{F}(T_0,x)\leq u(T_0, x)$. Then $\underline{u}(t, x):=\delta \mathcal{F}(t, x)$ satisfies \begin{gather*} \underline{u}_t-a\underline{u}_{xx}\leq r_1( \underline{u} -\frac{ \underline{u}^2}{K_1}),\quad t \geq T_0,\; x\in [g(t), 0], \\ \underline{u}(t, g(t))=0, \quad \underline{u}_x(t, 0)=0, \quad t\geq T_0,\\ \underline{u}(T_0, x)\leq u(T_0, x), \quad g(T_0) \leq x\leq 0. \end{gather*} So we can use the comparison principle to conclude that $$ \underline{u} (t, x)\leq u(t, x)\quad \text{for } t\geq T_0, \; x\in [g(t), 0]. $$ It follows that $$ u_x(t, g(t))\geq \underline{u}_x(t, g(t)) =\delta \frac {h_0}{g(t)} \psi '(h_0)\to \delta \frac {h_0}{g_\infty} \psi '(h_0)>0, $$ which means that $g'(t)\leq -\mu \delta \frac {h_0}{g_\infty} \psi '(h_0)<0$. This is a contradiction to the fact that $g'(t)\to 0$ as $t\to \infty$. This contradiction implies that $g_\infty=-\infty$. Likewise, we can set $$ \mathcal{F}(t, x)=\psi \Big(\frac {h_0 }{h(t)}x \Big), \quad x\in [0, h(t)] $$ to prove that $ h_\infty=+\infty$. \end{proof} \section{Global fast solution and grow up solution} In this section, we discuss the asymptotic behavior of the solution for the case $\alpha_1\alpha_2>1$, which is more complicated than that for the case $\alpha_1\alpha_2<1$. At first, we give the grow-up result. \begin{theorem} \label{g1} Assume that $\alpha_1\alpha_2>1$, then the solution of \eqref{a3} with any nontrivial nonnegative initial data grows up when $h_0$ is sufficiently large. \end{theorem} \begin{proof} We first show that the solution cannot blow up in any finite time. In fact, it has a upper solution $(\overline{u}(t), \overline{v}(t))$ satisfies \begin{gather*} \overline{u}_{t}=r_1\overline{u},\quad \overline{v}_{t}=r_2\overline{v},\quad t>0, \\ \overline{u}(0)=\max_{[-h_0, h_0]}u(x,0)\geq 0, \\ \overline{v}(0)=\max_{[-h_0, h_0]}v(x,0)\geq 0 \end{gather*} and the upper solution cannot blow up in finite time. To prove the solution of \eqref{a3} grows up, it suffices to compare the free boundary problem with the corresponding problem in the fixed domain: \begin{equation} \begin{gathered} u_{t}-a u_{xx}=r_1u(1-\frac{u}{K_1+\alpha_1v}),\quad t>0,\; -h_00, \; -h_00,\\ u(t, h_0)=v(t, h_0)=0, \quad t>0,\\ u(0, x)=u_0(x)\geq 0, \quad -h_0\leq x\leq h_0,\\ \ v(0, x)=v_0(x)\geq 0,\quad -h_0\leq x\leq h_0. \end{gathered}\label{f13} \end{equation} On the other hand, we want to find a lower solution of \eqref{f13} that increases exponentially. Let $(\hat{u}, \hat{v})= (\delta_1w, \delta_2w)$, where $\delta_i(i=1, 2)$ is some positive constant. Then $(\hat{u}, \hat{v})$ is a lower solution of \eqref{f13} if $(\delta_1w, \delta_2w)$ satisfies the relations \begin{equation} \begin{gathered} w_{t}-a w_{xx}\leq r_1w(1-\frac{\delta_1w}{K_1+\alpha_1\delta_2w}),\quad t>0,\; -h_00, \; -h_00,\\ \delta_1w(0, x)\leq u_0(x), \quad -h_0\leq x\leq h_0,\\ \delta_2w(0, x)\leq v_0(x), \quad -h_0\leq x\leq h_0. \end{gathered} \label{f16} \end{equation} Then \eqref{f16} holds if \begin{equation} \begin{gathered} w_{t}-a w_{xx}\leq \frac{r_1(\alpha_1\delta_2-\delta_1)w}{\alpha_1\delta_2}, \quad t>0,\; -h_00, \; -h_00,\\ \delta_1w(0, x)\leq u_0(x), \quad -h_0\leq x\leq h_0,\\ \delta_1w(0, x)\leq v_0(x),\quad -h_0\leq x\leq h_0. \end{gathered} \label{f17} \end{equation} Recall the assumption in the theorem, let $\delta_i>0$ such that $$\frac{1}{\alpha_2}<\frac{\delta_1}{\delta_2}<\alpha_1$$ and set $$ D=\max\{\frac{1}{a}, \frac{1}{b}\},\quad d^*=\min\big\{\frac{r_1(\alpha_1\delta_2-\delta_1)}{\alpha_1\delta_2a}, \frac{r_2(\alpha_2\delta_1-\delta_2)}{\alpha_2\delta_1b}\big\}. $$ Then $d^*>0$ and thus \eqref{f17} holds if \begin{equation} \begin{gathered} Dw_{t}-w_{xx}\leq d^*w,\quad t>0,\; -h_00,\\ w_0(x)\leq \min\big\{\frac{u_0(x)}{\delta_1}, \frac{v_0(x)}{\delta_2}\big\},\quad -h_0\leq x\leq h_0. \end{gathered}\label{f18} \end{equation} Let $w(x,t)=\delta e^{\varepsilon t}\cos (\frac{\pi}{2h_0} x)$. Direct calculations show that if $h_0>\frac \pi 2\frac 1{\sqrt{d^*}}$, then we can choose small $\delta$ and $\varepsilon$ such that $w_t \geq 0$ and \eqref{f18} holds. Therefore the lower solution $(\hat{u}, \hat{v})$ increases exponentially, so does the solution of \eqref{a3}. \end{proof} Next we introduce a comparison principle for double free boundaries $x=h(t)$ and $x=g(t)$, which can be proved similarly as \cite[Lemma 3.5]{DL}. \begin{lemma} \label{g3} %\label{lem4.2} Suppose that $T\in (0,\infty)$, $\overline{h},\overline{g} \in C^1([0,T])$, $\overline{u}\in C(\overline D_{1,T}^*)\cap C^{1,2}(D_{1,T}^*)$ and $\overline{v}\in C(\overline D_{2,T}^*)\cap C^{1,2}(D_{2,T}^*)$ with $D_{1,T}^*=(0, T]\times (\overline{g}(t), \overline{h}(t))$, $D_{2,T}^*=(0, T]\times (-\infty, +\infty)$, and \begin{equation} \begin{gathered} \overline{u}_{t}-a \overline{u}_{xx}\geq \overline r_1u(1-\frac{\overline{u}}{K_1+\alpha_1\overline{v}}),\quad t>0, \; \overline{g}(t)0, \; -\infty0, \; -\infty0, \; h(t)0, \; x=\overline{h}(t), \\ \overline{u}=0,\quad \overline{g}'(t)\leq -\mu \frac{\partial \overline{u}}{\partial x},\quad t>0, \; x=\overline{g}(t). \end{gathered} \label{f19} \end{equation} If $-h_0\geq \overline{g}(0), h_0\leq \overline{h}(0)$, $u_0(x)\leq \overline{u}(0,x)$ in $[-h_0,h_0]$ and $v_0(x)\leq \overline{v}(0,x)$ in $(-\infty,+\infty)$, then the solution $(u, v; g, h)$ of the free boundary problem \eqref{a3} satisfies \begin{gather*} g(t)\geq\overline{g}(t),\quad h(t)\leq\overline{h}(t)\quad \text{in } (0, T], \\ u(t,x)\leq\overline{u}(t,x)\quad \text{in } [0, T]\times (g(t), h(t)), \\ v(t,x)\leq \overline{v}(t,x)\quad \text{in } [0, T]\times (-\infty,+\infty). \end{gather*} \end{lemma} \begin{remark} \label{g4} \rm The $(\overline{u}, \overline{v}; \overline{h}, \overline{g})$ in Lemma \ref{g3} is usually called an upper solution of the problem \eqref{a3}. We can define a lower solution by reversing all the inequalities in the obvious places. Moreover, one can easily prove an analogue of Lemma \ref{g3} for lower solutions. \end{remark} In the following theorem, we show existence of a global fast solution. \begin{theorem} \label{g5} If $\alpha_1\alpha_2>1$, then the free boundary problem \eqref{a3} admits a global fast solution provided that the initial data $u_0$ and $h_0$ are suitably small. Moreover, there exist constant $\beta =r_1/2$ and $\eta=\eta(h_0, K_2, a, \mu, \alpha_2)$ such that $$ \|u\|_\infty\leq \eta e^{-\beta t},\quad t\geq 0. $$ \end{theorem} \begin{proof} As in \cite{RT}, we have only to find a suitable supersolution. For $t\geq 0$, define \begin{gather*} \sigma (t)=2h_0(2-e^{-\gamma t}),\quad \lambda (t)=-\sigma (t), \quad \mathcal{F}(y)=\cos (\frac{\pi}{2}y), \quad -1\leq y\leq 1,\\ \overline{u}(t, x)=\eta e^{-\beta t}\mathcal{F}(x/\sigma (t)), \quad t\geq 0,\quad \lambda(t)\leq x\leq \sigma(t),\\ \overline{v}(t, x)=\max\{2K_2, \|v_0(x)\|_{L^\infty(-\infty, +\infty)}\},\quad t\geq 0,\; -\infty\leq x\leq \infty, \end{gather*} where $\gamma, \beta$ and $\eta>0$ to be determined later. Straightforward calculations yield \begin{align*} & \overline{u}_t-a\overline{u}_{xx} -r_1\overline{u}(1-\frac{\overline{u}}{K_1+\alpha_1\overline{v}})\\ &=\eta e^{-\beta t}[-\beta \mathcal{F}-x\sigma '\sigma^{-2}\mathcal{F}' -a\sigma^{-2}\mathcal{F}''-r_1\mathcal{F}(1-\frac{\eta e^{-\beta t} \mathcal{F}}{K_1+\alpha_1\overline{v}})]\\ &\geq \eta e^{-\beta t}\mathcal{F}[-\beta +(\frac \pi 2)^2 \frac {a}{16h_0^2}-r_1] \end{align*} for all $t>0$ and $\lambda (t)0$ and $-\infty0$, $-\overline{u}_x(t, \sigma (t))=\frac {\pi}{2}\eta \sigma^{-1}(t)e^{-\beta t}$ and $-\overline{u}_x(t, \lambda (t))=\frac {\pi}{2}\eta \lambda^{-1}(t)e^{-\beta t}$. Now we set $$ h=\frac{\pi}{16}\sqrt{\frac{2a}{r_1}}, $$ choosing $$00,\; \lambda(t)0, \; -\infty -\mu \frac{\partial \overline{u}}{\partial x},\quad t>0, \; x=\sigma(t),\\ \overline{u}=0,\quad \lambda'(t)< -\mu \frac{\partial \overline{u}}{\partial x},\quad t>0, \; x=\lambda(t),\\ \sigma (0)=2h_0>h_0, \lambda (0)=-2h_0<-h_0. \end{gather*} Using Lemma \ref{g3}, we can get that $h(t)<\sigma(t)$, $g(t)>\lambda(t)$, and $u(t, x)<\overline{u}(t, x)$, $v(t, x)<\overline{v}(t, x)$ for $g(t)\leq x\leq h(t)$ provided $(u,v)$ exists. Therefore $(u, v)$ exists globally and $g_\infty>-\infty$, $h_\infty<\infty$. \end{proof} \begin{remark} \rm If $\alpha_1\alpha_2<1$, Theorem \ref{f5} shows that the solution is slow for any initial data. If $\alpha_1\alpha_2>1$, Theorem \ref{g1} shows that the solution grows up for $h_0$ is sufficiently large. Theorem \ref{g5} implies that the global fast solution is possible if the initial data and $h_0$ is suitably small. \end{remark} \subsection*{Acknowledgments} This work is supported by grants: No. 11171158 from the NSFC, No. 11KJA110001 from the NSF of Jiangsu Education Committee, and No. KYLX\_0719 from Project of Graduate Education Innovation of Jiangsu Province. \begin{thebibliography}{00} \bibitem{BG} N. Ben-Gal; \emph{Grow-up solutions and heteroclinics to infinity for scalar parabolic PDEs}, PhD thesis, Brown University, Providence, Rhode Island, USA, 2010. \bibitem{CC} R. S. Cantrell, C. Cosner; \emph{Spatial Ecology via Reaction-Diffusion Equations}, John Wiley and Sons Ltd., Chichester, UK, 2003. \bibitem{DGP} Y. H. Du, Z. M. Guo, R. Peng; \emph{A diffusive logistic model with a free boundary in time-periodic environment}, J. Funct. Anal., \textbf{265} (2013), 2089-2142. \bibitem{DL} Y. H. Du, Z. G. Lin; \emph{Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary}, SIAM J. Math. Anal., \textbf{42} (2010), 377-405. \bibitem{DL1} Y. H. Du, Z. G. Lin; \emph{The diffusive competition model with a free boundary: Invasion of a superior or inferior competitor}, Discrete Contin. Dyn. Syst. Ser. B., 19 (2014), 3105-3132. \bibitem{DL3} Y. H. Du, B. D. Lou; \emph{Spreading and vanishing in nonlinear diffusion problems with free boundaries}, arXiv preprint arXiv: 1301.5373, 2013. \bibitem{SP1} M. Fila, P. Souplet; \emph{Existence of global solutions with slow decay and unbounded free boundary for a superlinear Stefan problem}, Interface and Free Boundary, \textbf{3} (2001), 337-344. \bibitem{SP2} H. Ghidouche, P. Souplet, D. Tarzia; \emph{Decay of global solutions, stability and blow-up for a reaction-diffusion problem with free boundary}, Proc. Am. Math. Soc., \textbf{129} (2001), 781-792. \bibitem{GW} J. S. Guo, C. H. Wu; \emph{On a free boundary problem for a two-species weak competition system}, J. Dynam. Differential Equations, \textbf{24} (2012), 873-895. \bibitem{KLL} K. I. Kim, Z. G. Lin, Z. Ling; \emph{Global existence and blowup of solutions to a free boundary problem for mutualistic model}, Sci China Math. \textbf{53} (2010), 2085-2095. \bibitem{LSU} O. A. Ladyzenskaja, V. A. Solonnikov N. N. Ural'ceva; \emph{Linear and Quasilinear Equations of Parabolic Type}, Amer. Math. Soc, Providence, RI, 1968. \bibitem{LIN} Z. G. Lin; \emph{A free boundary problem for a predator-prey model}, Nonlinearity, \textbf{20} (2007), 1883-1892. \bibitem{May} R. M. May; \emph{Simple mathematical models with very complicated dynamics}, Nature, \textbf{261} (1976), 459-467. \bibitem{PCV} C. V. Pao; \emph{Nonlinear parabolic and elliptic equations}, Plenum, New York (1992). \bibitem{PZ} R. Peng, X. Q. Zhao; \emph{The diffusive logistic model with a free boundary and seasonal succession}, Discrete Contin. Dyn. Syst. A, \textbf{33} (2013), 2007-2031. \bibitem{RT} R. Ricci, D. A. Tarzia; \emph{Asymptotic behavior of the solutions of the dead-core problem}, \emph{Nonlinear Anal.}, \textbf{13} (1989), 405-411. \bibitem{TY} Y. Tao; \emph{A free boundary problem modeling the cell cycle and cell movement in multicellular tumor spheroids}, \emph{J. Differential Equations}, \textbf{247} (2009), 49-68. \bibitem{Wa} M. X. Wang; \emph{On some free boundary problems of the prey-predator model}, \emph{J. Differential Equations}, \textbf{256} (2014), 3365-3394. \bibitem{XS} S. Xu; \emph{Analysis of a delayed free boundary problem for tumor growth}, Discrete Contin. Dyn. Syst. B., \textbf{15} (2011), 293-308. \bibitem{ZL} P. Zhou, Z. G. Lin; \emph{Global existence and blowup of a nonlocal problem in space with free boundary}, J. Funct. Anal., \textbf{262} (2012), 3409-3429. \bibitem{WZ} J. F. Zhao, M. X. Wang; \emph{A free boundary problem for a predator-prey model with higher dimension and heterogeneous environment}, Nonlinear Anal. RWA, \textbf{16} (2014), 250-263. \end{thebibliography} \end{document}