\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2015 (2015), No. 246, pp. 1--11.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2015 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2015/246\hfil Limit cycles bifurcating] {Limit cycles bifurcating from the period annulus of a uniform isochronous center in a quartic polynomial differential system} \author[J. Itikawa, J. Llibre \hfil EJDE-2015/246\hfilneg] {Jackson Itikawa, Jaume Llibre} \address{Jackson Itikawa \newline Departament de Matem\`atiques, Universitat Aut\`onoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia, Spain. Fax +34 935812790. Phone +34 93 5811303} \email{itikawa@mat.uab.cat} \address{Jaume Llibre \newline Departament de Matem\`atiques, Universitat Aut\`onoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia, Spain. Fax +34 935812790. Phone +34 93 5811303} \email{jllibre@mat.uab.cat} \thanks{Submitted October 15, 2014. Published September 22, 2015.} \subjclass[2010]{34A36, 34C07, 34C25, 37G15} \keywords{Polynomial vector field; limit cycle; averaging method; \hfill\break\indent periodic orbit; uniform isochronous center} \begin{abstract} We study the number of limit cycles that bifurcate from the periodic solutions surrounding a uniform isochronous center located at the origin of the quartic polynomial differential system $$ \dot{x}=-y+xy(x^2+y^2),\quad \dot{y}=x+y^2(x^2+y^2), $$ when perturbed in the class of all quartic polynomial differential systems. Using the averaging theory of first order we show that at least 8 limit cycles bifurcate from the period annulus of the center. Recently this problem was studied by Peng and Feng \cite{Peng}, where the authors found 3 limit cycles. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{proposition}[theorem]{Proposition} \allowdisplaybreaks \section{Introduction and statement of main results}\label{sectionintroduction} One of the main open problems in the qualitative theory of polynomial differential systems in $\mathbb{R}^2$ is the determination of their limit cycles, see for instance \cite{Hilbert}. A classical method to produce limit cycles is by perturbing a system which has a center. In this case the perturbed system displays limit cycles that bifurcate either from the center (having the so-called Hopf bifurcation); or from some of the periodic orbits around the center, (see \cite{Christopher,Pontrjagin} and references therein); or from the graph in the boundary of the period annulus of the center. Isochronous differential systems constitute a large class of polynomial systems with interesting properties. They arise in many applications. For recent studies on the bifurcation of limit cycles of planar polynomial differential systems having a uniform isochronous center see for instance \cite{Dias,IL1,IL2}. In this paper we shall perturb the uniform isochronous center of the quartic polynomial differential system \begin{equation}\label{peng01} \dot{x}=-y+xy(x^2+y^2), \quad \dot{y}=x+y^2(x^2+y^2), \end{equation} inside the class of all quartic polynomial differential systems. Peng and Feng \cite{Peng} studied the differential system \eqref{peng01}, showing that under any quartic homogeneous polynomial perturbations, at most 2 limit cycles bifurcate from the period annulus of such system using averaging theory of first order, and that this upper bound can be reached. In addition these authors proved that for the family of perturbed quartic polynomial differential systems \begin{equation}\label{pengparticular} \begin{gathered} \begin{aligned} \dot{x}&=-y+xy(x^2+y^2)+\varepsilon(a_{10}x+a_{01}y+a_{11}xy+a_{21}x^2y+a_{03}y^3\\ &\quad +a_{40}x^4+a_{31}x^3y+a_{22}x^2y^2+a_{13}xy^3+a_{04}y^4), \end{aligned}\\ \begin{aligned} \dot{y}&=x+y^2(x^2+y^2)+\varepsilon(b_{10}x+b_{01}y+b_{20}x^2+b_{02}y^2+b_{30}x^3\\ &\quad+b_{12}xy^2+b_{40}x^4+b_{31}x^3y+b_{22}x^2y^2+b_{13}xy^3+b_{04}y^4), \end{aligned} \end{gathered} \end{equation} there are at most 3 limit cycles bifurcating from the period annulus of \eqref{peng01} using averaging theory of first order, and that this upper bound is sharp. We remark that the perturbed system \eqref{pengparticular} studied by Peng and Feng do not cover all possible perturbed quartic polynomial differential systems because the authors do not consider the coefficients $a_{00}$, $a_{20}$, $a_{02}$, $a_{30}$, $a_{12},$ $b_{00}$, $b_{11}$, $b_{21}$, $b_{03}$ in their analysis. We study the limit cycles which bifurcate from the periodic solutions of the uniform isochronous center located at the origin of system \eqref{peng01} when it is pertur\-bed inside the whole class of quartic polynomial diffe\-rential systems. More precisely we consider the following differential systems \begin{equation}\label{peng02} \begin{gathered} \dot{x}= -y+xy(x^2+y^2)+\varepsilon\sum_{i=0}^4 p_i(x,y),\\ \dot{y}=\;\;x+y^2(x^2+y^2)+\varepsilon\sum_{i=0}^4 q_i(x,y), \end{gathered} \end{equation} where \[ p_i=\sum_{j+k=i}a_{jk}x^jy^k, \quad q_i=\sum_{j+k=i}b_{jk}x^jy^k \] are homogeneous polynomials of degree $i$, and $a_{jk},b_{jk}\in\mathbb{R}$. In what follows we state our main result. \begin{theorem}\label{mainteo} For $|\varepsilon|\neq0$ sufficiently small there are quartic polynomial differential systems \eqref{peng02} having at least 8 limit cycles bifurcating from the periodic orbits of the period annulus of the uniform isochronous center located at the origin of system \eqref{peng01}. \end{theorem} Note that Theorem \ref{mainteo} improves the result of Peng and Feng by providing five additional limit cycles. All our calculations were performed with the assistance of the software \emph{Mathematica}. \section{Preliminary results}\label{sectionpreliminaries} In this section we introduce some preliminary results on uniform isochronous centers and on averaging theory that we shall use in our study. Let $p\in\mathbb{R}^2$ be a center of a differential polynomial system in $\mathbb{R}^2$. Without loss of generality we can assume that $p$ is the origin of coordinates. We say that $p$ is an \emph{isochronous center} if it is a center having a neighborhood such that all the periodic orbits in this neighborhood have the same period. We say that $p$ is a \emph{uniform isochronous center} if the system, in polar coordinates $(r,\theta)$ where $ x=r\cos\theta$, $ y=r\sin\theta$, takes the form $\dot{r}=G(\theta,r)$, $\dot{\theta}=k, \; k\in\mathbb{R}\setminus\{0\}$, for more details see Conti \cite{Conti}. The \emph{period annulus} of a center is the biggest connected set of periodic solutions surrounding a center and having in its inner boundary the center itself. The next result is well-known. \begin{proposition}\label{charactuniformisochronous} Assume that a planar differential polynomial system $\dot{x}=P(x,y)$, $\dot{y}= Q(x,y)$ of degree $n$ has a center at the origin of coordinates. Then, this center is uniform isochronous if and only if through a linear change of variables and time rescaling it can be written under the form \begin{equation}\label{07} \dot{x}=-y+x\;f(x,y), \quad \dot{y}=x+y\;f(x,y), \end{equation} where $f(x,y)$ is a polynomial in x and y of degree $n-1$, and $f(0,0)=0$. \end{proposition} In 1994, Conti \cite{Conti} proved the following theorem. \begin{theorem}\label{contihomogeneous} Let $f(x,y)=\sum_{i+j=n-1}p_{i,j}x^iy^j$ be a homogeneous polynomial of degree $n-1$. Then system \eqref{07} has a uniform isochronous center at the origin if either $n$ is even, or if $n$ is odd and \[ \sum_{\nu=0}^{n-1}\Big[p_{n-1-\nu,\nu}\int_0^{2\pi}{\cos^{n-1-\nu} \theta\sin^{\nu}\theta\ d\theta}\Big]=0. \] \end{theorem} The next result is the first-order averaging theory developed for continuous differential systems. Consider the differential system \begin{equation}\label{pert} \dot{x}=\varepsilon F_1(t,x)+\varepsilon^2 F_2(t,x,\varepsilon), \quad x(0)=x_0 \end{equation} with $x\in D$, where $D$ is an open subset of $\mathbb{R}^n$, $t\geq 0$. Furthermore we suppose that the functions $F_1(t,x)$ and $F_2(t,x,\varepsilon)$ are $T-$periodic in $t$. We define in $D$ the averaged differential system \begin{equation}\label{eqb2} \dot{y}=\varepsilon f_1(y),\quad y(0)=x_0, \end{equation} where \[ f_1(y)=\frac{1}{T}\int_0^TF_1(t,y)dt. \] As we shall see under convenient assumptions, the equilibria solutions of the averaged system will provide $T-$periodic solutions of system \eqref{pert}. \begin{theorem}\label{teobif04} Consider the two initial value problems \eqref{pert} and \eqref{eqb2}. Assume that \begin{itemize} \item[(i)] the functions $F_1$, $\partial F_1/\partial x$, $\partial ^2 F_1/\partial x^2$, $F_2$ and $\partial F_2/\partial x$ are defined, continuous and bounded by a constant independent of $\varepsilon$ in $[0,\infty)\times D$ and $\varepsilon\in(0,\varepsilon_0]$; \item[(ii)] the functions $F_1$ and $F_2$ are $T-$periodic in $t$ ($T$ independent of $\varepsilon$). \end{itemize} Then the following statements hold. (a) If $p$ is an equilibrium point of the averaged system \eqref{eqb2} satisfying \[ \det\Big(\frac{\partial f_1}{\partial y}\Big)\Big|_{y=p}\neq 0, \] then there is a $T-$periodic solution $\varphi(t,\varepsilon)$ of system \eqref{pert} such that $\varphi(0,\varepsilon)\to p$ as $\varepsilon\to 0$. (b) The kind of stability or instability of the periodic solution $\varphi(t,\varepsilon)$ coincides with the kind of stability or instability of the equilibrium point $p$ of the averaged system \eqref{eqb2}. The equilibrium point $p$ has the kind of stability behavior of the Poincar\'{e} map associated to the periodic solution $\varphi(t,\varepsilon)$. \end{theorem} For a proof of the above, see \cite[sec. 6.3, 11.8]{Ve}. The next theorem provides a method to write a perturbed differential system under the form \eqref{pert}. \begin{theorem}\label{teobifenergy} Consider the unperturbed system $\dot{x}=P(x,y),\ \dot{y}=Q(x,y)$, where $P,Q:\mathbb{R}^2\to\mathbb{R}$ are continuous functions, and assume that this system has a continuous family of period solutions $\{\Gamma_h\}\subset\{(x,y) : \mathcal{H}(x,y)=h, h_1\sqrt{3}$ and $\theta\in[0,2\pi)$. Therefore all the hypotheses of Theorem \ref{teobifenergy} are satisfied for system \eqref{peng01}. Using Theorem \ref{teobifenergy} we transform the perturbed differential system \eqref{peng02} into the form \begin{equation}\label{eqproof01} \frac{dR}{d\theta}=\varepsilon\Big(\frac{3}{2R}\frac{Qp-Pq}{\rho^5}\Big) \Big|_{x=\rho\cos\theta,y=\rho\sin\theta}+O(\varepsilon^2), \end{equation} where \[ Qp-Pq=A+B, \] with \begin{align*} A&=a_{00}x+b_{00}y+(a_{02}+b_{11})xy^2+a_{20}x^3+(a_{00}+b_{03})y^4\\ &\quad-b_{00}xy^3+(a_{00}+a_{12}+b_{21})x^2y^2-b_{00}x^3y+a_{30}x^4+a_{02}y^6\\ &\quad +(a_{02}+a_{20}-b_{11})x^2y^4+(a_{20}-b_{11})x^4y^2+(a_{12}-b_{03})xy^6\\ &(a_{12}+a_{30}-b_{03}-b_{21})x^3y^4+(a_{30}-b_{21})x^5y^2, \end{align*} \begin{align*} B&= a_{10}x^2+(a_{01}+b_{10})xy+b_{01}y^2+(a_{11}+b_{20})x^2y+b_{02}y^3\\ &\quad +(a_{21}+b_{30})x^3y+(a_{03}+b_{12})xy^3+a_{40}x^5+(a_{31}+b_{40}-b_{10})x^4y\\ &\quad +(a_{22}+a_{10}+b_{31}-b_{01})x^3y^2+(a_{13}+a_{01}+b_{22}-b_{10})x^2y^3\\ &\quad +(a_{04}+a_{10}+b_{13}-b_{01})xy^4+(a_{01}+b_{04})y^5-b_{20}x^5y\\ &\quad +(a_{11}-b_{20}-b_{02})x^3y^3+(a_{11}-b_{02})xy^5-b_{30}x^6y\\ &\quad +(a_{21}-b_{30}-b_{12})x^4y^3+(a_{21}+a_{03}-b_{12})x^2y^5+a_{03}y^7\\ &\quad -b_{40}x^7y+(a_{40}-b_{31})x^6y^2+(a_{31}-b_{40}-b_{22})x^5y^3\\ &\quad +(a_{40}+a_{22}-b_{31}-b_{13})x^4y^4+(a_{31}+a_{13}-b_{22}-b_{04})x^3y^5. \end{align*} We remark that the coefficients $\{a_{ij},b_{ij}\}_{i,j\in\{0,\ldots,4\}}$ which appear in $A$ and $B$ are different. The expression $B$ corresponds to the perturbed system \eqref{pengparticular} studied in \cite{Peng}. The authors of \cite{Peng} obtained for this system the following averaging function \begin{equation}\label{eqproof03} \begin{aligned} g_B(R)&=\frac{3}{4R}\Big[\Big(M_4-\frac{3M_1+4M_2+8M_3}{36}\Big)R^2 -\frac{M_1+2M_2}{82}R^6-\frac{2M_1}{729}R^{10} \\ &\quad +\Big(\frac{2M_1}{729}R^{12}+\frac{2M_2}{81}R^8 +\frac{2M_3}{9}R^4-2(M_1+M_2+M_3)\Big)\frac{1}{\sqrt{R^4-9}}\Big], \end{aligned} \end{equation} where \begin{equation}\label{eqproofM} \begin{gathered} M_1= a_{22}-a_{40}-a_{04}+b_{31}-b_{13},\\ M_2= -2a_{22}+a_{40}+3a_{04}-b_{31}+2b_{13},\\ M_3= a_{22}-3a_{04}-b_{13},\quad M_4= a_{10}+b_{01}. \end{gathered} \end{equation} Peng and Feng proved that the function $g_B(R)$ has at most 3 zeros in $R\in(\sqrt{3},+\infty)$, and using the averaging theory of first order they showed that the maximum number of limit cycles of system \eqref{pengparticular} emerging from the period annulus of the unperturbed system \eqref{peng01} is 3. In this work we extend the results presented in \cite{Peng} by calculating the part of the averaging function of system \eqref{peng02} which corresponds to the expression $A$. In order to do that, we perturb the center of system \eqref{peng01} inside the whole class of quartic polynomial differential systems. We note that \eqref{eqproof01} is continuous and bounded for $\theta\in(0,2\pi)$ and $R\in(\sqrt{3},+\infty)$ therefore the integral of \eqref{eqproof01} is the sum of the integrals of its parts $A$ and $B$. Then from the expression \eqref{eqproof01} we have \[ \frac{dR}{d\theta}=\varepsilon\Big(\frac{3}{2R}\frac{A}{\rho^5}\Big) \Big|_{\substack{x=\rho\cos\theta \\ y=\rho\sin\theta}} +\varepsilon\Big(\frac{3}{2R}\frac{B}{\rho^5}\Big) \Big|_{\substack{x=\rho\cos\theta \\ y=\rho\sin\theta}}+O(\varepsilon^2). \] We obtain the averaging function $f(R)=g_A(R)+g_B^{\ast}(R)$ where \begin{gather*} \begin{aligned} g_A(R)&= a_{00}g_0(R)+a_{02}g_1(R)+a_{12}g_2(R)+a_{20}g_3(R)+a_{30}g_4(R)\\ &\quad + b_{03}g_5(R)+b_{11}g_6(R)+b_{21}g_7(R), \end{aligned}\\ g_B^{\ast}(R)= \sum_{i=1}^4M_i\,g_{Mi}(R), \end{gather*} and $g_B^{\ast}(R)$ is the function \eqref{eqproof03} rearranged in a convenient way, with $M_i$, $i\in\{1,\ldots,4\}$ given in \eqref{eqproofM}. The expressions of $g_i(R)$, $i\in\{0,\ldots,7\}$ are shown in the Appendix \ref{appendix1}, and the functions $g_{Mi}(R)$, $i\in\{1,\ldots,4\}$ are presented in the Appendix \ref{appendix2}. Out of the 12 functions $G_i=g_i:(\sqrt{3},+\infty)\to\mathbb{R}$, $i\in\{0,\ldots,7\}$, $G_{i+7}=g_{Mi}:(\sqrt{3},+\infty)\to\mathbb{R}$, $i\in\{1,\ldots,4\}$ we have that 9 are linearly independent. Indeed, using the software \emph{Mathematica} to calculate the Taylor expansions for those 12 functions in the variable $R$ until its $15^{th}$ power around $R=2$, which are too long and therefore they are not presented here, we construct a $12\times16$ matrix, where in the $k$ row we place the 16 coefficients of $R^0, R^1,\ldots, R^{15}$ of the Taylor expansion of $G_k$, $k\in\{0,\ldots, 11\}$, and we conclude that the rank of such matrix is 9. By Proposition \ref{propdif01} since there are 9 linearly independent functions among the 12 previously described, then there exists a linear combination of them with at least 8 zeros, because all the coefficients of these functions are linearly independent, as it is easy to check. Thus there exist $R_1,R_2,\ldots,R_8\in(\sqrt{3},+\infty)$ and coefficients $a_{ij}, b_{ij}\in\mathbb{R}$, $i,j\in\{0,\ldots,4\}$ such that $f(R_k)=0$, $k\in\{1,\ldots,8\}$. In summary, applying Theorem \ref{teobif04} we conclude that there are planar quartic polynomial differential systems \eqref{peng02} having at least 8 limit cycles bifurcating from the period orbits of the period annulus of the uniform isochronous center located at the origin of the unperturbed differential system \eqref{peng01}. \section{Appendix: Averaging functions $g_i(R)$, $i\in\{0,\ldots,7\}$}\label{appendix1} \begin{align*} g_0&= -3 \pi \bigg((R^2+3) (-6 R^{10} (R^2+3)^{2/3}+59 R^6 (R^2+3)^{2/3} -1440 R^2(R^2+3)^{2/3}\\ &\quad +6 R^8 ((R^4-9)^{2/3} \sqrt[3]{R^2-3}+3 (R^2+3)^{2/3}) -R^4 \big(709(R^4-9)^{2/3} \sqrt[3]{R^2-3}\\ &\quad +177 (R^2+3)^{2/3}\big) +360 (12 (R^2+3)^{2/3} -61 \sqrt[3]{R^2-3} (R^4-9)^{2/3}))\\ &\quad\times {}_2F_1(-\frac{1}{2},\frac{2}{3};1;\frac{6}{R^2+3}) \sqrt[3]{R^2-3} +\Big(7320 (R^4-9)^{2/3} \sqrt[3]{R^2-3}\\ &\quad -1440 (R^2+3)^{2/3}+R^2 \Big(1346 (R^4-9)^{2/3} \sqrt[3]{R^2-3} +6 R^8 (R^2+3)^{2/3}\\ &\quad +618 (R^2+3)^{2/3}-6 R^6 \big((R^4-9)^{2/3} \sqrt[3]{R^2-3}+(R^2+3)^{2/3}\big)\\ &\quad -R^4 (12 (R^4-9)^{2/3} \sqrt[3]{R^2-3}+71 (R^2+3)^{2/3})+R^2 (685 (R^4-9)^{2/3} \sqrt[3]{R^2-3}\\ &\quad +59(R^2+3)^{2/3})\Big)\Big) \, _2F_1(\frac{1}{2},\frac{2}{3};1;\frac{6}{R^2+3}) (R^2-3)^{4/3}\\ &\quad +(R^2+3)^{4/3} \Big(\Big(-1346 (R^4-9)^{2/3} \sqrt[3]{R^2+3}+618 (R^2-3)^{2/3}\\ &\quad +R^2 \Big(685 (R^4-9)^{2/3} \sqrt[3]{R^2+3}-59 (R^2-3)^{2/3}\\ &\quad +R^2 \Big(12 (R^4-9)^{2/3} \sqrt[3]{R^2+3} -71(R^2-3)^{2/3}+6 R^2 \big(-(R^4-9)^{2/3} \sqrt[3]{R^2+3}\\ &\quad +R^2 (R^2-3)^{2/3} +(R^2-3)^{2/3}\big)\Big)\Big)\Big)R^2+120 (61 (R^4-9)^{2/3} \sqrt[3]{R^2+3}\\ &\quad +12 (R^2-3)^{2/3})\Big) \, _2F_1(\frac{1}{2},\frac{2}{3};1;-\frac{6}{R^2-3})-(R^2-3) \sqrt[3]{R^2+3} \\ &\quad\times \Big(6 R^{10}(R^2-3)^{2/3}-59 R^6 (R^2-3)^{2/3} +1440 R^2 (R^2-3)^{2/3}\\ &\quad +360 (61(R^4-9)^{2/3} \sqrt[3]{R^2+3}+12 (R^2-3)^{2/3}) \\ &\quad +R^4 (709 \sqrt[3]{R^2+3} (R^4-9)^{2/3} -177 (R^2-3)^{2/3})+6 R^8 (3 (R^2-3)^{2/3}\\ &\quad -\sqrt[3]{R^2+3} (R^4-9)^{2/3})\Big)\; {}_2F_1(-\frac{1}{2},\frac{2}{3};1;-\frac{6}{R^2-3})\bigg)\\ &\quad \div 14560 R (R^2-3)^{2/3} (R^2+3)^{2/3} (R^4-9)^{2/3}; \end{align*} \begin{align*} g_1&= \pi \Big(-(2 R^4-39) (3 R^2 \sqrt[3]{R^2-3}+9 \sqrt[3]{R^2-3} +2 (R^2+3)^{2/3} \sqrt[3]{R^4-9}) R^2\\ &\quad{}_2F_1(-\frac{2}{3},\frac{1}{2};1;\frac{6}{R^2+3}) +2 (R^4-12) ((R^2+3) (3 R^2 \sqrt[3]{R^2+3}\\ &\quad -9 \sqrt[3]{R^2+3}+2 (R^2-3)^{2/3} \sqrt[3]{R^4-9}) \, _2F_1(\frac{1}{3},\frac{1}{2};1;-\frac{6}{R^2-3})\\ &\quad +(R^2-3) (3 R^2 \sqrt[3]{R^2-3}+9 \sqrt[3]{R^2-3}+2 (R^2+3)^{2/3} \sqrt[3]{R^4-9})\\ &\quad\times{}_2F_1(\frac{1}{3},\frac{1}{2};1;\frac{6}{R^2+3})) -R^2 (2 R^4-39) (3 R^2 \sqrt[3]{R^2+3}-9 \sqrt[3]{R^2+3}\\ &\quad +2 (R^2-3)^{2/3} \sqrt[3]{R^4-9}) \, _2F_1(-\frac{2}{3},\frac{1}{2};1;-\frac{6}{R^2-3})\Big)\\ &\div 880 R \sqrt[3]{R^4-9}; \end{align*} \begin{align*} g_2&= 3 \pi \bigg((R^2+3) \Big(72 R^{14} (R^2+3)^{2/3}-840 R^{10} (R^2+3)^{2/3}+391 R^6 (R^2+3)^{2/3}\\ &\quad +50688 R^2 (R^2+3)^{2/3}-72 R^{12} ((R^4-9)^{2/3} \sqrt[3]{R^2-3}\\ &\quad +3 (R^2+3)^{2/3})+24 R^8 (73 (R^4-9)^{2/3} \sqrt[3]{R^2-3} +105 (R^2+3)^{2/3})\\ &\quad -51 R^4 (261 (R^4-9)^{2/3} \sqrt[3]{R^2-3}+23 (R^2+3)^{2/3})\\ &\quad -1728 (88 (R^2+3)^{2/3}-15 \sqrt[3]{R^2-3} (R^4-9)^{2/3})\Big) \\ &\quad\times{} _2F_1(-\frac{1}{2},\frac{2}{3};1;\frac{6}{R^2+3}) \sqrt[3]{R^2-3}+((12294 (R^4-9)^{2/3} \sqrt[3]{R^2-3}\\ &\quad -24702 (R^2+3)^{2/3}+R^2(8535 (R^4-9)^{2/3} \sqrt[3]{R^2-3} +391 (R^2+3)^{2/3}\\ &\quad +R^2 (-2640 (R^4-9)^{2/3}\sqrt[3]{R^2-3}-1711 (R^2+3)^{2/3}\\ &\quad -24 R^2 (61 (R^4-9)^{2/3} \sqrt[3]{R^2-3}+3 R^6 (R^2+3)^{2/3} +35 (R^2+3)^{2/3}\\ &\quad -3 R^4 ((R^4-9)^{2/3} \sqrt[3]{R^2-3}+(R^2+3)^{2/3}) -R^2 (6 (R^4-9)^{2/3} \sqrt[3]{R^2-3}\\ &\quad +41 (R^2+3)^{2/3}))))) R^2+576 (88 (R^2+3)^{2/3} -15 \sqrt[3]{R^2-3} (R^4-9)^{2/3})) \\ &\quad\times{}_2F_1(\frac{1}{2},\frac{2}{3};1;\frac{6}{R^2+3}) (R^2-3)^{4/3} +\sqrt[3]{R^2+3} Big((50688 (R^2-3)^{2/3}\\ &\quad +R^2 ((391 (R^2-3)^{2/3}+24 R^2 (73(R^4-9)^{2/3}\sqrt[3]{R^2+3} +3 R^6 (R^2-3)^{2/3}\\ &\quad -35 R^2 (R^2-3)^{2/3}-105(R^2-3)^{2/3}+R^4 (9 (R^2-3)^{2/3}\\ &\quad -3 \sqrt[3]{R^2+3} (R^4-9)^{2/3}))) R^2+51 (23(R^2-3)^{2/3}\\ &\quad -261\sqrt[3]{R^2+3} (R^4-9)^{2/3}))) R^2+1728 (15 (R^4-9)^{2/3} \sqrt[3]{R^2+3} \\ &\quad +88 (R^2-3)^{2/3})\Big) \,_2F_1(-\frac{1}{2},\frac{2}{3};1;-\frac{6}{R^2-3})(R^2-3)\\ &\quad -(R^2+3)^{4/3} (((-8535 (R^4-9)^{2/3} \sqrt[3]{R^2+3}+391 (R^2-3)^{2/3}\\ &\quad +R^2 (-2640 (R^4-9)^{2/3}\sqrt[3]{R^2+3}+1711 (R^2-3)^{2/3}\\ &\quad +24 R^2 (61 (R^4-9)^{2/3} \sqrt[3]{R^2+3}-35 (R^2-3)^{2/3}+R^2 (6 (R^4-9)^{2/3} \sqrt[3]{R^2+3}\\ &\quad -41 (R^2-3)^{2/3}+3 R^2 (-(R^4-9)^{2/3} \sqrt[3]{R^2+3}+R^2 (R^2-3)^{2/3}\\ &\quad +(R^2-3)^{2/3}))))) R^2+6 (2049 (R^4-9)^{2/3} \sqrt[3]{R^2+3}\\ &\quad +4117 (R^2-3)^{2/3})) R^2+576 (15 (R^4-9)^{2/3} \sqrt[3]{R^2+3}\\ &\quad +88 (R^2-3)^{2/3})) \,_2F_1(\frac{1}{2},\frac{2}{3};1;-\frac{6}{R^2-3})\bigg)\\ &\div 442624 R (R^2-3)^{2/3} (R^2+3)^{2/3} (R^4-9)^{2/3}; \end{align*} \begin{align*} g_3 &= \pi \big((-29 R^2 \sqrt[3]{R^2+3}+87 \sqrt[3]{R^2+3}+6 R^6 \sqrt[3]{R^2+3}\\ &\quad +98 (R^2-3)^{2/3} \sqrt[3]{R^4-9}+R^4 (4 (R^2-3)^{2/3}\sqrt[3]{R^4-9}\\ &\quad -18 \sqrt[3]{R^2+3})) R^2 \, _2F_1(-\frac{2}{3},\frac{1}{2};1;-\frac{6}{R^2-3})\\ &\quad +(-29 R^2 \sqrt[3]{R^2-3}-87 \sqrt[3]{R^2-3}+6 R^6 \sqrt[3]{R^2-3}\\ &\quad +98 (R^2+3)^{2/3} \sqrt[3]{R^4-9}+2 R^4 (9 \sqrt[3]{R^2-3}\\ &\quad +2 (R^2+3)^{2/3} \sqrt[3]{R^4-9})) R^2 \, _2F_1(-\frac{2}{3},\frac{1}{2};1;\frac{6}{R^2+3})\\ &\quad -2 (R^2+3) (8 R^2 \sqrt[3]{R^2+3}-24 \sqrt[3]{R^2+3}+3 R^6 \sqrt[3]{R^2+3}\\ &\quad +64 (R^2-3)^{2/3} \sqrt[3]{R^4-9}+R^4 (2 (R^2-3)^{2/3} \sqrt[3]{R^4-9}\\ &\quad -9 \sqrt[3]{R^2+3})) \, _2F_1(\frac{1}{3},\frac{1}{2};1;-\frac{6}{R^2-3})-2 (R^2-3) (8 R^2 \sqrt[3]{R^2-3}\\ &\quad +3 R^6 \sqrt[3]{R^2-3}+R^4 (9 \sqrt[3]{R^2-3}+2 (R^2+3)^{2/3} \sqrt[3]{R^4-9})\\ &\quad +8 (3 \sqrt[3]{R^2-3}+8 (R^2+3)^{2/3} \sqrt[3]{R^4-9})) \, _2F_1(\frac{1}{3},\frac{1}{2};1;\frac{6}{R^2+3})\Big)\\ &\div 880 R \sqrt[3]{R^4-9}; \end{align*} \begin{align*} g_4&= 3 \pi \Big((R^2+3) (6 R^8-7 R^4-1056) (R^2-3)^{2/3} \, _2F_1(-\frac{1}{2},\frac{2}{3};1;\frac{6}{R^2+3})\\ &\quad +(R^2+3)^{2/3} (6 R^8-7 R^4-1056) (R^2-3) \, _2F_1(-\frac{1}{2},\frac{2}{3};1;-\frac{6}{R^2-3})\\ &\quad -(6 R^8+12 R^6+17 R^4+58 R^2-352) (R^2-3)^{5/3} \, _2F_1(\frac{1}{2},\frac{2}{3};1;\frac{6}{R^2+3})\\ &\quad +(R^2+3)^{2/3} (-6 R^{10}-6 R^8+19 R^6+7 R^4+526 R^2+1056)\\ &\quad\times{} _2F_1(\frac{1}{2},\frac{2}{3};1;-\frac{6}{R^2-3})\Big) \Big/2912 R (R^4-9)^{2/3}; \end{align*} \begin{align*} g_5&= -9 \pi \bigg(-(R^2+3) (-120 R^{14} (R^2+3)^{2/3}+1704 R^{10} (R^2+3)^{2/3}\\ &\quad -3641 R^6 (R^2+3)^{2/3}-11520 R^2 (R^2+3)^{2/3}+120 R^{12} ((R^4-9)^{2/3}\\ &\quad\times \sqrt[3]{R^2-3}+3 (R^2+3)^{2/3})+17280 (7 (R^4-9)^{2/3} \sqrt[3]{R^2-3}\\ &\quad +2 (R^2+3)^{2/3})-8 R^8 (403 (R^4-9)^{2/3} \sqrt[3]{R^2-3}+639 (R^2+3)^{2/3})\\ &\quad +3 R^4 (10587 (R^4-9)^{2/3} \sqrt[3]{R^2-3}+3641 (R^2+3)^{2/3})) \\ &\quad\times{}_2F_1(-\frac{1}{2},\frac{2}{3};1;\frac{6}{R^2+3}) \sqrt[3]{R^2-3} +\Big(35994 (R^4-9)^{2/3} \sqrt[3]{R^2-3}\\ &\quad -9858 (R^2+3)^{2/3}+R^2 \Big(22585 (R^4-9)^{2/3} \sqrt[3]{R^2-3}+3641 (R^2+3)^{2/3}\\ &\quad +R^2 \big(-5008 (R^4-9)^{2/3} \sqrt[3]{R^2-3}-6449 (R^2+3)^{2/3}\\ &\quad -8 R^2 (343 (R^4-9)^{2/3} \sqrt[3]{R^2-3}+213 (R^2+3)^{2/3}\\ &\quad +3 R^2 (-10 (R^4-9)^{2/3} \sqrt[3]{R^2-3} +5 R^4 (R^2+3)^{2/3}-81 (R^2+3)^{2/3}\\ &\quad\times \sqrt[3]{R^2-3}+(R^2+3)^{2/3}))\big)\Big)\Big) R^2 +5760 (7 (R^4-9)^{2/3} \sqrt[3]{R^2-3}\\ &\quad +2 (R^2+3)^{2/3})) \, _2F_1(\frac{1}{2},\frac{2}{3};1;\frac{6}{R^2+3}) (R^2-3)^{4/3}\\ &\quad +\sqrt[3]{R^2+3} ((11520 (R^2-3)^{2/3}+R^2 (-31761 (R^4-9)^{2/3} \sqrt[3]{R^2+3}\\ &\quad +10923 (R^2-3)^{2/3}+R^2 (3641 (R^2-3)^{2/3}+8 R^2 (403 (R^4-9)^{2/3} \\ &\quad\times \sqrt[3]{R^2+3}+15 R^6 (R^2-3)^{2/3}-213 R^2 (R^2-3)^{2/3}-639 (R^2-3)^{2/3}\\ &\quad +15 R^4 (3 (R^2-3)^{2/3}-\sqrt[3]{R^2+3} (R^4-9)^{2/3}))))) R^2 \\ &\quad +17280 (2 (R^2-3)^{2/3}-7 \sqrt[3]{R^2+3} (R^4-9)^{2/3})) \\ &_2F_1(-\frac{1}{2},\frac{2}{3};1;-\frac{6}{R^2-3}) (R^2-3)-(R^2+3)^{4/3} ((35994 (R^4-9)^{2/3} \\ &\quad\times \sqrt[3]{R^2+3}+9858 (R^2-3)^{2/3} +R^2 (-22585 (R^4-9)^{2/3} \sqrt[3]{R^2+3}\\ &\quad +3641 (R^2-3)^{2/3}+R^2 (-5008 (R^4-9)^{2/3} \sqrt[3]{R^2+3}+6449 (R^2-3)^{2/3}\\ &\quad +8 R^2 (343 (R^4-9)^{2/3} \sqrt[3]{R^2+3}-213 (R^2-3)^{2/3}\\ &\quad +3 R^2 (10 (R^4-9)^{2/3} \sqrt[3]{R^2+3}-81 (R^2-3)^{2/3} +5 R^2 (-(R^4-9)^{2/3} \\ &\quad\times \sqrt[3]{R^2+3}+R^2 (R^2-3)^{2/3}+(R^2-3)^{2/3})))))) R^2 +5760 (2 (R^2-3)^{2/3}\\ &\quad -7 \sqrt[3]{R^2+3} (R^4-9)^{2/3})) \, _2F_1(\frac{1}{2},\frac{2}{3};1;-\frac{6}{R^2-3})\bigg)\\ &\div 2213120 R (R^2-3)^{2/3} (R^2+3)^{2/3} (R^4-9)^{2/3}; \end{align*} \begin{align*} g_6&= \pi \Big(2 (29 R^2 \sqrt[3]{R^2+3}-87 \sqrt[3]{R^2+3} -6 R^6 \sqrt[3]{R^2+3}+78 (R^2-3)^{2/3}\\ &\quad\times \sqrt[3]{R^4-9}+2 R^4 (9 \sqrt[3]{R^2+3}-2 (R^2-3)^{2/3} \sqrt[3]{R^4-9})) R^2\\ &\quad\times {}_2F_1(-\frac{2}{3},\frac{1}{2};1;-\frac{6}{R^2-3}) +2 (29 R^2 \sqrt[3]{R^2-3}+87 \sqrt[3]{R^2-3}\\ &\quad -6 R^6 \sqrt[3]{R^2-3}+78 (R^2+3)^{2/3} \sqrt[3]{R^4-9}-2 R^4 (9 \sqrt[3]{R^2-3}\\ &\quad +2 (R^2+3)^{2/3} \sqrt[3]{R^4-9})) R^2 \, _2F_1(-\frac{2}{3},\frac{1}{2};1;\frac{6}{R^2+3})\\ &\quad +4 (R^2+3) (8 R^2 \sqrt[3]{R^2+3}+3 R^6 \sqrt[3]{R^2+3}-24 (\sqrt[3]{R^2+3} \\ &\quad +(R^2-3)^{2/3}\sqrt[3]{R^4-9})+R^4 (2 (R^2-3)^{2/3} \sqrt[3]{R^4-9}-9 \sqrt[3]{R^2+3})) \\ &\quad\times{} _2F_1(\frac{1}{3},\frac{1}{2};1;-\frac{6}{R^2-3})+4 (R^2-3) (8 R^2 \sqrt[3]{R^2-3}\\ &\quad +3 R^6 \sqrt[3]{R^2-3}+R^4 (9 \sqrt[3]{R^2-3}+2 (R^2+3)^{2/3} \sqrt[3]{R^4-9})\\ &\quad +24 (\sqrt[3]{R^2-3}-(R^2+3)^{2/3} \sqrt[3]{R^4-9})) \, _2F_1(\frac{1}{3},\frac{1}{2};1;\frac{6}{R^2+3})\Big)\\ &\div 1760 R \sqrt[3]{R^4-9}; \end{align*} \begin{align*} g_7&= 3 \pi \Big(3 (R^2+3) (2 R^8-11 R^4+64) (R^2-3)^{2/3} \, _2F_1(-\frac{1}{2},\frac{2}{3};1;\frac{6}{R^2+3})\\ &\quad +3 (R^2+3)^{2/3} (2 R^8-11 R^4+64) (R^2-3) \, _2F_1(-\frac{1}{2},\frac{2}{3};1;-\frac{6}{R^2-3})\\ &\quad -(6 R^8+12 R^6-9 R^4+6 R^2+64) (R^2-3)^{5/3} \, _2F_1(\frac{1}{2},\frac{2}{3};1;\frac{6}{R^2+3})\\ &\quad -(R^2+3)^{5/3} (6 R^8-12 R^6-9 R^4-6 R^2+64) \, _2F_1(\frac{1}{2},\frac{2}{3};1;-\frac{6}{R^2-3})\Big)\\ &\div 2912 R (R^4-9)^{2/3}; \end{align*} where $_2F_1(a,b,c,z)$ is the hypergeometric function which has the series expansion $$ \sum_{k=0}^{+\infty}\frac{(a)_k(b)_k}{(c)_k}\,\frac{z^k}{k!}, $$ with \[ (a)_k = \begin{cases} 1 & \text{if } k=0; \\ a(a+1)(a+2)\cdots(a+k-1) & \text{if } k> 0. \end{cases} \] \section{Averaging functions $g_{Mi}(R), \;i\in\{1,\ldots,4\}$} \label{appendix2} \begin{gather*} g_{M1}= -\frac{R}{16}-\frac{R^5}{108}-\frac{R^9}{486} -\frac{3}{2 R \sqrt{R^4-9}}+\frac{R^{11}}{486 \sqrt{R^4-9}};\\ g_{M2}= -\frac{R}{12}-\frac{R^5}{54}+\frac{\sqrt{R^4-9}}{6 R} +\frac{1}{54} \sqrt{R^4-9} R^3;\\ g_{M3}= -\frac{R}{6}+\frac{\sqrt{R^4-9}}{6 R};\quad g_{M4}= \frac{3 R}{4}.\\ \end{gather*} \subsection*{Acknowledgements} The first author is supported by a Ci\^{e}ncia sem Fronteiras-CNPq grant number 201002/ 2012-4. The second author is partially supported by a MINECO grant MTM2013-40998-P, an AGAUR grant number 2014SGR-568, the grants FP7-PEOPLE-2012-IRSES 318999 and 316338, the MINECO/fEDER grant UNAB13-4E-1604, and a CAPES grant number 88881.030454/2013-01 from the program CSF-PVE. \begin{thebibliography}{99} \bibitem {Buica} A. Buic\v{a}, J. Llibre; \emph{Averaging methods for finding periodic orbits via Brower degree}, Bull. Sci. Math. \textbf{128} (2004), 7--22. \bibitem {Christopher} C. Christopher, C. Li; \emph{Limit cycles in differential equations}, Birkh\"{a}user, Boston, 2007. \bibitem {Conti} R. Conti; \emph{Uniformly isochronous centers of polynomial systems in $\mathbb{R}^2$}, Lecture Notes in Pure and Appl. Math. \textbf{152} (1994), 21--31. \bibitem {Dias} F. S. Dias, L. F. Mello; \emph{The center-focus problem and small amplitude limit cycles in rigid systems}, Discrete and Continuous Dynamical Systems \textbf{32} (2012), 1627--1637. \bibitem{Hilbert} D. Hilbert; \emph{Mathematische Probleme (lecture)}, in: Second Internat. Congress. Math., Paris, 1900, in: Nach. Ges, Wiss. Gottingen Math-Phys. Kl., 1900, 253--297. \bibitem{IL1} J. Itikawa, J. Llibre; \emph{Limit cycles for continuous and discontinuous perturbations of uniform isochronous cubic centers}, J. Comp. and Appl. Math. \textbf{277} (2015), 171--191. \bibitem {IL2} J. Itikawa, J. Llibre, D. D. Novaes; \emph{A new result on averaging theory for a class of discontinuous planar differential systems with applications}, Preprint, 2015. \bibitem{Llibreswirszcz} J. Llibre, G. \'{S}wirszcz; \emph{On the limit cycles of polynomial vector fields}, Dynamics of Continuous, Discrete and Impulsive Systems, Serie A \textbf{18} (2011), 203--214. \bibitem{Peng} L. Peng, Z. Feng; \emph{Bifurcation of limit cycles from quartic isochronous systems}, Electron. J. Differ. Equations \textbf{95} (2014), 1-14. \bibitem{Pontrjagin} L. S. Pontrjagin; \emph{\"{U}ber Autoschwingungssysteme, die den hamiltonshen nahe liegen}, Physikalische Zeitschrift der Sowjetunion \textbf{6} (1934), 25--28. \bibitem{Ve} F. Verhulst, \emph{Nonlinear Differential Equations and Dynamical Systems}, Universitext Springer Verlag, 1996. \end{thebibliography} \end{document}