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ENTIRE SOLUTIONS FOR NONLINEAR
DIFFERENTIAL-DIFFERENCE EQUATIONS

NA XU, TING-BIN CAO, KAI LIU

Abstract. In this article, we study entire solutions of the nonlinear differential-
difference equation

q(z)fn(z) + a(z)f (k)(z + 1) = p1(z)eq1(z) + p2(z)eq2(z)

where p1(z), p2(z) are nonzero polynomials, q1(z), q2(z) are nonconstant poly-
nomials, q(z), a(z) are nonzero entire functions of finite order, n ≥ 2 is an

integer. We obtain additional results for case: n = 3, q1(z) = −q2(z), and

p1(z), p2(z) nonzero constants.

1. Introduction and main results

In this article, we assume that the reader is familiar with standard symbols
and fundamental results of Nevanlinna Theory. We denote by S(r, f) any quantity
satisfying S(r, f) = o(T (r, f)), as r → ∞, possibly outside of a set E with finite
linear measure. We use λ( 1

f ) and λ(f) to denote the exponents of convergence
of poles and zeros of f(z) respectively, σ(f) to denote the order of f(z). The
hyper-order of f(z) is defined as

σ2(f) = lim sup
r→∞

log log T (r, f)
log r

,

the lower hyper-order of f(z) is defined as

µ2(f) = lim inf
r→∞

log log T (r, f)
log r

,

the hyper exponent of convergence of zeros of f(z) is defined by

λ2(f) = lim sup
r→∞

log logN(r, 1
f )

log r
,

and the deficiency of a with respect to f(z) is defined by

δ(a, f) = 1− lim sup
r→∞

N(r, 1
f−a )

T (r, f)
.

A differential polynomial of f(z) means that it is a polynomial in f(z) and its
derivatives with small functions of f(z) as coefficients. A differential-difference
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polynomial of f(z) means that it is a polynomial in f(z), its derivatives and its
shifts f(z + c) with small functions of f(z) as coefficients. We shall use Pd(f) to
denote a differential polynomial or a differential-difference polynomial of f(z) with
degree d.

In previous two decades, the existence and growth of meromorphic solutions of
difference equations have been investigated in many papers [1-7, 9-12, 15]. Recently,
there has been a renewed interest in studying meromorphic solutions of differential-
difference equations, see [13, 14, 17]. For instance, many authors have considered
the equation fn(z) +Pd(f) = p1(z)eq1(z) + p2(z)eq2(z). when Pd(f) is a differential
polynomial, Li and Yang [11, 15] investigated the properties of solutions of the
above equation. When Pd(f) is a differential-difference polynomial, Zhang and
Liao [17] proved that if the above equation satisfies some conditions, it doesn’t
have any transcendental entire solution of finite order.

Theorem 1.1 ([17, Theorem 3]). Let n ≥ 4 be an integer and Pd(f) denote an
algebraic differential-difference polynomial in f(z) of degree d ≤ n − 3. If p1(z),
p2(z) are nonzero polynomials, α1, α2 are nonzero constants with α1

α2
6= ( dn )±1, 1.

Then the equation

fn(z) + Pd(f) = p1(z)eα1z + p2(z)eα2z,

does not have any transcendental entire solution of finite order.

Peng and Chen [13] considered the special case for difference equations and
obtained some results.

Theorem 1.2 ([13, Theorem 2.1]). Consider the nonlinear difference equation

fn(z) + a(z)f(z + 1) = c sin bz,

where a(z) is a nonconstant polynomial, b, c are nonzero constants and n ≥ 2 is
an integer. Suppose that an entire function f(z) satisfies any one of the following
three conditions:

(1) λ(f) < σ(f) =∞;
(2) λ2(f) < σ2(f);
(3) µ2(f) < 1.

Then f(z) can not be an entire solution of this equation.

In this paper, we consider a general differential-difference equation and obtain
the following theorem.

Theorem 1.3. Consider the nonlinear differential-difference equation

q(z)fn(z) + a(z)f (k)(z + 1) = p1(z)eq1(z) + p2(z)eq2(z), (1.1)

where p1(z), p2(z) are two nonzero polynomials, q(z), a(z) are two nonzero entire
functions of finite order, q1(z), q2(z) are two nonconstant polynomials, n ≥ 2 is an
integer. Suppose that an entire function f(z) satisfies any one of the following two
conditions:

(1) λ(f) < σ(f) =∞, σ2(f) <∞;
(2) λ2(f) < σ2(f) <∞.

Then f(z) can not be an entire solution of (1.1).
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Zhang and Liao [17] also considered the existence of transcendental entire solu-
tions of finite order to

f3(z) + a(z)f(z + 1) = p1e
λz + p2e

−λz

and obtained the following theorem.

Theorem 1.4 ([17, Theorem 4]). Let p1, p2 and λ be nonzero constants, for the
difference equation

f3(z) + a(z)f(z + 1) = p1e
λz + p2e

−λz,

where a(z) is a polynomial, we have
(1) if a(z) is not a constant, then the equation does not have any transcendental

entire solution of finite order;
(2) if a(z) is a nonzero constant, then the equation admits transcendental en-

tire solutions of finite order if and only if the condition eλ/3 = ∓1 and
p1p2 = ±(a/3)3 holds. Furthermore if the condition above holds, then the
transcendental entire solution of finite order of the equation has the form

f(z) = σje
2kπiz − a

3σj
e−2kπiz

or
f(z) = σje

2kπiz+πiz +
a

3σj
e−(2kπiz+πiz).

In this article, we consider the more general case for differential-difference equa-
tions and obtain the following theorem.

Theorem 1.5. Let p1, p2 and λ be nonzero constants, a(z) be an entire function
with zero order, q(z) be a nonconstant polynomial. Then any transcendental entire
solution f(z) of finite order of the equation

f3(z) + a(z)f (k)(z + 1) = p1e
λq(z) + p2e

−λq(z), (1.2)

satisfies δ(0, f) = 0.

For the special case of q(z) ≡ z, we have the following result.

Theorem 1.6. Consider the differential-difference equation

f3(z) + a(z)f (k)(z + 1) = p1e
λz + p2e

−λz, (1.3)

where p1, p2 and λ are nonzero constants, a(z) is an entire function with zero order.
We have

(1) if a(z) is not a constant, then the equation does not have any transcendental
entire solution of finite order;

(2) if a(z) is a nonzero constant, k is an even number, then the equation admits
transcendental entire solutions of finite order if and only if the condition
eλ/3 = ∓1 and p1p2 = ±(a/3)3 holds. Furthermore if the condition above
holds, then the transcendental entire solution of finite order of the equation
has the form

f(z) = σje
2kπiz − a

3σj
e−2kπiz

or
f(z) = σje

2kπiz+πiz +
a

3σj
e−(2kπiz+πiz);
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(3) if a(z) is a nonzero constant, k is an odd number, then the equation admits
transcendental entire solutions of finite order if and only if the condition
e

1
3λ = ∓i and p1p2 = ±(ai3 )3 holds.

Furthermore if the condition above holds, then the transcendental entire solution of
finite order of the equation has the form

f(z) = σje
2kπiz+π

2 iz − ai

3σj
e−(2kπiz+π

2 iz)

or

f(z) = σje
2kπiz−π2 iz +

ai

3σj
e−(2kπiz−π2 iz).

2. Lemmas

To prove our results, we need some lemmas.

Lemma 2.1 ([16]). Suppose that f1(z), f2(z), . . . , fn(z), (n ≥ 2) are meromorphic
functions and g1(z), g2(z), . . . , gn(z) are entire functions satisfying the following
conditions:

(1)
∑n
j=1 fj(z)e

gj(z) ≡ 0;
(2) gj(z)− gk(z) are not constants for 1 ≤ j < k ≤ n;
(3) For 1 ≤ j ≤ n, 1 ≤ h < k ≤ n, T (r, fj) = o(T (r, egh−gk)) (r →∞, r 6∈ E).

Then fj(z) ≡ 0(j = 1, 2, . . . , n).

Lemma 2.2 ([3]). Let f(z) be a transcendental entire function of infinite order
and σ2(f) = α <∞. Then f(z) can be represented as

f(z) = Q(z)eg(z),

where Q and g are entire functions such that

λ(Q) = σ(Q) = λ(f), λ2(Q) = σ2(Q) = λ2(f),

σ2(f) = max{σ2(Q), σ2(eg)}.

Lemma 2.3 ([9]). Let f(z) be a transcendental meromorphic solution of finite order
σ of a difference equation of the form

U(z, f)P (z, f) = Q(z, f),

where U(z, f), P (z, f), Q(z, f) are difference polynomials such that the total degree
of U(z, f) in f(z) and its shifts is n, and that the total degree of Q(z, f) is at most
n. If U(z, f) just contains one term of maximal total degree, then for any ε > 0,

m(r, P (z, f)) = O(rσ−1+ε) + S(r, f)

holds possibly outside of an exceptional set of finite logarithmic measure.

Lemma 2.4 ([15]). Suppose that c is a nonzero constant and α is a nonconstant
meromorphic function. Then the equation

f2(z) + (cf (n)(z))2 = α

has no transcendental meromorphic solution f(z) satisfying T (r, α) = S(r, f).
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3. Proofs main results

Proof of Theorem 1.3. (1) Let f be an entire solution of equation (1.1) and satisfy
λ(f) < σ(f) = ∞, σ2(f) < ∞. By Lemma 2.2, f(z) can be rewritten as f(z) =
Q(z)eg(z), where Q is an entire function, g is a transcendental entire function such
that λ(Q) = σ(Q) = λ(f), λ2(Q) = σ2(Q) = λ2(f), σ2(f) = max{σ2(Q), σ2(eg)}.

From condition σ2(f) < ∞, so σ(g) = σ2(eg) < ∞. Substituting f(z) =
Q(z)eg(z) into (1.1) we obtain that

q(z)Qn(z)eng(z) + a(z)H(z)eg(z+1) = p1(z)eq1(z) + p2(z)eq2(z), (3.1)

where H(z) is a differential polynomial in Q(z + 1) and g(z + 1), σ(H) < ∞. Set
G(z) = g(z + 1)− ng(z), then (3.1) becomes

q(z)Qn(z) + a(z)H(z)eG(z) = e−ng(z)
(
p1(z)eq1(z) + p2(z)eq2(z)

)
. (3.2)

If G(z) is a polynomial, then

σ
(
q(z)Qn(z) + a(z)H(z)eG(z)

)
<∞,

but
σ
(
e−ng(z)

(
p1(z)eq1(z) + p2(z)eq2(z)

))
=∞.

Then by (3.2), we obtain a contradiction.
If G(z) is a transcendental entire function, then (3.1) can be rewritten as

q(z)Qn(z)eng(z) + a(z)H(z)eg(z+1) − eh(z)
(
p1(z)eq1(z) + p2(z)eq2(z)

)
= 0, (3.3)

where h(z) ≡ 0. By Lemma 2.1, we deduce

q(z)Qn(z) ≡ 0, a(z)H(z) ≡ 0,−p1(z)eq1(z) − p2(z)eq2(z) ≡ 0,

for Qn(z) ≡ 0, so f(z) ≡ 0, but σ(f) =∞, this is a contradiction.
(2) Suppose that f is an entire solution of equation (1.1) and satisfies λ2(f) <

σ2(f) <∞. By Lemma 2.2, f(z) can be rewritten as f(z) = Q(z)eg(z), where Q is
an entire function, g is a transcendental entire function such that

λ(Q) = σ(Q) = λ(f), λ2(Q) = σ2(Q) = λ2(f), σ2(f) = max{σ2(Q), σ2(eg)}.
From condition, we obtain σ2(f) = σ2(eg) <∞, so σ2(Q) < σ2(eg) = σ(g) <∞.

Substituting f(z) = Q(z)eg(z) into (1.1), we obtain (3.2). Since σ(q(z)) < ∞, so
σ2(q(z)) = 0.

If σ(G) < σ(g), then

σ2

(
q(z)Qn(z) + a(z)H(z)eG(z)

)
≤ max{σ2(Q), σ(G)} < σ(g)

= σ2

(
e−ng(z)

(
p1(z)eq1(z) + p2(z)eq2(z)

))
,

which is a contradiction.
If σ(G) = σ(g), then we can get (3.3). Using the same method as in the proof

of (1), by Lemma 2.1, we also get a contradiction. �

Proof of Theorem 1.5. Let f(z) be a transcendental entire solution of finite order
of (1.2) with δ(0, f) > 0. By differentiating both sides of (1.2), we obtain

3f2(z)f ′(z) + a′(z)f (k)(z + 1) + a(z)f (k+1)(z + 1) = λq′(z)
(
p1e

λq(z) − p2e
−λq(z)

)
.

(3.4)
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By taking both squares of (1.2) and (3.4), and eliminating e±λq(z), we deduce

(λq′(z))2
(
f3(z) + a(z)f (k)(z + 1)

)2

−
(

3f2(z)f ′(z) + a′(z)f (k)(z + 1) + a(z)f (k+1)(z + 1)
)2

= 4p1p2λ
2(q′(z))2,

(3.5)

Set α(z) = λ2(q′(z))2f2(z) − 9(f ′(z))2, thus α(z) is an entire function. Then
we rewrite (3.5) in the form f4α = Q(f), where Q(f) is a differential-difference
polynomial in f(z) with total degree 4. By Lemma 2.3, we obtain

T (r, α) = m(r, α) = O(rσ−1+ε) + S(r, f).

Thus α is a small function of f(z). Next, we consider two cases.

Case 1. α ≡ 0. Then f(z) = ce±
1
3λq(z). By substituting this into (1.2), we obtain

(c3 − p1)eλq(z) +
1
3
λa(z)q′(z + 1)e

1
3λq(z+1) − p2e

−λq(z) = 0,

or

(c3 − p2)e−λq(z) − 1
3
λa(z)q′(z + 1)e−

1
3λq(z+1) − p1e

λq(z) = 0.

Since q(z) is a nonconstant polynomial, by Lemma 2.1, we obtain p1 = 0 or p2 = 0.
This is a contradiction.
Case 2. α 6≡ 0. We rewrite α as

α = f2A(z),

where A(z) = λ2q′ − 9( f
′

f )2, by the Lemma of Logarithmic Derivative of meromor-
phic function, then m(r,A) = S(r, f). Since α 6≡ 0, then A 6≡ 0. For any Small
ε > 0, we have

O(1) + 2T (r, f) = T (r, f2) = m(r, f2) = m(r,
α

A
)

≤ m(r, α) +m(r,
1
A

)

≤ S(r, f) + T (r,A)

≤ S(r, f) +N(r,A)

≤ S(r, f) + 2N(r,
1
f

)

≤ 2(1− δ(0, f) + ε)T (r, f).

This is impossible for 0 < ε < δ(0, f). The proof of Theorem 1.5 is complete. �

Proof of Theorem 1.6. Suppose that f(z) is a transcendental entire solution of (1.3)
with finite order. By differentiating both sides of (1.3), we obtain

3f2(z)f ′(z) + a′(z)f (k)(z + 1) + a(z)f (k+1)(z + 1) = λp1e
λz − λp2e

−λz. (3.6)

By taking both squares of (1.3) and (3.6), and eliminating e±λz, we deduce

4λ2p1p2 = λ2
(
f3(z) + a(z)f (k)(z + 1)

)2

−
(

3f2(z)f ′(z) + a′(z)f (k)(z + 1) + a(z)f (k+1)(z + 1)
)2

,



EJDE-2015/22 ENTIRE SOLUTIONS 7

set α(z) = λ2f2(z)−9(f ′(z))2, thus α(z) is an entire function. Then we rewrite(3.6)
in the form f4α = Q(f), where Q(f) is a differential-difference polynomial in f(z)
with total degree 4. By Lemma 2.3, we obtain

T (r, α) = m(r, α) = O(rσ−1+ε) + S(r, f).

Thus α is a small function of f(z). Next, we consider two cases.

Case 1. α ≡ 0. Then f(z) = ce±
1
3λz. By substituting this into (1.3), we obtain

(c3 − p1)eλz + (
1
3
λ)ka(z)e

1
3λ(z+1) − p2e

−λz = 0,

or
(c3 − p2)e−λz + (−1

3
λ)ka(z)e−

1
3λ(z+1) − p1e

λz = 0.

By Lemma 2.1, we obtain p1 = 0 or p2 = 0. This is a contradiction.
Case 2. α 6≡ 0. By Lemma 2.4, we obtain α is a nonzero constant. Thus

α′ = 2f ′(λ2f − 9f
′′
) = 0.

Since f(z) is transcendental, then

λ2f − 9f
′′

= 0.

By a simple calculation,

f(z) = c1e
1
3λz + c2e

− 1
3λz,

where c1, c2 are nonzero constants. By substituting this into (1.3) and simple
calculation, get

(c31 − p1)eλz + (c32 − p2)e−λz +
(

3c21c2 + c1a(z)(
1
3
λ)ke

1
3λ
)
e

1
3λz

+
(

3c1c22 + c2a(z)(−1
3
λ)ke−

1
3λ
)
e−

1
3λz = 0,

by Lemma 2.1, we deduce

c31 = p1, c
3
2 = p2, 3c1c2 + a(z)(

1
3
λ)ke

1
3λ ≡ 0, 3c1c2 + a(z)(−1

3
λ)ke−

1
3λ ≡ 0.

If a(z) is not a nonzero constant, we can get a contradiction. Then equation
(1.3) does not admit any transcendental entire solution of finite order.

If a(z) is a nonzero constant, k is an even number, then

a(
1
3

)kλk
(
e

1
3λ − e− 1

3λ
)

= 0,

so
e

1
3λ = ∓1, p1p2 = ±(

a

3
)3, c1c2 = ±a

3
.

Thus c1 can assume σj(j = 1, 2, 3), where σj satisfies σ3
j = p1(j = 1, 2, 3) and

c2 = ± a
3c1

. Hence f(z) is of the following forms f(z) = σje
2kπiz − a

3σj
e−2kπiz or

f(z) = σje
2kπiz+πiz + a

3σj
e−(2kπiz+πiz).

If a(z) is a nonzero constant, k is an odd number, then

a(
1
3

)kλk
(
e

1
3λ + e−

1
3λ
)

= 0,

so
e

1
3λ = ∓i, p1p2 = ±(

ai

3
)3, c1c2 = ±ai

3
.
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Thus c1 can assume σj (j = 1, 2, 3), where σj satisfies σ3
j = p1(j = 1, 2, 3) and c2 =

± ai
3c1

. Hence f(z) is of the following forms f(z) = σje
2kπiz+π

2 iz − ai
3σj

e−(2kπiz+π
2 iz)

or f(z) = σje
2kπiz−π2 iz + ai

3σj
e−(2kπiz−π2 iz). Therefore, the proof of Theorem 1.6 is

complete. �
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