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ROBUST OBSERVABILITY FOR REGULAR LINEAR SYSTEMS
UNDER NONLINEAR PERTURBATION

WEISHENG JIANG, BIN LIU, ZHIBING ZHANG

Abstract. In this article, we consider the admissibility and exact observ-
ability of a class of semilinear systems obtained by nonlinear perturbation for

regular linear systems. We obtain the well-posedness of the semilinear system

and the admissibility of the observation operator for the nonlinear semigroup,
the solution semigroup of the semilinear system. Further, we obtain the ro-

bustness of the exact observability with respect to nonlinear perturbations
when the Lipschitz constant is small enough. Finally, we give two examples to

illustrate the obtained results.

1. Introduction

Many control systems described by partial differential equations can be rewritten
as a regular linear system (see e.g. [4, 5, 10, 11, 12, 13])

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t),
(1.1)

where A generates a C0-semigroup (T (t))t≥0 on Hilbert X, input operator B : U →
X and output operator C : X → Y are linear operator (maybe unbounded), here
U and Y are other Hilbert spaces, and D ∈ L(U, Y ) is the feedthrough operator.
For the definition of regular linear system, we refer to [30, 31]; also we introduce
the definition in Section 2. In this work we take nonlinear state-feedback for (1.1)
with D = 0, that is, u(t) = F (x(t)), where F : X → U is a nonlinear continuous
function. Then we obtain the following closed-loop system

ẋ(t) = Ax(t) +BF (x(t)), u(0) = x0 ∈ X, t ≥ 0 (1.2)

with output
y(t) = Cx(t). (1.3)

We first consider the well-posedness of (1.2), that is, we prove that (1.2) admits
a unique mild solution u(t, x0) for all x0 ∈ X. Moreover, by S(t)x0 = u(t, x0) we
define a nonlinear semigroup (S(t))t≥0. Then we consider the admissibility and
observability of C for (S(t))t≥0.
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The problem of admissibility of unbounded observation operator has been studied
by many authors. In the case of linear systems, Salamon [26] and Weiss [29] intro-
duce the definition of admissibility, and many authors gave the different conditions
for admissibility, see e.g. [6, 7, 8, 14, 17, 18]. Moreover, many authors considered
the problem of robustness of admissibility under different linear perturbations, see
e.g. [15, 21, 28, 30]. In addition, the problem of observability of unbounded observa-
tion operator is well studied for linear systems, see e.g. [1, 19, 20, 22, 24, 25, 28, 35].
Recently, Baroun and Jacob [2] extended the definition of admissibility and observ-
ability of the observation operator C for semilinear systems in the case that the
nonlinear function is globally Lipschitz continuous, and they obtained the condi-
tions guaranteeing that the semilinear system is exactly observable if and only if
the linearized system has this property. In addition, Baroun, Jacob et al. [3] con-
sidered the same problem in the case that the nonlinear function is locally Lipschitz
continuous.

In the spirit of [2, 3], we consider the admissibility and observability of the
semilinear system (1.2) and (1.3) in the case that the nonlinear function F is globally
Lipschitz continuous, and obtain the admissibility of C for the nonlinear semigroup
(S(t))t≥0, and prove that the semilinear system (1.2) and (1.3) is exactly observable
if and only if the linearized system has this property when the Lipschitz constant
for F is small enough. The results in this work can be applied to some control
systems with nonlinear boundary perturbations.

This article is organized as follows. In Section 2, we introduce the concepts
of the regular linear system and the admissible state feedback, and their some
properties. In Section 3 we obtain the well-posedness of (1.2), and introduce a
nonlinear semigroup (S(t))t≥0 by the solution of (1.2). In Section 4 we obtain the
admissibility of C for (S(t))t≥0, and prove that the semilinear system (1.2) and (1.3)
is exactly observable if and only if the linearized system has this property when the
Lipschitz constant for F is small enough. Finally, in Section 5, we illustrate the
results in this work by two examples.

2. Regular linear system

In this section, we introduce the concepts of the regular linear system and the
admissible state feedback, and their some properties in state-space framework. We
refer the reader to [26, 27, 30, 31] for more details.

Throughout this paper, X, U and Y are Hilbert spaces. A : D(A) → X is the
infinitesimal generator of C0-semigroup (T (t))t≥0 (with ‖T (t)‖ ≤ Meωt for some
constants M > 0 and ω ) on X. The Hilbert space X1 is D(A) with the graph
norm. The Hilbert space X−1 is the completion of X with respect to the norm
‖(αI −A)−1 · ‖, where α ∈ ρ(A) (the resolvent set of A) is fixed. We have

X1 ⊂ X ⊂ X−1

with continuous and dense embeddings. (T (t))t≥0 restricts to a C0-semigroup on
X1 and extends to a C0-semigroup on X−1 denoted by the same symbol.
B ∈ L(U,X−1) (the set of all bounded and linear operators from U to X−1) is

called an admissible control operator for (T (t))t≥0 if there exist some t > 0 (and
hence for all t > 0) and αt = α(t) such that∫ t

0

T (t− s)Bu(s)ds ∈ X,
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and

‖
∫ t

0

T (t− s)Bu(s)ds‖X ≤ αt‖u(·)‖L2(0,t;U) for all u(·) ∈ L2(0, t;U). (2.1)

C ∈ L(X1, Y ) is called an admissible observation operator for (T (t))t≥0 if there
exist some t > 0 (and hence for all t > 0) and βt = β(t) such that

‖CT (·)x‖L2(0,t;Y ) ≤ βt‖x‖X , for all x ∈ X1. (2.2)

We can choose α(t) and β(t) such that they are nondecreasing functions. It is clear
from (2.2) that CT (·) can be extended to a bounded linear operator from X to
L2(0, t;Y ), denoted by the same symbol. For the admissible observation operator
C, define its Λ-extension CΛ as follows

CΛx = lim
λ→+∞

Cλ(λI −A)−1x (2.3)

with x ∈ D(CΛ) = {x ∈ X : limλ→+∞ Cλ(λI −A)−1x exists}.
The system Σ(A,B,C,D) is called a regular linear system if A, B, C and D

satisfy
(a) A generates a C0-semigroup (T (t))t≥0 on X;
(b) B is an admissible control operator for (T (t))t≥0;
(c) C is an admissible observation operator for (T (t))t≥0;
(d) CΛ(sI−A)−1B makes sense for some s ∈ ρ(A), i.e., (sI−A)−1Bu ∈ D(CΛ)

for all u ∈ U ;
(e) The function s → ‖CΛ(sI − A)−1B + D‖ is uniformly bounded in some

right half-plane, where D ∈ L(U, Y ).
In [31], the definition of regular linear system is given by the time-domain way while
the above definition is given by the equivalent conditions (see [31, 34] for details).
F ∈ L(X1, U) is called an admissible state-feedback operator for the pair (A,B)

if (A,B, F ) is a regular linear system with state space X, input space U and output
space U , and I − FΛ(sI − A)−1B is invertible on the right half-plane C+

α = {s :
Res > α}, where α is some real number, and this inverse is uniformly bounded.

We summarize the results about admissible state-feedback operators as follows
and refer to [32, 33, 34, 36] for details:

Theorem 2.1. Let F be an admissible state-feedback operator for the pair (A,B).
Then the following statements hold:

(i) The operator AF := A + BFΛ with domain D(AF ) = {x ∈ D(FΛ) : (A +
BFΛ)x ∈ X} generates a C0-semigroup (TF (t))t≥0 on X. Moreover, (TF (t))t≥0 is
described by

TF (t)x0 = T (t)x0 +
∫ t

0

T (t− τ)BFΛTF (τ)x0dτ

= T (t)x0 +
∫ t

0

TF (t− τ)BFΛT (τ)x0dτ, x0 ∈ X;
(2.4)

(ii) B is an admissible control operator for (TF (t))t≥0;
(iii) F 1 defined as FΛ restricted to D(AF ) is an admissible observation operator

for (TF (t))t≥0;
(iv) if F 1

Λ denotes the Λ-extension of F 1 with respect to (TF (t))t≥0, i.e.,

F 1
Λx = lim

λ→+∞
F 1λ(λI −AF )−1x, x ∈ D(F 1

Λ),
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then F 1
Λ = FΛ, in particular, D(F 1

Λ) = D(FΛ);
(v) Σ(AF , B, F 1) is a regular linear system.

3. Well-posedness and nonlinear semigroup

In this section, we show the well-posedness of the system
dx(t)
dt

= Ax(t) +BF (x(t)), x(0) = x0, t ≥ 0, x0 ∈ X, (3.1)

where A generates a C0-semigroup (T (t))t≥0 on Hilbert X, B ∈ L(U,X−1) is an
admissible control operator for (T (t))t≥0, and F (·) : X → U is a globally Lipschitz
continuous function, that is, there exists a positive constant L such that

‖F (x)− F (y)‖ ≤ L‖x− y‖, (3.2)

for all x, y ∈ X, and F (0) = 0.

Theorem 3.1. Assume that B is an admissible control operator for (T (t))t≥0 gen-
erated by A, and that F (·) : X → U is a globally Lipschitz continuous function.
Then, for any x0 ∈ X, (3.1) has a unique mild solution given by

x(t) = T (t)x0 +
∫ t

0

T (t− σ)BF (x(σ))dσ. (3.3)

Proof. Given t0 ≥ 0. Define a function G on C(0, t0;X) (the set of all continuous
functions from [0, t0] to X) as follows:

G(x(t)) = T (t)x0 +
∫ t

0

T (t− σ)BF (x(σ))dσ, x(·) ∈ C(0, t0;X). (3.4)

Firstly, we show that G(x(·)) ∈ C(0, t0;X) for all x(·) ∈ C(0, t0;X).
For t ∈ [0, t0] and h small enough such that t + h ∈ [0, t0]. Without loss of

generality, we assume that h > 0 (the case of h < 0 can be proved by the same
method). It follows from (3.4) that

G(x(t+ h))−G(x(t)) = T (t+ h)x0 +
∫ t+h

0

T (t+ h− σ)BF (x(σ))dσ

− T (t)x0 −
∫ t

0

T (t− σ)BF (x(σ))dσ.
(3.5)

Changing σ into σ + h, we have∫ t+h

0

T (t+ h− σ)BF (x(σ))dσ

=
∫ 0

−h
T (t− σ)BF (x(σ + h))dσ +

∫ t

0

T (t− σ)BF (x(σ + h))dσ.
(3.6)

It follows from (3.5) and (3.6) that

G(x(t+ h))−G(x(t)) = (T (h)− I)T (t)x0

+
∫ t

0

T (t− σ)B(F (x(σ + h))− F (x(σ)))dσ

+
∫ 0

−h
T (t− σ)BF (x(σ + h))dσ

= I1 + I2 + I3.

(3.7)
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For I1, using the strong continuity of C0-semigroup (T (t))t≥0, we have

‖I1‖ = ‖(T (h)− I)T (t)x0‖ → 0, as h→ 0. (3.8)

For I2, it follows from (2.1) and (3.2) that

‖I2‖ ≤ α(t)(
∫ t

0

‖F (x(σ + h))− F (x(σ))‖2dσ)1/2

≤ Lα(t)(
∫ t

0

‖x(σ + h)− x(σ)‖2dσ)1/2.

(3.9)

In addition, x(·) is uniformly continuous in [0, t] since x(·) is continuous. Then

‖I2‖ → 0, as h→ 0. (3.10)

For I3, changing σ + h into σ and using (2.1), and that α(t) is nondecreasing, we
have

‖I3‖ = ‖
∫ h

0

T (t+ h− σ)BF (x(σ))dσ‖

≤ ‖T (t)‖‖
∫ h

0

T (h− σ)BF (x(σ))dσ‖

≤ α(t0)‖T (t)‖(
∫ h

0

‖F (x(σ))‖2dσ)1/2.

(3.11)

It follows from (3.11) and the continuity of F (x(·)) that

‖I3‖ → 0, as h→ 0. (3.12)

It follows from (3.7), (3.8), (3.10) and (3.12) that

‖G(x(t+ h))−G(x(t))‖ → 0 as h→ 0,

and consequently, G : C(0, t0;X)→ C(0, t0;X).
Secondly, we show the existence of mild solution of (3.1). For any x1(·), x2(·) ∈

C(0, t0;X), note that α(t) is a nondecreasing function, it follows from (2.1) and
(3.2) that

‖G(x1(t))−G(x2(t))‖ = ‖
∫ t

0

T (t− σ)B(F (x1(σ))− F (x2(σ)))dσ‖

≤ α(t0)(
∫ t

0

‖F (x1(σ))− F (x2(σ))‖2dσ‖)1/2

≤ α(t0)L(
∫ t

0

‖x1(σ)− x2(σ)‖2dσ‖)1/2

≤ α(t0)Lt1/2‖x1 − x2‖C(0,t0;X),

By induction on n, we have

‖Gn(x1(t))−Gn(x2(t))‖ ≤ αn(t0)Ln(
tn

n!
)1/2‖x1 − x2‖C(0,t0;X),

where Gn represents the n-time iteration of G, that is, Gn = G(G(· · ·G)). So

‖Gn(x1)−Gn(x2)‖C(0,t0;X) ≤ αn(t0)Ln(
tn0
n!

)1/2‖x1 − x2‖C(0,t0;X).

It is clear that αn(t0)Ln( t
n
0
n! )

1/2 → 0 as n → ∞. Then it follows from a well
known existence of the contraction principle that G has a unique fixed point x(·)
in C(0, t0;X). The fixed point is the desired mild solution of (3.1).
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Finally, we show the uniqueness of mild solution of (3.1), and the Lipschitz
continuity of the map x0 → x(·). Let y(·) be a mild solution of (3.1) with the
initial value y0. Then

‖x(t)− y(t)‖ ≤ ‖T (t)(x0 − y0)‖+ ‖
∫ t

0

T (t− σ)B(F (x(σ))− F (y(σ)))dσ‖

≤Meωt‖x0 − y0‖+ α(t)(
∫ t

0

‖F (x(σ))− F (y(σ))‖2dσ)1/2

≤Meωt‖x0 − y0‖+ α(t0)L(
∫ t

0

‖x(σ)− y(σ)‖2dσ)1/2,

and consequently,

‖x(t)− y(t)‖2 ≤ 2M2e2ωt‖x0 − y0‖2 + 2α2(t0)L2

∫ t

0

‖x(σ)− y(σ)‖2dσ,

which implies, by Gronwall’s inequality, that

‖x(t)− y(t)‖2 ≤ 2M2e2ωte2α2(t0)L2t‖x0 − y0‖2.

That is,

‖x(t)− y(t)‖ ≤
√

2Meωteα
2(t0)L2t‖x0 − y0‖.

Then

‖x(t)− y(t)‖C(0,t0;X) ≤
√

2Me|ω|t0eα
2(t0)L2t0‖x0 − y0‖,

which yields both the uniqueness of mild solution of (3.1), and the Lipschitz con-
tinuity of the map x0 → x(·). �

Let (S(t))t≥0 be the family of nonlinear operators defined in X by

S(t)x0 = x(t), t ≥ 0, (3.13)

where x0 ∈ X and x(t) is the mild solution of (3.1) with the initial value x0.

Proposition 3.2. Let (S(t))t≥0 be defined by (3.13). Then (S(t))t≥0 is a nonlinear
semigroup on X.

Proof. It is sufficient to prove that the following two properties hold:

(P1) S(0)x0 = x0 and S(s+ t)x0 = S(t)S(s)x0 for s, t ≥ 0 and x0 ∈ X;
(P2) S(·)x0 is continuous over [0,+∞) for each x0 ∈ X.
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Firstly, we prove that the property (P1) holds. It is clear that S(0)x0 = x0 for all
x0 ∈ X. In addition, using the definition of S(t) and changing σ into s+σ, we have

S(t+ s)x0 = T (t+ s)x0 +
∫ t+s

0

T (t+ s− σ)BF (x(σ))dσ

= T (t+ s)x0 +
∫ t+s

0

T (t+ s− σ)BF (S(σ)x0)dσ

= T (t)T (s)x0 +
∫ s

0

T (t+ s− σ)BF (S(σ)x0)dσ

+
∫ t+s

s

T (t+ s− σ)BF (S(σ)x0)dσ

= T (t)T (s)x0 +
∫ s

0

T (t+ s− σ)BF (S(σ)x0)dσ

+
∫ t

0

T (t− σ)BF (S(s+ σ)x0)dσ.

(3.14)

On the other hand,

S(t)S(s)x0 = T (t)S(s)x0 +
∫ t

0

T (t− σ)BF (S(σ)S(s)x0)dσ

= T (t)(T (s)x0 +
∫ s

0

T (s− σ)BF (S(σ)x0)dσ)

+
∫ t

0

T (t− σ)BF (S(σ)S(s)x0)dσ

= T (t)T (s)x0 +
∫ s

0

T (t+ s− σ)BF (S(σ)x0)dσ

+
∫ t

0

T (t− σ)BF (S(σ)S(s)x0)dσ.

(3.15)

Then it follows from (3.14) and (3.15) that

S(t+ s)x0 − S(t)S(s)x0 =
∫ t

0

T (t− σ)B(F (S(s+ σ)x0)− F (S(σ)S(s)x0))dσ,

and consequently, by (2.1) and (3.2), we have

‖S(t+ s)x0 − S(t)S(s)x0‖2

= ‖
∫ t

0

T (t− σ)B(F (S(s+ σ)x0)− F (S(σ)S(s)x0))dσ‖2

≤ α2(t)
∫ t

0

‖F (S(s+ σ)x0)− F (S(σ)S(s)x0)‖2dσ

≤ α2(t0)L2

∫ t

0

‖S(s+ σ)x0 − S(σ)S(s)x0‖2dσ.

By Gronwall’s inequality, we have

‖S(t+ s)x0 − S(t)S(s)x0‖2 ≤ 0,

and consequently, S(t+ s)x0 = S(t)S(s)x0.
Property (P2) follows from the fact that the solution x(·) is continuous. �
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Proposition 3.3. Let (S(t))t≥0 be defined by (3.13). Then, for every x0, y0 ∈ X
and t ≥ 0, we have

‖S(t)x0 − S(t)y0‖ ≤
√

2Me(ω+α2(t)L2)t‖x0 − y0‖, (3.16)

‖S(t)x0‖ ≤
√

2Me(ω+α2(t)L2)t‖x0‖. (3.17)

Proof. Let x0, y0 ∈ X. It follows from (2.1) and (3.2) that

‖S(t)x0 − S(t)y0‖

≤ ‖T (t)x0 − T (t)y0‖+ ‖
∫ t

0

T (t− σ)B(F (S(σ)x0)− F (S(σ)y0))dσ‖

≤Meωt‖x0 − y0‖+ α(t)
∫ t

0

‖F (S(σ)x0)− F (S(σ)y0)‖dσ

≤Meωt‖x0 − y0‖+ α(t)L(
∫ t

0

‖S(σ)x0 − S(σ)y0‖2dσ)1/2,

and consequently,

‖S(t)x0 − S(t)y0‖2 ≤ 2M2e2ωt‖x0 − y0‖2 + 2α2(t)L2

∫ t

0

‖S(σ)x0 − S(σ)y0‖2dσ,

By Gronwall’s inequality, we have

‖S(t)x0 − S(t)y0‖ ≤
√

2Me(ω+α2(t)L2)t‖x0 − y0‖.

Writing y0 = 0 in (3.16), we get the assertion (3.17). �

Remark 3.4. If (T (t))t≥0 is exponentially stable, then α(t) can be chosen a con-
stant α > 0. So (S(t))t≥0 is also exponentially stable if ω < −α2L2.

Remark 3.5. By the definition of (S(t))t≥0, we have, for any x0 ∈ X,

S(t)x0 = T (t)x0 +
∫ t

0

T (t− σ)BF (S(σ)x0)dσ. (3.18)

Note that Σ(A,B,C) is a regular linear system, it follows from [31, Theorem 2.3]
that S(t)x0 ∈ D(CΛ) for any x0 ∈ D(A) and almost every t ≥ 0. In addition,
it follows from the bounbedness of input/output operator of regular linear system
Σ(A,B,C) that there exists a constant M1 > 0 such that, for all x ∈ X,∫ t0

0

‖C
∫ t

0

T (t− σ)BF (S(σ)x)dσ‖2dt ≤M1

∫ t0

0

‖F (S(σ)x)‖2dσ, (3.19)

and consequently, CS(·)x ∈ L2(0, t0;Y ) for all x ∈ X.

4. Admissibility and robust observability

We start this section with the definition of admissibility of output operator C
for nonlinear semigroup (S(t))t≥0 given by (3.13). The reader is referred to see [2]
for more details on this definition.

Definition 4.1. Let Σ(A,B,C) be a regular linear system, (S(t))t≥0 nonlinear
semigroup given by (3.13). We say that C is a finite-time admissible observation
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operator for (S(t))t≥0, if there exist some t > 0 (and hence for all t > 0), and
γ(t) > 0 such that∫ t

0

‖CS(σ)x− CS(σ)y‖2dσ ≤ γ(t)‖x− y‖2, for all x, y ∈ D(A). (4.1)

Definition 4.2. Let Σ(A,B,C) be a regular linear system, (S(t))t≥0 nonlinear
semigroup given by (3.13). We say that C is an infinite-time admissible observation
operator for (S(t))t≥0, if there is some γ > 0 such that∫ ∞

0

‖CS(σ)x− CS(σ)y‖2dσ ≤ γ‖x− y‖2, for all x, y ∈ D(A). (4.2)

Remark 4.3. (i) For a linear operator semigroup, equation (4.1) is equivalent to
equation (2.2).

(ii) It follows from (4.1) (resp. (4.2)) that the mapping x 7→ CS(·)x has a
continuous extension from X to L2(0, t;Y ) for every t > 0 (resp. L2(0,∞;Y )).

(iii) If (S(t))t≥0 is exponentially stable, then the notion of finite-time admissi-
bility and infinite-time admissibility are equivalent.

The following theorem is one of main results of this article.

Theorem 4.4. Assume that Σ(A,B,C) is a regular linear system and that F (·) :
X → U is a globally Lipschitz continuous function. Then C is a finite-time admis-
sible observation operator for (S(t))t≥0 given by (3.13).

Proof. Because Σ(A,B,C) is a regular linear system, C is a finite-time admissible
observation operator for (T (t))t≥0. That is, there exist some t0 > 0 and Kt0 such
that ∫ t0

0

‖CT (σ)x‖2dσ ≤ Kt0‖x‖2, for all x ∈ D(A). (4.3)

In addition, for x, y ∈ D(A), it follows from (3.18) that

‖CS(t)x− CS(t)y‖

≤ ‖CT (t)x− CT (t)y‖+ ‖C
∫ t

0

T (t− σ)B(F (S(σ)x)− F (S(σ)y))dσ‖.
(4.4)

It follows from (3.2), (3.16), (3.19), (4.3) and (4.4) that∫ t0

0

‖CS(t)x− CS(t)y‖2dt

≤ 2
∫ t0

0

‖CT (t)x− CT (t)y‖2dt

+ 2
∫ t0

0

‖C
∫ t

0

T (t− σ)B(F (S(σ)x)− F (S(σ)y))dσ‖2dt

≤ 2Kt0‖x− y‖2 + 2M1L
2

∫ t0

0

‖S(σ)x− S(σ)y‖2dσ

≤ 2Kt0‖x− y‖2 + 4M1L
2M2

∫ t0

0

e2(ω+α(t)L2)t‖x− y‖2dσ

≤ 2(Kt0 + 2M1L
2M2e2(ω+α(t0)L2)t0t0)‖x− y‖2,

and consequently, C is finite-time admissible for (S(t))t≥0. �
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From Remark 4.3, we have the following result.

Corollary 4.5. Suppose that the assumptions of Theorem 4.4 are satisfied. If
(T (t))t≥0 and (S(t))t≥0 are exponentially stable, then C is infinite-time admissible
for (S(t))t≥0.

We consider the exact observability of C for the nonlinear semigroup (S(t))t≥0.
We start by giving the definition of exact observability.

Let (A,C) denote the linear system

ẋ(t) = Ax(t), t > 0, x(0) = x0,

y(t) = Cx(t).
(4.5)

Definition 4.6. Let C ∈ L(D(A), Y ) be an admissible observation operator for
(T (t))t≥0. We call (A,C) is exactly observable if there is some constant K > 0
such that (∫ +∞

0

‖CT (t)x‖2dt
)1/2

≥ K‖x‖, x ∈ D(A), (4.6)

and (A,C) is τ -exactly observable if there is some Kτ > 0 such that(∫ τ

0

‖CT (t)x‖2dt
)1/2

≥ Kτ‖x‖, x ∈ D(A). (4.7)

Definition 4.7. Suppose that the assumptions of Theorem 4.4 are satisfied. We
call (S(t), C) is exactly observable if there is some constant K > 0 such that(∫ +∞

0

‖CS(t)x− CS(t)y‖2dt
)1/2

≥ K‖x− y‖, x, y ∈ D(A), (4.8)

and (S(t), C) is τ -exactly observable if there is some Kτ > 0 such that(∫ τ

0

‖CS(t)x− CS(t)y‖2dt
)1/2

≥ Kτ‖x− y‖, x, y ∈ D(A). (4.9)

Next, we state the main result of this section.

Theorem 4.8. Suppose that the assumptions of Theorem 4.4 are satisfied and that
τ > 0.

(i) If (A,C) given by (4.5) is τ -exactly observable, then there exists a constant
L0 > 0 such that (S(t), C) is also τ -exactly observable when the Lipschitz constant
L in (3.2) satisfies L < L0.

(ii) If (S(t), C) is τ -exactly observable, then there exists a constant L1 > 0
such that (A,C) is also τ -exactly observable when the Lipschitz constant L in (3.2)
satisfies L < L1.

Proof. (i) It follows from (3.18) that, for all x, y ∈ D(A) and almost every t ≥ 0,

CS(t)x−CS(t)y = CT (t)(x−y)+C
∫ t

0

T (t−σ)B(F (S(σ)x)−F (S(σ)y))dσ. (4.10)

We may rewrite (4.10) as

CT (t)(x−y) = CS(t)x−CS(y)−C
∫ t

0

T (t−σ)B(F (S(σ)x)−F (S(σ)y))dσ. (4.11)
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Therefore,

‖CT (t)(x− y)‖2

≤ 2‖CS(t)x− CS(y)‖2 + 2‖C
∫ t

0

T (t− σ)B(F (S(σ)x)− F (S(σ)y))dσ‖2.

(4.12)
It follows from (3.2), (3.19), (4.7) and (4.12) that∫ τ

0

‖CS(t)x− CS(t)y‖2dt

≥ 1
2

∫ τ

0

‖CT (t)(x− y)‖2dt

−
∫ τ

0

‖C
∫ t

0

T (t− σ)B(F (S(σ)x)− F (S(σ)y))dσ‖2dt

≥ 1
2
Kτ‖x− y‖2 −M2

1

∫ τ

0

‖F (S(t)x)− F (S(t)y)‖2dt

≥ 1
2
Kτ‖x− y‖2 −M2

1L
2

∫ τ

0

‖S(t)x− S(t)y‖2dt

≥ 1
2
Kτ‖x− y‖2 −M2

1L
2

∫ τ

0

2M2e2(ω+α2(t)L2)t‖x− y‖2dt

≥ 1
2
Kτ‖x− y‖2 − 2M2

1L
2M2τe2(ω+α2(τ)L2)τ‖x− y‖2

= Jτ‖x− y‖2,

(4.13)

where Jτ = 1
2Kτ − 2M2

1L
2M2τe2(ω+α2(τ)L2)τ .

Let L ≤ 1. Then

Jτ =
1
2
Kτ − 2M2

1L
2M2τe2(ω+α2(τ)L2)τ ≥ 1

2
Kτ − 2M2

1L
2M2τe2(ω+α2(τ))τ .

Take

L0 = min{1,
√
τKτ

2M1Mτe2(ω+α2(τ))τ
},

and therefore, Jτ > 0 when L < L0. So (S(t), C) is also τ -exactly observable.
Statement (ii) can be proved by the same method as above. �

Corollary 4.9. Suppose that the assumptions of Theorem 4.4 are satisfied, and
that (T (t))t≥0 and (S(t))t≥0 are exponentially stable.

(i) If (A,C) given by (4.5) is exactly observable, then there exists a constant
L0 > 0 such that (S(t), C) is also exactly observable when the Lipschitz constant L
in (3.2) satisfies L < L0.

(ii) If (S(t), C) is exactly observable, then there exists a constant L1 > 0 such
that (A,C) is also exactly observable when L < L1.

5. Examples

Example 5.1. Consider the beam equation with boundary control

wtt(x, t) + wxxxx(x, t) = 0,

w(0, t) = wx(0, t) = wxx(1, t) = 0,

wxxx(1, t) = u(t),
(5.1)
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with the output function
y(t) = wt(1, t). (5.2)

Guo and Luo [9] proved that the system (5.2) can be rewritten as a regular linear
system Σ(A,B, C) with well-defined operators A, B and C on (H,U,U), and system
state x(t) = (w,wt), where H = D(A1/2) × L2(0, 1) and U = C. In addition,
in the same paper, they also proved that the observation system (A, C) is exactly
observable on some [0, T ], T > 0.

System (5.1) and (5.2) with u = f(wt(1, t)), where f(·) is a globally Lipschitz
continuous function with Lipschitz constant L, can be rewritten as the abstract form
(1.2) and (1.3) with F (x(t)) = f(wt(1, t)). It is clear that F is a globally Lipschitz
continuous function with Lipschitz constant L. Therefore, by Theorems 4.4 and
4.8, C is an admissible observation operator for nonlinear Semigroup (S(t))t≥0,
the solution semigroup of (5.1) with u = f(wt(1, t)), and the semilinear problem
(5.1) and (5.2) with u = f(wt(1, t)) is exactly observable in time T > 0 when the
Lipschitz constant L is small enough.

Example 5.2. Consider the Schrödinger equation with nonlinear boundary per-
turbation described by

wt(x, t) + i4w(x, t) = 0, x ∈ Ω, t > 0,

w(x, t) = 0, x ∈ Γ1, t ≥ 0,

w(x, t) = u(x, t), x ∈ Γ0, t ≥ 0,

y(x, t) = i
∂(4−1w)

∂ν
x ∈ Γ0, t ≥ 0,

(5.3)

where Ω ⊂ Rn, n ≥ 2 is an open bounded region with smooth C3-boundary ∂Ω =
Γ0 ∪ Γ1. Γ0 and Γ1 are disjoint parts of the boundary relatively open in ∂Ω and
int(Γ0) 6= ∅. ν is the unit normal vector of Γ0 pointing towards the exterior of Γ.
u is the input function and y is the output function. Let H = H−1(Ω) be the state
space and U = L2(Γ0) the input or output space. Guo and Shao [12] proved that
the system (5.3) can be rewritten as a regular linear system Σ(A,B,C) with well-
defined operators A, B and C on (H,U,U). In addition, Lasiecka and Triggiani
[16] proved that the system (5.3) with u = 0 is exactly observable at some τ > 0.

System (5.3) with u = F (w(x, t)), where F (·) is a globally Lipschitz continuous
function with Lipschitz constant L, can be rewritten as the abstract form (1.2) and
(1.3). Therefore, by Theorems 4.4 and 4.8, C is an admissible observation operator
for nonlinear semigroup (S(t))t≥0, where (S(t))t≥0 is the solution semigroup of
(5.3) with u = F (w(x, t)), and the semilinear problem (5.3) with u = F (w(x, t))
is exactly observable in some time τ > 0 when the Lipschitz constant L is small
enough.
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[29] G. Weiss; Admissibility of unbounded control operators. SIAM J Control Optim., 27 (1989),
527-545.

[30] G. Weiss; Regular linear systems with feedback. Math. Control Signals Systems, 7 (1994),

23-57.
[31] G. Weiss; Transfer functions of regular linear systems. Part I:Characterization of regularity.

Trans. Amer. Math. Soc., 342 (1994), 827-854.

[32] G. Weiss, R. Rebarber; Optimizability and estimatability for infinite-dimensional linear sys-
tems. SIAM J. Control Optim., 39 (2000), 1204-1232.

[33] M. Weiss, G. Weiss; Optimal control of stable weakly regular linear systems. Math. Control
Signals Systems, 10(1997), 287-330.

[34] G.Weiss, H. J. Zwart; An example in linear quadratic optimal control. Systems Control

Letters, 33 (1998), 339-349.
[35] G. Q. Xu, C. Liu, S. P. Yung; Necessary conditions for the exact observability of systems on

Hilbert spaces. Systems Control Letters, 57 (2008), 222-227.

[36] H. J. Zwart; Linear quadratic optimal control for abstract linear systems. Modelling and
optimization of distributed parameter systems (Warsaw, 1995), 175-182, Chapman Hall, New

York, 1996.

Weisheng Jiang

College of Mathematics and Statistics, Chongqing University, Chongqing 401331, China
E-mail address: wsjiang@cqu.edu.cn

Bin Liu
College of Mathematics and Statistics, Chongqing Technology and Business University,

Chongqing 400067, China

E-mail address: liubin@ctbu.edu.cn

Zhibing Zhang

College of Mathematics and Statistics, Chongqing University, Chongqing 401331, China
E-mail address: zhibing0719@163.com


	1. Introduction
	2. Regular linear system
	3. Well-posedness and nonlinear semigroup
	4. Admissibility and robust observability
	5. Examples
	Acknowledgements

	References

