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ENDOMORPHISMS ON ELLIPTIC CURVES FOR OPTIMAL
SUBSPACES AND APPLICATIONS TO DIFFERENTIAL

EQUATIONS AND NONLINEAR CRYPTOGRAPHY

OANA ADRIANA ŢICLEANU

Abstract. Finite spaces are used on elliptic curves cryptography (ECC) to

define the necessary parameters for nonlinear asymmetric cryptography, and to
optimize certain solutions of differential equations. These finite spaces contain

a set of “cryptographic points” which define the strengthens of the chosen

field. One of the current research areas on ECC is choosing optimal subspaces
which contains most of the interesting points. The present work presents

a new way to define the cryptographic strengthens of a particular field, by

constructing an endomorphism between the classically studied subspaces and
a certain subspace.

1. Introduction

Recent research in the area of elliptic curves revels that the main applications
are about cryptography, mostly about the classical Rivest, Shamir and Adleman
encryption algorithm (RSA). The lack of mathematical foundations in the special
area of cryptographic subspaces, and the incomplete proofs of parts of it, generates
brakes on the implementation, testing and reliability of such methods. There have
been proposed and developed a lot of key sessions in authentication with the basic
model of elliptic curves, which have become standard tools. Parallel to this, the
study of isomorphisms on elliptic spaces has lead us to the theory of space reduction,
which is used for obtaining a low dimensional approach. In this study we show a
new method for reconstructing a larger space with cryptographic properties for a
certain amount of points; this space is called extended multi field (EMF).

2. Mathematical foundations on ECC maps construction

We start with the most important parts of the computing principle: adding
points, and multiplying by a scalar selected points for elliptic curves cryptography
(ECC). This is necessary for constructing reduced spaces.

Let r ∈ R and P ∈ E, where E is an elliptic curve as defined in [2], were
r should be represented on 160 or more bits. There are many methods to do
computations (see for example [1, 12, 14, 21]). In the present work, we adopt the
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classical construction, starting from the Weierstrass equation, and using Koblitz
adapted proofs [19].

Definition 2.1. An elliptic curve E defined on a K field is given by the equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

where ai ∈ K. This equation is called the Weierstrass equation.

Definition 2.2. The discriminant of the elliptic curve given by the Weierstrass
equation has the form

∆ = d2
2d8 − 8d3

4 − 27d2
6 + 9d2d4d6,

where ∆ 6= 0 and:

d2 = a1 + 4a2, d4 = 2a4 + a1a3, d6 = a2
3 + 4a6

d8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

3 .

In the case: K = Fq, where q > 3 is a prime number, the Weierstrass equation
can be simplified to

E : y2 = x3 + ax+ b

The discriminant in this case is ∆ = −16(4a3 + 27b2).
Elliptic curves defined over a binary field are given by the equation

E : y2 = x3 + ax+ b,

and have discriminant ∆ = b. For a point P (x, y) its reverse is −P (x, x+ y). The
addition and the doubling operations of the points are calculated in the same way as
the prime curves case: If we have the point P (x, y) , its reverse will be −P (x,−y).
If we have two points P and Q with P (x2, y1) and Q(x2, y2) then their addition
will be

P +Q = R(x3, y3),

where

x3 = λ2 − x1 − x2

y3 = λ(x1 − x3)− y1

and λ = y1−y2
x1−x2

. For the doubling operation, there are the formulas

x3 = λ2 − 2x1

y3 = λ(x1 − x3)− y1

where λ = 3x2
1+a

2y1
.

The only difference between the curves defined on a K field and the curves
defined on a K = Fq binary field, is that for a point P (x, y, z) the inverse of it is
P (x, x+ y, z). More details about implementation can be found in [4].
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3. Koblitz mathematical infrastructure

Let E be an elliptic curve defined over the filed Fq, by

Ea : Y 2 +XY = X3 + aX2 + 1, with a = 0 or a = 1

which is called Koblitz multiplication curve with its properties presented for the
first time in [19].

A Koblitz curve E has coefficients in Fq and a point from E(Fq) with q = 2k

and k is a large number, for the efficiency of the security it can be even a prime
number k ≥ 160, [8].

Koblitz formed the equation which makes the calculation of the number of points
on an elliptic curve easier :

#E(F2k) = 2k −
(−1 +

√
−7

2
)k − (−1−

√
−7

2
)k + 1.

The calculation on Koblitz curves has the advantage of using the homomorphism
groups:

τ : E(Fq)→ E(Fq), τ(x, y) = (x2, y2).

In the calculation of the points on an elliptic curve, there are endomorphisms al-
lowed [5], under the form of a ring, End(E), which include:

• a scalar multiplicative group;
• Frobenius endomorphism ψ (on a limited field);
• Z[ψ] ⊆ End(E).

Examples of computing points on an elliptic curve using the endomorphisms can
be found in [5, 6, 19]. According to these, we have the following statement.

Theorem 3.1. End(E) is isomorphic to an order in an imaginary quadratic field,
for an integer D called discriminant,

O(D) := Z +
D +

√
D

2
Z.

Frobenius endomorphism ψ has the trace t and norm n, therefore Z[ψ] ∼= O(t2−4n).

Let E be an elliptic curve on the finite field Fq, and ψ a Frobenius endomorphism
E. In an integer ring with imaginary quadratic field K = Q(

√
Dk), an element τ

with norm q is equal with:

τ =
t+ z

√
Dk

2
with 4q = t2 − z2Dk.

The trace of τ is q + 1−#E, according to [2].

Definition 3.2. Let End(E) be a endomorphisms ring on an elliptic curve, where
End(E) is either Z, or an isomorphism with a quadratic imaginary order, or an
order in a quaternion algebra.

Now, there can be formulated, starting from [2], the next theorems.

Theorem 3.3. End(E) is a ring where the multiplication is resulted from the com-
position.
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Proof. The only point which is required for the verification is the distribution law.
Let the endomorphism α, β and γ, where

(α ◦ (β + γ))(P ) = α((β + γ)(P ))

= α(β(P ) + γ(P )) (by [10, Theorem 3.2])

= α(β(P )) + α(γ(P )) (because α is an homomorphism)

= (α ◦ β)(P ) + (α ◦ γ)(P ).

Furthermore we obtain α ◦ (β+ γ) = α ◦β+α ◦ γ or (α+ γ) ◦ γ = α ◦ γ+β ◦ γ. �

Theorem 3.4. End(E) is a Z algebra, where the multiplication by m, and m ∈ Z is
resulted from the composition with [m]. If End(E) contains another endomorphism
than the multiples of m, then E will have a complex multiplication.

Proof. It has already been demonstrated in Theorem 3.3 that End(E) is a ring,
and the multiplication given by m shows that Z is a subring.

If p = Fq is a finite filed, then E has a complex multiplication, so Frobenius
endomorphism α = (Xk, Y k). Let P = (a, b) be a point in E, then E(α(P )) =
E(ak, bk) = E(a, b)k = 0, so α(P ) ∈ E. �

3.1. Frobenius endomorphism. Let K be a finite field with q elements, and the
group G(K∗/K), also called the group of Galois, is generated by the Frobenius
automorphism β relative to K, defined by β(α) = αq for any α from K∗. For

any finite extension of k/K, the automorphism k
β
←↩ k determines a morphism

M(k) → M(k). So, for any X in M(k) it can be defined Xβ = X ×β k. Let
OX be the contact with the function from X and for any subset Y ⊆ X, it makes
X →M(k) to be an homeomorphism determined by the map X →M(k).

Furthermore we define w1 : OX(Y ) → OX(Y ) ⊗β k and w2 : k → OX(Y ) ⊗β k,
two injections f 7→ f ⊗ 1 and γ 7→ 1⊗ γ, and we define the map ψ∗ by

OX(Y )⊗β k
ψ∗−→ OX(Y )⊗β k,

f ⊗ γ 7→ f2 ⊗ γ2.

Thus it can be said that we have defined a Frobenius morphism. If we replace X
with an elliptic curve E defined on a k filed and we define ψ(O) being the identity
of Eβ , then the Frobenius morphism determines Frobenius isogeny ψ : E → Eβ .

For the particular case when k = K, we take it that Eβ = E and ψ is called
Frobenius endomorphism.

If the elliptic curve E is given by the Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

then the elliptic curve Eβ will be

y2 + aq1xy + aq3 = x3 + aq2x
2 + aq4x+ aq6,

and Frobenius isogeny is given by the map

E
ψ−→ Eβ

(x0, y0) 7→ (xq0, y
q
0)

We take it that E/K is an elliptic curve defined over a K field. Frobenius endo-
morphism relative to K checks the equation ψ2 + tψ + q = 0 in the endomorphism



EJDE-2015/214 ENDOMORPHISMS ON ELLIPTIC CURVES 5

ring. For any extension k/K of r grade, Frobenius endomorphism relative to k is
ψr.

4. On site map construction

In this section we define and prove the optimization maps on elliptic curves
particular subspaces with cryptographic properties.

4.1. Frobenius based maps. Let be K a filed of characteristic p and E an elliptic
curve over K. Let ψ be a Frobenius endomorphism relative to K. From it we define
a ring of endomorphism End(E), a grade in a quaternion algebra.

If E[pr] = 0 for all r ≥ 1, according with [26] we can prove that a ring of
endomorphism End(E) is the grade in a quadratic imaginary extension of Q.

From this point, we construct an extension of the endomorphism in the following
manner:

E1[Φt] = Q/ΦtQ, where t ∈ Z, t > r

These represents an iteration of the basic Koblitz Curve, where Φ is an integer by
enough to respect the condition |E1| >> |E|.

We named E1 as an EMF, as previously defined. This condition ensure the
existence of all included subspace generated by E[pr] from Koblitz theorem [26].

From these, we have E1 is a supersingular curve and is ordinary, but it is not
compulsory for the extension of EndK(E), otherwise it is not a grade in a quaternion
algebra [30].

Let be Fq = FΦt. We will define our map as follows:

φ : Fq → Fq : x 7→ xΦ in all subspaces,

it means that for any element x, will be constructed an image of it in any extension
of basic Frobenius construction (which represent that any point x has an image on
E1[Φt], previous defined).

It can be noticed that φ(0) = 0, φ(1) = 1 and for all x, y ∈ Fq, φ(x, y) =
φ(x)φ(y). The classic Frobenius relation is

φ(x+ y) = (x+ y)p =
p∑
i=0

(
p
i

)
xp−iyi

= xp +
(

p
p− 1

)
xp−1y + · · ·+

(
p
1

)
xyp−1 + yp

(4.1)

for any x, y ∈ Fq. So, φ : Fq → Fq is a fields homomorphism. This relation will
become

φ(x+ y) = (x+ y)φ =
Φ∑
i=0

(
Φ
i

) t∏
j=1

xj ,

where xj represents the transformation of x in the subspace j.
From it, is deducted that to construct FΦ, we will have

FΦ = {a ∈ Fq : φ(x) = x in all subspaces}

It is a tough condition which increase the complexity computation on brute force
attack.
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4.2. Example on exposed map construction. Let E : y2 = x2 + ax be an
elliptic curve defined over FΦ field and t ≡ 1(mod 4) a prime number. Let be an α
element by grade 4 which belongs to the FΦt fields extensions.

From these, the map φ : E1 → E1 (as before defined E1) will have stated
φ : (x, y) 7→

(
−x4 , αy

)
, and φ :∞→∞ is an endomorphism of E1, defined on field

FΦt.
The endomorphism rings for will become

E1/FΦt : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

with ai ∈ FΦt, where E(FΦt) is a rational point set FΦt over E together with a
common point O, for all subspaces.

4.3. Using extended map of elliptic curves. In the following we present an ap-
plication of the extended map construction based on extension of classical solution
[2].

Proposition 4.1. Let End(E1) = Hom(E1, E1) be the ring for an elliptic curve
E1, as defined at subsection 4.2. This ring End(E1) certain completeness subspaces
with cryptographic points.

Proof. The assertion state that ring End(E1) has no zero divisors, because it means
that the mathematical model is correct defined. Let νi and ϑi two elements (i is
the index of the chosen subspaces). The proof is extended from one subspace, in
the same manner, to all other subspaces.

If νiϑi = 0, then 0 = deg(νiϑi) = deg(νi) · deg(ϑi) and therefore deg(νi) =
0 results that νi = 0 respectively deg(ϑi) = 0 which conclude ϑi = 0, because
otherwise in the formula (4.1) we will have a nonzero point which generates O. �

5. Further applications of elliptic curves to differential equations

In this section we point out the relevance of elliptic curves into the framework
of differential equations. Hence, it can be easily seen that the results from our
paper can be successfully used to develop the study of some particular classes of
differential equations.

Elliptic curves may not be quite as well known circles, but they are really very
famous and useful in number theory, and constitute a major area of current research.
The elliptic curves were fundamentally used by Wiles and Taylor in order for proving
the famous Fermat Last Theorem.

It is also shown that the elliptic curves arise very naturally in the context of
KdV Equation. In fact, Korteweg and de Vries showed that the long-wave limit
of the periodic waves from elliptic functions is the solitary wave. The discovery of
solitary wave solutions to a nonlinear PDE was a surprise in the 19th century. The
KdV equation looks like the equation for an elliptic curve when one assumes the
solution is a traveling wave. Of course, much more complicated solution equations
are connected to algebraic geometry.

The general picture is the following: choose any algebraic curve with an associ-
ated Jacobian Variety. Then there exists a solution to a solution equation associated
to each choice of a curve and an element of the associated group. If the curve is a
hyper-elliptic curve, then it is a solution of KdV Equation.

Recently, in [16] it has been studied some connections between elliptic curves and
Mathieu’s equation, which represents a model for vibrating elliptical membranes.
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Its canonical form is
d2u

dz2
+ (λ− 2q cos(2z))u = 0.

The Mathieu equation is useful in various mathematics and physics problems.
As an example, the separation of variables for the wave equation in the elliptical
coordinates leads to the Mathieu equation.

It was shown that the Floquet exponent of the Mathieu equation can be obtained
from the integral of a differential form along the two homology cycles of an elliptic
curve. According to the Floquet theory, the solution of the Mathieu equation can
be written as

uν(z) = eωzf(z),

where f(z) is a function of period π, and in general ν is a constant independent of
z.

The exponent ν is called the Floquet characteristic exponent, it is a function
of the constants λ and q. A classical result is that the Floquet exponent can be
obtained through the Hill’s determinant.

Moreover, if ν is an even integer, then the solution u(z) is a periodic function
of period π; if ν is an odd integer, then the solution u(z) is a periodic function of
period 2π.

The relation between the Mathieu equation and the elliptic curve naturally arise
in the integrable theory. The Mathieu equation is the Schrödinger equation of the
two body Toda system, while the elliptic curve is just the spectral curve of the
classical Toda system.

For instance, let us consider the Mathieu operator

L = d2
z + λ− q

(
e−2iz + e−2iz

)
= (x2 + λ)±

√
y2 + 4q2,

where x = dz and y = q
(
e−2iz + e−2iz

)
, and it follows the elliptic curve

y2 = (x2 + λ)2 − 4q2.

We remark that there is a geometric structure for the Mathieu equation which is
not captured by asymptotic analysis. Of course, it is possible that the relation we
present here is just a particular case of a general picture.

Moreover, in [9] it is treated difference equations on elliptic curves. Some gen-
eral properties of the difference Galois groups of equations of order two are studied.
Interesting connections with the class of discrete Lame equations was also treated.
In the context of difference equations, interesting further applications and open
problems can be considered. More precisely, our results could be applied for study-
ing difference equations by using the recent Mountain Pass discrete theory used in
[20, 23, 24].

Finally, we recall the connection of elliptic curves with the Picard-Fuchs equa-
tion, which is a linear ordinary differential equation whose solutions describe the
periods of elliptic curves. For more details, see [15]. This equation can be viewed as
a hypergeometric differential equation. It has two linearly independent solutions,
called the periods of elliptic functions. The ratio of two solutions of the hypergeo-
metric equation is also known as a Schwarz triangle map. Moreover, note that the
Picard-Fuchs equation belongs also to the class of Riemann differential equations.
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Conclusion. The present work illustrates the construction of an extended map
for ECC, with increased complexity against brute force attack, through particular
subspaces which define the way to raise the security of the real time implementation
for authenticated key exchange algorithms, based on particular supersingular ellip-
tic curves. The theory developed here can be used to study the solutions of some
classes of differential equations with substantial relevance in this field, as presented
in section 5.
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