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ASYMPTOTICALLY LINEAR SCHRÖDINGER EQUATION WITH
ZERO ON THE BOUNDARY OF THE SPECTRUM

DONGDONG QIN, XIANHUA TANG

Abstract. This article concerns the Schrödinger equation

−∆u+ V (x)u = f(x, u), for x ∈ RN ,

u(x)→ 0, as |x| → ∞,
where V and f are periodic in x, and 0 is a boundary point of the spectrum

σ(−∆ + V ). Assuming that f(x, u) is asymptotically linear as |u| → ∞,
existence of a ground state solution is established using some new techniques.

1. Introduction and statement of main results

In this article, we consider the Schrödinger equation

−∆u+ V (x)u = f(x, u), for x ∈ RN ,
u(x)→ 0, as |x| → ∞,

(1.1)

where V : RN → R is a potential and being 1-periodic in xi, f : RN × R→ R is a
nonlinear coupling which is asymptotically linear as |u| → ∞, i.e. the nonlinearity
f satisfies the assumption

(A1) f(x, t) − V∞(x)t = o(|t|), as |t| → ∞, uniformly in x ∈ RN , where
f ∈ C(RN × R), V∞ ∈ C(RN ) is 1-periodic in xi, i = 1, 2, . . . , N , and
inf V∞(x) > Λ̄ := inf[σ(−∆ + V ) ∩ (0,∞)].

This equation arise in applications from mathematical physics, and solutions of
(1.1) can be interpreted as stationary states of the corresponding reaction-diffusion
equation which models phenomena from chemical dynamics. It is known that for
periodic potential, the operator A := −∆ + V has purely continuous spectrum
σ(A) which is bounded below and consists of closed disjoint intervals (see [27,
Theorem XIII.100]). Problem (1.1) with periodic potentials and asymptotically
linear nonlinearities has been widely investigated in the literature over the past
several decades, see [5, 9, 10, 11, 19, 20, 14, 16, 22, 30, 33, 36, 37, 38, 42] and the
references therein. Here, we recall some results on existence and multiplicity of
solutions of (1.1) depending on the location of 0 in σ(A).
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Case 1: inf σ(A) > 0. Since the operator A is strictly positive definite, techniques
based on the mountain pass theorem have been well applied. For example, using the
‘monotonicity trick’ introduced by Struwe [28], Jeanjean [14] (see also [16]) proved
a positive solution for (1.1) under (A1), V (x) ≡ K > 0 and the following growth
and technical assumptions:

(A2’) F (x, t) :=
∫ t

0
f(x, s)ds ≥ 0, and f(x, t) = o(|t|) as |t| → 0 uniformly in

x ∈ RN ;
(A3) F(x, t) := 1

2 tf(x, t)−F (x, t) ≥ 0 for all (x, t) ∈ RN ×R, and there exists a
δ0 ∈ (0, Λ̄) such that

f(x, t)
t
≥ Λ̄− δ0 =⇒ F(x, t) ≥ δ0. (1.2)

Ding and Luan [10] obtained infinitely many geometrically distinct solutions with
(A1), (A2’) and (A3) (in particular, V ∈ C1, f ∈ C2). Similar results can be found
in [37] with f being independent of x and V∞ ≡ a > Λ̄. Under assumption that
V (x) = λg(x) + 1 provided that λ ≥ 0 and g(x) ≥ 0 has a potential well, multiple
solutions are obtained by Heerden [36] (see also [38]). For asymptotically periodic
nonlinearities, we refer readers to [20] where a nontrivial solution was obtained
by using a version of the mountain pass theorem and comparing with appropriate
solutions of a periodic problem associated with (1.1).
Case 2: 0 lies in a spectral gap of σ(A), i.e.

sup[σ(A) ∩ (−∞, 0)] := Λ < 0 < Λ̄ = inf[σ(A) ∩ (0,∞)]. (1.3)

In this case, Szulkin and Zou [30] first proved the existence of a nontrivial solution
for (1.1) with (A1), (A2’) and a modified version of (A3):

(A3’) F(x, t) := 1
2 tf(x, t) − F (x, t) ≥ 0 for all (x, t) ∈ RN × R, and there exists

a δ0 ∈ (0, λ0) such that: if f(x, t)/t ≥ λ0 − δ0 then F(x, t) ≥ δ0, where
λ0 := min{−Λ, Λ̄}.

Under assumptions (A1), (A2’) and (A3’), moreover f(x, t) is odd in t, Ding and Lee
[9] proved that (1.1) has infinitely many geometrically distinct solutions. In recent
paper, the author [33] developed a much more direct approach to find a ground state
solution of Nehari-Pankov type for (1.1) with (A2’), a slightly stronger version of
(A1) and the following monotone assumption:

(A4) t 7→ f(x,t)
|t| is non-decreasing on (−∞, 0) ∪ (0,∞).

Note that, it follows from (A4) that

F(x, t) =
1
2
tf(x, t)− F (x, t) =

∫ t

0

(f(x, t)
t
− f(x, s)

s

)
sds ≥ 0, ∀(x, t) ∈ RN ×R,

and F is non-decreasing on t ∈ [0,∞) and non-increasing on t ∈ (−∞, 0], which
together with (A1) and f(x, t) = o(|t|) as |t| → 0 uniformly in x, imply that
(A3) and (A3’) hold (see [16, Remark 1.3] or [19]). For asymptotically periodic
nonlinearities, Li and Szulkin [19] obtained a nontrivial solution with (A1), (A3’)
and some assumptions on the asymptotic behaviour of f as |x| → ∞.
Case 3: 0 is a boundary point of the spectrum σ(A), i.e. the potential V (x)
satisfies

(A5) V ∈ C(RN ) is 1-periodic in xi, i = 1, 2, . . . , N , 0 ∈ σ(A), and there exists
b0 > 0 such that (0, b0] ∩ σ(A) = ∅.
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Clearly, Λ̄ ≥ b0 by (A1). To the author’s best knowledge, no previous study has
focused on this situation (Even for superlinear nonlinearities, there are few papers
[2, 21, 23, 24, 25, 32, 40, 41] in the literature). The main difficulties to overcome
are the lack of a priori bounds for Cerami sequences and the working space for this
case is only a Banach space, not a Hilbert space which is different from [30, 9].
Unlike Case 1, strongly indefinite problem (1.1) can not be reformulated in terms
of a functional having the mountain pass geometry. Moreover, the methods used in
[2, 40, 41] are no more applicable, and even though techniques used in [30, 9] can
be adapted, the condition (A3’) does not hold in this case since λ0 = 0. Inspired
by above works and using a generalized linking theorem established in [32], we are
going to consider this case in the present paper. To conquer difficulties mentioned
above, the concentration compactness arguments introduced by P.L. Lions [18] and
developed by Jeanjean [14] are adapted, a new variational framework which is more
suitable for this case is introduced. Additionally, some new techniques and (A3)
instead of (A3’) are used in this paper. Before presenting our main results, we
introduce the following mild assumptions:

(A2) there exist constants c1, c2 > 0, % ∈ (2, 2∗) such that

c1 min{|t|%, |t|2} ≤ tf(x, t) ≤ c2|t|%, ∀(x, t) ∈ RN × R. (1.4)

Let E be the Banach space defined in Section 2. Under assumptions (A5), (A1)
and (A2), the functional

Φ(u) =
∫

RN
(|∇u|2 + V (x)u2) dx−

∫
RN

F (x, u) dx, (1.5)

is well defined for all u ∈ E, moreover Φ ∈ C1(E,R) (see Lemma 2.2). Denote the
critical set by

M = {u ∈ E \ {0} : 〈Φ′(u), v〉 = 0, ∀ v ∈ E}. (1.6)

Now, we are ready to state the main results of this article.

Theorem 1.1. Let (A1)–(A3) and (A5) be satisfied. Then problem (1.1) has a
ground state solution, i.e. a nontrivial solution u0 ∈ E satisfying Φ(u0) = infMΦ.

Corollary 1.2. Let (A1)–(A2) and (A4)–(A5) be satisfied. Then problem (1.1) has
a ground state solution, i.e. a nontrivial solution u0 ∈ E satisfying Φ(u0) = infMΦ.

The following three functions satisfy all assumptions of Corollary 1.2:
f(x, t) = V∞(x) min {|t|ν , 1} t, where ν ∈ (0, 2∗ − 2) and V∞ ∈ C(RN ) is 1-

periodic in each of x1, x2, . . . , xN and inf V∞ > Λ.
f(x, t) = V∞(x)

[
1− 1

ln(e+|t|ν)

]
t, where ν ∈ (0, 2∗−2), V∞ ∈ C(RN ) is 1-periodic

in each of x1, x2, . . . , xN and inf V∞ > Λ.
f(x, t) = h(x, |t|)t, where h(x, s) is non-decreasing on s ∈ [0,∞) and 1-periodic

in each of x1, x2, . . . , xN , h(x, s) = O(|s|ν) as s → 0 with ν ∈ (0, 2∗ − 2), and
h(x, s)→ V∞(x) as s→∞ with inf V∞ > Λ uniformly in x.

We point out that Jeanjean [15] considered a related problem of (1.1) by using
the dual approach and constraint method without periodicity assumption on f .
Clearly, there is no more translational invariance of the equation. As pointed out
by the referee, it is very interesting to investigate further problem (1.1) without
the translational invariance, and this is work under consideration. The remaining
of this paper is organized as follows. In Section 2, we introduce the variational
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framework setting established in author’s recent paper [32] which is more suitable
for the case that 0 is a boundary point of the spectrum σ(−∆ + V ). The proof of
main results will be given in the last Section.

2. Variational setting and preliminaries

In this section, as in [32], we introduce the variational framework associated with
problem (1.1). Throughout this paper, we denote by ‖ · ‖s the usual Ls(RN ) norm
for s ∈ [1,∞) and Ci, i ∈ N for different positive constants. Let A = −∆ + V ,
then A is self-adjoint in L2(RN ) with domain D(A) = H2(RN ). Let {E(λ) : −∞ <
λ < +∞} be the spectral family of A, and |A|1/2 be the square root of |A|. Set
U = id− E(0)− E(0−). Then U commutes with A, |A| and |A|1/2, and A = U|A|
is the polar decomposition of A (see [12, Theorem 4.3.3]). Let E∗ = D(|A|1/2), the
domain of |A|1/2, then E(λ)E∗ ⊂ E∗ for all λ ∈ R. On E∗ define an inner product

(u, v)0 =
(
|A|1/2u, |A|1/2v

)
L2

+ (u, v)L2 , ∀u, v ∈ E∗,

and the norm
‖u‖0 =

√
(u, v)0, ∀u ∈ E∗,

where and in the sequel, (·, ·)L2 denotes the usual L2(RN ) inner product.
By (A5), we can choose a0 > 0 such that

V (x) + a0 > 0, ∀x ∈ RN . (2.1)

For u ∈ C∞0 (RN ), one has

‖u‖20 = (|A|u, u)L2 + ‖u‖22 = ((A+ a0)Uu, u)L2 − a0(Uu, u)L2 + ‖u‖22
≤ ‖U(A+ a0)1/2u‖2‖(A+ a0)1/2u‖2 + a0‖Uu‖2‖u‖2 + ‖u‖22
≤ ‖(A+ a0)1/2u‖22 + (a0 + 1)‖u‖22
≤ (1 + 2a0 +M)‖u‖2H1(RN )

(2.2)

and
‖u‖2H1(RN ) ≤ ((A+ a0 + 1)u, u)L2

= (Au, u)L2 + (a0 + 1)‖u‖22

=
(
U|A|1/2u, |A|1/2u

)
L2

+ (a0 + 1)‖u‖22

≤ ‖|A|1/2u‖22 + (a0 + 1)‖u‖22 ≤ (1 + a0)‖u‖20,

(2.3)

where M = supx∈RN |V (x)|. Since C∞0 (RN ) is dense in (E∗, ‖ · ‖0) and H1(RN ),
thus

1
1 + a0

‖u‖2H1(RN ) ≤ ‖u‖
2
0 ≤ (1 + 2a0 +M)‖u‖2H1(RN ), (2.4)

for all u ∈ E∗ = H1(RN ).
Denote

E−∗ = E(0)E∗, E+ = [E(+∞)− E(0)]E∗,

and

(u, v)∗ =
(
|A|1/2u, |A|1/2v

)
L2
, ‖u‖∗ =

√
(u, u)∗, ∀ u, v ∈ E∗. (2.5)
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Lemma 2.1 ([32, Lemma 3.1])). Suppose that (A5) is satisfied. Then E∗ = E−∗ ⊕
E+,

(u, v)∗ = (u, v)L2 = 0, ∀u ∈ E−∗ , v ∈ E+, (2.6)

and

‖u+‖2∗ ≥ Λ̄‖u+‖22, ‖u−‖2∗ ≤ a0‖u−‖22, ∀u = u− + u+ ∈ E∗ = E−∗ ⊕ E+, (2.7)

where a0 is given by (2.1).

It is easy to see that ‖ · ‖∗ and ‖ · ‖H1(RN ) are equivalent norms on E+, and if
u ∈ E∗ then u ∈ E+ ⇔ E(0)u = 0. Thus E+ is a closed subset of (E∗, ‖ · ‖0) =
H1(RN ). We introduce a new norm on E−∗ by setting

‖u‖− =
(
‖u‖2∗ + ‖u‖2%

)1/2
, ∀u ∈ E−∗ . (2.8)

Let E− be the completion of E−∗ with respect to ‖ · ‖−. Then E− is separable and
reflexive, E−∩E+ = {0} and (u, v)∗ = 0 for all u ∈ E−, v ∈ E+. Let E = E−⊕E+

and define norm ‖ · ‖ as follows

‖u‖ =
(
‖u−‖2− + ‖u+‖2∗

)1/2
, ∀u = u− + u+ ∈ E = E− ⊕ E+. (2.9)

It is easy to verify that (E, ‖ · ‖) is a Banach space, and√
Λ̄‖u+‖2 ≤ ‖u+‖∗ = ‖u+‖, ‖u+‖s ≤ γs‖u+‖, ∀u ∈ E, s ∈ [2, 2∗], (2.10)

where γs ∈ (0,+∞) is imbedding constant.

Lemma 2.2 ([32, Lemma 3.2]). Suppose that (A5) is satisfied. Then the following
statements hold.

(i) E− ↪→ Ls(RN ) for % ≤ s ≤ 2∗;
(ii) E− ↪→ H1

loc(RN ) and E− ↪→↪→ Lsloc(RN ) for 2 ≤ s < 2∗;
(iii) For % ≤ s ≤ 2∗, there exists a constant Cs > 0 such that

‖u‖ss ≤ Cs
[
‖u‖s∗ +

(∫
Ω

|u|% dx
)s/% +

(∫
Ωc
|u|2 dx

)s/2]
, (2.11)

for all u ∈ E−, where Ω ⊂ RN is any measurable set, Ωc = RN \ Ω.

The following linking theorem is an extension of [17] (see also [3] and [39, The-
orem 6.10]), which plays an important role in proving our main results.

Theorem 2.3 ([32, Theorem 2.4]). Let X be real Banach space with X = Y ⊕ Z,
where Y and Z are subspaces of X, Y is separable and reflexive, and there exists a
constant ζ0 > 0 such that the following inequality holds

‖P1u‖+ ‖P2u‖ ≤ ζ0‖u‖, ∀u ∈ X, (2.12)

where P1 : X → Y , P2 : X → Z are the projections. Let {fk}k∈N ⊂ Y ∗ be the dense
subset with ‖fk‖Y ∗ = 1, and the τ -topology on X be generated by the norm

‖u‖τ := max
{
‖P2u‖,

∞∑
k=1

1
2k
|〈fk, P1u〉|

}
, ∀u ∈ X. (2.13)

Suppose that the following assumptions are satisfied:
(A6) ϕ ∈ C1(X,R) is τ -upper semi-continuous and ϕ′ : (ϕa, ‖ · ‖τ )→ (X∗, Tw∗)

is continuous for every a ∈ R;
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(A7) there exists r > ρ > 0 and e ∈ Z with ‖e‖ = 1 such that

κ := inf ϕ(Sρ) > 0 ≥ supϕ(∂Q),

where

Sρ = {u ∈ Z : ‖u‖ = ρ}, Q = {v + se : v ∈ Y, s ≥ 0, ‖v + se‖ ≤ r}.

Then there exist c ∈ [κ, supQ ϕ] and a sequence {un} ⊂ X satisfying

ϕ(un)→ c, ‖ϕ′(un)‖X∗(1 + ‖un‖)→ 0. (2.14)

Such a sequence is called a Cerami sequence on the level c, or a (C)c-sequence.

Let X = E, Y = E− and Z = E+. Then (2.12) is obviously true by (2.9). Since
E− is separable and reflective subspace of E, then (E−)∗ is also separable. Thus we
can choose a dense subset {fk}k∈N ⊂ (E−)∗ with ‖fk‖(E−)∗ = 1. Hence, it follows
from (2.13) that

‖u‖τ := max
{
‖u+‖,

∞∑
k=1

1
2k
|〈fk, u−〉|

}
, ∀u ∈ E. (2.15)

It is clear that
‖u+‖ ≤ ‖u‖τ ≤ ‖u‖, ∀u ∈ E. (2.16)

By Lemma 2.2, it is easy to see that Φ ∈ C1(E,R), moreover

〈Φ′(u), v〉 =
∫

RN
(∇u∇v + V (x)uv) dx−

∫
RN

f(x, u)v dx, (2.17)

for all u, v ∈ E. This shows that critical points of Φ are the solutions of (1.1).
Furthermore,

Φ(u) =
1
2

(‖u+‖2∗ − ‖u−‖2∗)−
∫

RN
F (x, u) dx, (2.18)

for all u = u+ + u− ∈ E− ⊕ E+ = E, and

〈Φ′(u), v〉 = (u+, v)∗ − (u−, v)∗ −
∫

RN
f(x, u)v dx, ∀u, v ∈ E. (2.19)

Lemma 2.4 ([32, Lemma 3.3]). Suppose that (A1)–(A2), (A5) are satisfied. Then
Φ ∈ C1(E,R) is τ -upper semi-continuous and Φ′ : (Φa, ‖ · ‖τ ) → (E∗, Tw∗) is
continuous for every a ∈ R.

3. Proof of main results

Lemma 3.1. Suppose that (A1)–(A2), (A5) are satisfied. Then there exists a
constant ρ > 0 such that κ := inf Φ(S+

ρ ) > 0, where S+
ρ = ∂Bρ ∩ E+.

The proof of the above lemma is standard, and we omit it. Observe that, (A1)
implies the existence of a constant µ > 0 such that

Λ̄ < µ < inf V∞. (3.1)

Let
E0 := [E(µ)− E(0)]L2(RN ).

Then E0 ⊂ E+ is nonempty and

Λ̄‖u‖22 ≤ ‖u‖2 ≤ µ‖u‖22 for all u ∈ E0 (3.2)
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Lemma 3.2. Suppose that (A1)–(A2), (A5) are satisfied. Let e ∈ E0 ⊂ E+ with
‖e‖ = 1. Then there is a r1 > 0 such that sup Φ(∂Q) ≤ 0, where

Q = {w + se : w ∈ E−, s ≥ 0, ‖w + se‖ ≤ r1}. (3.3)

Proof. (A2) yields that F (x, t) ≥ 0 for any (x, t) ∈ RN+1, so we have Φ(u) ≤ 0 for
u ∈ E−. Next, it is sufficient to show Φ(u) → −∞ as u ∈ E− ⊕ Re, ‖u‖ → ∞.
Arguing indirectly, assume that for some sequence {wn + tne} ⊂ E− ⊕ Re with
‖wn + tne‖ → ∞, there is M > 0 such that Φ(wn + tne) ≥ −M for all n ∈ N.
Set vn = wn+tne

‖wn+tne‖ = v−n + sne, then ‖vn‖ = 1. Passing to a subsequence, we may
assume that vn ⇀ v = v− + se in E, sn → s and vn → v a.e. on RN . By (A2) and
(2.18), we have

−2M ≤ 2Φ(wn + tne)

= t2n‖e‖2∗ − ‖wn‖2∗ − 2
∫

RN
F (x,wn + tne) dx

≤ t2n − ‖wn‖2∗ −
2c1
%

(∫
|wn+tne|<1

|wn + tne|% dx

+
∫
|wn+tne|≥1

|wn + tne|2 dx
)
.

(3.4)

From (2.10), (2.11) and (3.4), we have

‖wn‖%% ≤ C1

[
‖wn‖%∗ +

∫
|wn+tne|<1

|wn|% dx+
(∫
|wn+tne|≥1

|wn|2 dx
)%/2]

≤ C1‖wn‖%∗ + C2

(
|tn|%

∫
|wn+tne|<1

|e|% dx+
∫
|wn+tne|<1

|wn + tne|% dx
)

+ C2

(
t2n

∫
|wn+tne|≥1

|e|2 dx+
∫
|wn+tne|≥1

|wn + tne|2 dx
)%/2

≤ C1‖wn‖%∗ + C3

(
|tn|% + t2n + 2M

)
+ C4

(
t2n + 2M

)%/2
≤ C5

(
1 + |tn|% + t2n

)
,

which, together with (2.8), (2.9) and (3.4), implies that

‖wn + tne‖2 = t2n + ‖wn‖2∗ + ‖wn‖2% ≤ 2t2n + 2M + C6

(
1 + |tn|% + t2n

)2/%
. (3.5)

Since ‖wn + tne‖2 →∞, it follows that |tn| → ∞ and

s2
n =

t2n
‖wn + tne‖2

≥ t2n

2t2n + 2M + C6 (1 + |tn|% + t2n)2/%
≥ 1

2(1 + C7)
.

This shows that s > 0, and so v 6= 0. By (3.1), (3.2) and the fact e ∈ E0, one has

s2 − ‖v−‖2∗ −
∫

RN
V∞(x)v2 dx

≤ s2‖e‖2∗ − ‖v−‖2∗ − inf V∞‖v‖22
≤ −

[
(inf V∞ − µ) s2‖e‖22 + ‖v−‖2∗ + inf V∞‖v−‖22

]
< 0.

Hence, there is a bounded domain Ω ⊂ RN such that

s2 − ‖v−‖2∗ −
∫

Ω

V∞(x)v2 dx < 0. (3.6)
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Let

f1(x, t) := f(x, t)− V∞(x)t, and F1(x, t) =
∫ t

0

f1(x, s) ds. (3.7)

By (A1) and (A2), there exists a positive constant C such that

F1(x, t) ≤ Ct2, ∀(x, t) ∈ RN × R, and lim
|t|→∞

F1(x, t)
t2

→ 0 uniformly in x.

(3.8)
It follows from Lebesgue’s dominated convergence theorem and the fact ‖vn −
v‖L2(Ω) → 0 that

lim
n→∞

∫
Ω

F1(x,wn + tne)
‖wn + tne‖2

dx = lim
n→∞

∫
Ω

F1(x,wn + tne)
|wn + tne|2

|vn|2 dx = 0. (3.9)

By (3.4), (3.7) and (3.9), we have

0 ≤ lim
n→∞

(
s2
n‖e‖2∗ − ‖v−n ‖2∗ − 2

∫
Ω

F (x,wn + tne)
‖wn + tne‖2

dx
)

= lim
n→∞

[
s2
n − ‖v−n ‖2∗ − 2

∫
Ω

(F1(x,wn + tne)
‖wn + tne‖2

+
1
2
V∞(x)v2

n

)
dx
]

≤ s2 − ‖v−‖2∗ −
∫

Ω

V∞(x)v2 dx,

a contradiction to (3.6). �

Lemma 3.3. Suppose that (A1)–(A2), (A5) are satisfied. Then there exist a con-
stant c∗ ∈

[
κ, supQ Φ

]
and a sequence {un} ⊂ E satisfying

Φ(un)→ c∗, ‖Φ′(un)‖E∗(1 + ‖un‖)→ 0. (3.10)

where Q is defined by (3.3).

The above lemma is a direct corollary of Theorem 2.3 and Lemmas 2.4, 3.1 and
3.2.

Lemma 3.4. Suppose that (A1)–(A2), (A5) are satisfied. Then

‖u‖2∗ ≤ 〈Φ′(u), u+ − u−〉+
∫
u6=0

f(x, u)
u
|u+|2dx, ∀u ∈ E. (3.11)

Proof. By (A1), (A2) and (2.19), for any u ∈ E, one has

〈Φ′(u), u+ − u−〉 = ‖u‖2∗ −
∫

RN
f(x, u)(u+ − u−)dx

= ‖u‖2∗ −
∫
u 6=0

f(x, u)
u

[
(u+)2 − (u−)2

]
dx

≥ ‖u‖2∗ −
∫
u 6=0

f(x, u)
u
|u+|2dx.

This shows that (3.11) holds. �

Lemma 3.5. Suppose that (A1)–(A), (A5) are satisfied. Then any sequence {un} ⊂
E satisfying

Φ(un)→ c ≥ 0, ‖Φ′(un)‖E∗(1 + ‖un‖)→ 0 (3.12)
is boundeded in E.



EJDE-2015/213 ASYMPTOTICALLY LINEAR SCHRÖDINGER EQUATION 9

Proof. First we prove that {‖un‖∗} is bounded. To this end, arguing by contradic-
tion, suppose that ‖un‖∗ →∞. Let vn = un/‖un‖∗, then ‖vn‖∗ = 1. If

δ := lim sup
n→∞

sup
y∈RN

∫
B(y,1)

|v+
n |2 dx = 0,

by Lions’s concentration compactness principle ([18] or [39, Lemma 1.21]), then
v+
n → 0 in Ls(RN ) for 2 < s < 2∗. Denote

Ωn :=
{
x ∈ RN :

f(x, un)
un

≤ Λ̄− δ0
}
.

By (2.10), one gets∫
Ωn

f(x, un)
un

|v+
n |2dx ≤

(
Λ̄− δ0

) ∫
Ωn

|v+
n |2dx

≤
(
Λ̄− δ0

)
‖v+
n ‖22

≤
(
1− δ0

Λ̄
)
‖v+
n ‖2∗ ≤ 1− δ0

Λ̄
.

(3.13)

From (A3) and (3.12), one has

c+ o(1) = Φ(un)− 1
2
〈Φ(un), un〉 =

∫
RN
F(x, un)dx ≥

∫
RN\Ωn

δ0dx. (3.14)

It follows from (A1), (A2), (3.14) and Hölder inequality that∫
RN\Ωn

f(x, un)
un

|v+
n |2dx ≤ C1

∫
RN\Ωn

|v+
n |2dx

≤ C1

(∫
RN\Ωn

1dx
)(%−2)/%(∫

RN\Ωn
|v+
n |%dx

)2/%

≤ C2‖v+
n ‖2% = o(1).

(3.15)

By (3.11), (3.12), (3.13) and (3.15), we have

1 ≤ 1
‖un‖2∗

〈Φ′(un), u+
n − u−n 〉+

∫
un 6=0

f(x, un)
un

|v+
n |2dx

=
∫
un 6=0

f(x, un)
un

|v+
n |2dx+ o(1) ≤ 1− δ0

Λ̄
+ o(1),

(3.16)

which is a contradiction. Thus δ > 0.
Going to a subsequence, if necessary, we may assume the existence of kn ∈ ZN

such that
∫
B(kn,1+

√
N)
|v+
n |2 dx > δ

2 . Let wn(x) = vn(x+ kn). Then∫
B(0,1+

√
N)

|w+
n |2 dx >

δ

2
. (3.17)

Since V (x) is periodic, we have ‖w+
n ‖ = ‖v+

n ‖ ≤ 1. Passing to a subsequence,
we have w+

n ⇀ w(1) in E, w+
n → w(1) in L2

loc(RN ) and w+
n → w(1) a.e. on RN .
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Obviously, (3.17) implies that w(1) 6= 0. By (A2), (2.19) and (3.12), one has

‖u+
n ‖2∗ − ‖u−n ‖2∗ + o(1)

=
∫

RN
f(x, un)un dx =

∫
RN

f(x, ‖un‖∗wn)‖un‖∗wn dx

≥ c1‖un‖%∗
∫
‖un‖∗|wn|<1

|wn|% dx+ c1‖un‖2∗
∫
‖un‖∗|wn|≥1

|wn|2 dx.

(3.18)

From (3.18), we have∫
‖un‖∗|wn|<1

|wn|% dx ≤ ‖u+
n ‖2∗

c1‖un‖%∗
+ o(1) = o(1), (3.19)∫

‖un‖∗|wn|≥1

|wn|2 dx ≤ ‖u+
n ‖2∗

c1‖un‖2∗
+ o(1) ≤ C3, (3.20)

By (2.10), (2.11), (3.18), (3.19) and (3.20), we have

‖w−n ‖2∗ + ‖w−n ‖%%

≤ ‖w−n ‖2∗ + C4

[
‖w−n ‖%∗ +

∫
‖un‖∗|wn|<1

|w−n |% dx+
(∫
‖un‖∗|wn|≥1

|w−n |2 dx
)%/2]

≤ 1 + C4 + C5

(∫
‖un‖∗|wn|<1

|w+
n |% dx+

∫
‖un‖∗|wn|<1

|wn|% dx
)

+ C6

(∫
‖un‖∗|wn|≥1

|w+
n |2 dx+

∫
‖un‖∗|wn|≥1

|wn|2 dx
)%/2

≤ C7.

(3.21)
This shows that {w−n } is bounded in E and so w−n ⇀ w(2) in E and w−n → w(2)

a.e. on RN . Let w0 = w(1) + w(2). It is clear that w+
0 = w(1) 6= 0 and wn → w0

a.e. on RN .
Now we define ũn(x) = un(x+ kn), then ũn/‖un‖∗ = wn → w0 a.e. on RN and

w0 6= 0. For a.e. x ∈ Ω := {y ∈ RN : w(y) 6= 0}, we have limn→∞ |ũn(x)| = ∞.
For any ψ ∈ C∞0 (RN ), set ψn(x) = ψ(x − kn). By (A5), (A2), (2.19) and (3.7),
then we have

〈Φ′(un), ψn〉 = (u+
n − u−n , ψn)∗ − (V∞un, ψn)L2 −

∫
RN

f1(x, un)ψn dx

= ‖un‖∗
[
(v+
n − v−n , ψn)∗ − (V∞vn, ψn)L2 −

∫
RN

f1(x, un)
|un|

|vn|ψn dx
]

= ‖un‖∗
[
(w+

n − w−n , ψ)∗ − (V∞wn, ψ)L2 −
∫

RN

f1(x, ũn)
|ũn|

|wn|ψ dx
]
,

which, together with (3.12), yields that

(w+
n − w−n , ψ)∗ − (V∞wn, ψ)L2 −

∫
RN

f1(x, ũn)
|ũn|

|wn|ψ dx = o(1). (3.22)

Note that lim|t|→∞ f1(x, t)/|t| = 0 uniformly in x, then∣∣ ∫
RN

f1(x, ũn)
|ũn|

|wn|ψdx
∣∣

≤
∫

RN

∣∣f1(x, ũn)
ũn

∣∣|wn − w0||ψ|dx+
∫

RN

∣∣f1(x, ũn)
ũn

∣∣|w0||ψ|dx
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≤ C8

∫
supp ψ

|wn − w0||ψ|dx+
∫

Ω

∣∣f1(x, ũn)
ũn

∣∣|w0||ψ|dx = o(1).

Hence,
(w+

0 − w
−
0 , ψ)∗ − (V∞w0, ψ)L2 = 0.

Thus w0 is an eigenfunction of the operator B := −∆ + (V − V∞) contradicting
with the fact that B has only continuous spectrum. This contradiction shows that
{‖un‖∗} is bounded. By (A2), (2.19) and (3.12), we have

‖u+
n ‖2∗ − ‖u−n ‖2∗ + o(1) =

∫
RN

f(x, un)un dx

≥ c1
(∫
|un|<1

|un|% dx+
∫
|un|≥1

|un|2 dx
)
.

(3.23)

From (2.10), (2.11) and (3.23), we have

‖u−n ‖%% ≤ C9

[
‖u−n ‖%∗ +

∫
|un|<1

|u−n |%dx+
(∫
|un|≥1

|u−n |2dx
)%/2]

≤ C10

[
‖u−n ‖%∗ +

∫
|un|<1

|u+
n |%dx+

∫
|un|<1

|un|%dx

+
(∫
|un|≥1

|u+
n |2dx+

∫
|un|≥1

|un|2dx
)%/2]

≤ C11.

(3.24)

This shows that {‖u−n ‖%}n is also bounded and so {un} is bounded in E. �

Lemma 3.6 ([2, Corollary 2.3]). Suppose that (A5) is satisfied. If u ⊂ E is a weak
solution of the Schrödinger equations

−∆u+ V (x)u = f(x, u), x ∈ RN , (3.25)

i.e. ∫
RN

(∇u∇ψ + V (x)uψ) dx =
∫

RN
f(x, u)ψ dx, ∀ψ ∈ C∞0 (RN ), (3.26)

then un → 0 as |x| → ∞.

Lemma 3.7. Suppose that (A5), (A1)–(A3), (A5) are satisfied. Then M 6= ∅, i.e.,
problem (1.1) has a nontrivial solution.

Proof. Lemma 3.3 implies the existence of a sequence {un} ⊂ E satisfying (3.10).
By Lemma 3.5, {un} is bounded in E. Thus ‖un‖%% is also bounded. If

δ := lim sup
n→∞

sup
y∈RN

∫
B(y,1)

|u+
n |2 dx = 0,

then by Lions’s concentration compactness principle, u+
n → 0 in Ls(RN ) for 2 <

s < 2∗. From (A2), (2.18), (2.19) and (3.10), one has

2c∗ + o(1) = ‖u+
n ‖2∗ − ‖u−n ‖2∗ − 2

∫
RN

F (x, un) dx

≤ ‖u+
n ‖2∗ =

∫
RN

f(x, un)u+
n dx+ 〈Φ′(un), u+

n 〉

≤ c2
∫

RN
|un|%−1|u+

n |dx+ o(1)

≤ c2‖un‖%−1
% ‖u+

n ‖% + o(1) = o(1)
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which is a contradiction. Thus δ > 0.
Going to a subsequence, if necessary, we may assume the existence of kn ∈ ZN

such that ∫
B(kn,1+

√
N)

|u+
n |2 dx >

δ

2
.

Let us define vn(x) = un(x+ kn) so that∫
B(0,1+

√
N)

|v+
n |2 dx >

δ

2
. (3.27)

Since V (x) and f(x, t) are periodic in x, we have ‖vn‖ = ‖un‖ and

Φ(vn)→ c∗ ∈ [κ, sup
Q

Φ], ‖Φ′(vn)‖E∗(1 + ‖vn‖)→ 0. (3.28)

Passing to a subsequence, we have vn ⇀ v0 in E, vn → v0 in Lsloc(RN ) for 2 ≤ s < 2∗

and vn → v0 a.e. on RN . Then (3.27) implies that v0 6= 0. For any ψ ∈ C∞0 (RN ),
there exists a Rψ > 0 such that suppψ ⊂ B(0, Rψ). By (A2) and [39, Theorem
A.2], we have

lim
n→∞

∫
B(0,Rψ)

|f(x, un)− f(x, u)||ψ|dx = 0. (3.29)

Note that (
v+
n − v+

0 , ψ
)
∗ −

(
v−n − v−0 , ψ

)
∗ → 0. (3.30)

Hence, it follows from (2.19), (3.28), (3.29) and (3.30) that

|〈Φ′(v0), ψ〉| =
∣∣∣〈Φ′(vn), ψ〉 −

[(
v+
n − v+

0 , ψ
)
∗ −

(
v−n − v−0 , ψ

)
∗

]
+
∫

RN
[f(x, un)− f(x, u)]ψ dx

∣∣∣
≤ o(1) +

∫
RN
|f(x, un)− f(x, u)||ψ|dx = o(1).

This shows that 〈Φ′(v0), ψ〉 = 0 for all ψ ∈ C∞0 (RN ). Since C∞0 (RN ) is dense in E,
we can conclude that Φ′(v0) = 0. This shows that v0 ∈M and so M 6= ∅. Lemma
3.6 implies that v0 is a nontrivial solution of (1.1). �

Proof of Theorem 1.1. Lemma 3.7 shows that M is not an empty set. Let c0 :=
infMΦ. Since F(x, t) ≥ 0 for all (x, t) ∈ RN+1, one has Φ(u) ≥ 0 for all u ∈ M.
Thus c0 ≥ 0. Let {un} ⊂ M such that Φ(un) → c0. Then 〈Φ′(un), v〉 = 0 for any
v ∈ E. In view of the proof of Lemma 3.5, we can show that {un} is bounded in
E. By (A2) and (2.19),

0 = 〈Φ′(un), u+
n 〉 = ‖u+

n ‖2∗ −
∫

RN
f(x, un)u+

n dx, (3.31)

and

‖u+
n ‖2∗ − ‖u−n ‖2∗ =

∫
RN

f(x, un)un dx

≥ c1
(∫
|un|<1

|un|% dx+
∫
|un|≥1

|un|2 dx
)
.

(3.32)
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From (2.10), (2.11) and (3.32), we have

‖un‖%% ≤ C1(‖u+
n ‖%% + ‖u−n ‖%%)

≤ C2

[
‖u+

n ‖%% + ‖u−n ‖%∗ +
∫
|un|<1

|u−n |%dx+
(∫
|un|≥1

|u−n |2dx
)%/2]

≤ C3

[
‖u+

n ‖%∗ +
∫
|un|<1

|u+
n |%dx+

∫
|un|<1

|un|%dx

+
(∫
|un|≥1

|u+
n |2dx+

∫
|un|≥1

|un|2dx
)%/2]

≤ C4

(
‖u+

n ‖%∗ + ‖u+
n ‖2∗

)
.

(3.33)

By (A2), (2.10), (3.31) and (3.33), one has

‖u+
n ‖2∗ =

∫
RN

f(x, un)u+
n dx ≤ c2

∫
RN
|un|%−1|u+

n |dx

≤ C5

(
‖u+

n ‖%∗ + ‖u+
n ‖2∗

)1−1/% ‖u+
n ‖∗,

which implies that

C
−%/(%−1)
5 ≤ ‖u+

n ‖
%(%−2)/(%−1)
∗ + ‖u+

n ‖
(%−2)/(%−1)
∗ .

This shows that ‖u+
n ‖∗ ≥ α0 for some α0 > 0. If

δ := lim sup
n→∞

sup
y∈RN

∫
B(y,1)

|u+
n |2 dx = 0,

then by Lions’s concentration compactness principle, u+
n → 0 in Ls(RN ) for 2 <

s < 2∗. From (A2) and (3.31), one has

‖u+
n ‖2∗ =

∫
RN

f(x, un)u+
n dx ≤ c2

∫
RN
|un|%−1|u+

n |dx ≤ c2‖un‖%−1
% ‖u+

n ‖% = o(1),

a contradiction. Thus δ > 0.
By a similar argument as in the proof of lemma 3.7, we can show that there exist

a sequence {vn} ⊂ E and v0 ∈ E \ {0} such that ‖vn‖ = ‖un‖, vn → v0 a.e. on RN
and

Φ(v0)→ c0, Φ′(v0) = 0. (3.34)

This shows that v0 ∈ M, and so Φ(v0) ≥ c0. On the other hand, by (A3), (2.18),
(2.19), (3.34) and Fatou’s Lemma, we have

c0 = lim
n→∞

[
Φ(vn)− 1

2
〈Φ′(vn), vn〉

]
= lim
n→∞

∫
RN

[1
2
f(x, vn)− F (x, vn)

]
dx

≥
∫

RN
lim
n→∞

[1
2
f(x, vn)− F (x, vn)

]
dx =

∫
RN

[1
2
f(x, v0)− F (x, v0)

]
dx

= Φ(v0)− 1
2
〈Φ′(v0), v0〉 = Φ(v0).

This shows that Φ(v0) ≤ c0 and so Φ(v0) = infMΦ, which together with lemma
3.6, implies that v0 is a ground state solution of (1.1). �
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[24] D. D. Qin, F. F. Liao, Y. Chen; Multiple solutions for periodic Schrödinger equations with

spectrum point zero, Taiwanese J. Math., 18 (2014), 1185-1202.

[25] D. D. Qin, X. H. Tang; New conditions on solutions for periodic Schrödinger equations with
spectrum zero, Taiwanese J. Math., 19 (2015), 977-993.

[26] P. H. Rabinowitz; On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys.,

43 (1992), 270-291.
[27] M. Reed, B. Simon; Methods of Modern Mathematical Physics, vol. IV, Analysis of Operators,

Academic Press, New York, 1978.

[28] M. Struwe; Variational Methods, Applications to Nonlinear Partial Differential Equations
and Hamiltonion Systems, Springer-Verlag, Berlin, 2000.

[29] A. Szulkin, T. Weth; Ground state solutions for some indefinite variational problems, J.

Funct. Anal., 257 (12) (2009), 3802-3822.
[30] A. Szulkin, W. M. Zou; Homoclinic orbits for asymptotically linear Hamiltonian systems, J.

Funct. Anal., 187 (2001), 25-41.
[31] X. H. Tang; New super-quadratic conditions on ground state solutions for superlinear

Schrödinger equation, Adv. Nonliear Studies, 14 (2014), 361-373.

[32] X.H. Tang; New conditions on nonlinearity for a periodic Schrödinger equation having zero
as spectrum, J. Math. Anal. Appl. 413 (2014) 392-410.

[33] X. H. Tang; Non-Nehari manifold method for asymptotically linear Schrödinger equation, J.

Aust. Math. Soc. 98 (2015) 104-116.
[34] X. H. Tang; Non-Nehari manifold method for asymptotically periodic Schrödinger equation,

Sci. China Math., 58 (2015), 715-728.

[35] C. Troestler, M. Willem; Nontrivial solution of a semilinear Schrödinger equation, Comm.
Partial Differential Equations, 21 (1996), 1431-1449.

[36] F. A. Van Heerden; Multiple solutions for a Schrödinger type equation with an asymptotically

linear term, Nonlinear Anal., 55 (2003), 739-758.
[37] F. A. Van Heerden; Homoclinic solutions for a semilinear elliptic equation with an asymp-

totically linear nonlinearity, Calc. Var. Partial Differential Equations, 20 (2004), 431-455.
[38] F. A. Van Heerden, Z.-Q. Wang; Schrödinger type equations with asymptotically linear non-

linearities. Differential Integral Equations, 16 (2003), 257-280.

[39] M. Willem; Minimax Theorems, Birkhäuser, Boston, 1996.
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